THEORY OF ELECTRON

WU SHENG-PING

Abstract. The solution with no singularity of wave equation for E-M fields is solved not to Bessel function, which's geometrical size is little enough to explain all effects in matter's structure: strong, weak effect or even other new ones. The mathematic calculation leaded by quantum theory reveals the weak or strong decay and static properties of elementary particles, all coincide with experimental data, and a covariant equation comprising bent space is proposed to explain mass. In the end that the conformation elementarily between this theory and QED and weak theory is proven, except some bias in some analysis.

Contents

1. Unit Dimension of sch 2
2. Quantization 2
3. Self-consistent Electrical-magnetic Fields 3
4. Stable Particle 3
5. Radium Function 4
6. Solution 5
7. Electrons and Their Symmetries 5
8. Mechanic Feature 7
9. Propagation and Movement 8
10. Antiparticle and Radiation 11
11. Conservation Law and Balance Formula 12
12. Muon 12
13. Pion Positive 12
14. Pion Neutral 13
15. tau 13
16. Proton 14
17. Magic Numbers 14
18. Scattering and decay life 14
19. η 16
20. Conclusion 16
References 17

Date: Jan 14, 2013.

Key words and phrases. Maxwell equations, Decay, Antiparticle.
1. Unit Dimension of \(\text{s} \text{c} \text{h} \)

A rebuilding of units and physical dimensions is needed. Time \(s \) is fundamental. The velocity of light is set to 1

\[Velocity : c = 1 \]

Hence the dimension of length is

\[L : c(s) \]

The \(h \) is set to 1

\[Energy : h(s^{-1}) \]

In Maxwell equations the following is set

\[c\epsilon = 1, c\mu = 1 \]

One can have

\[\epsilon : \frac{Q^2}{\varepsilon L} ; \]
\[\mu : \frac{\varepsilon L}{c^2 Q^2} \]

Unitive Electrical Charge : \(\sigma = \sqrt{\hbar} \)

It’s very strange that the charge is analyzed as space and mass. Charge \(Q \) is then defined as \(Q/\sigma \) here, without unit.

\[\sigma = 1.03 \times 10^{-17}C = 64e, e/\sigma = e/\sigma = 1/64 = 1.56 \times 10^{-2} \]

\[H : Q/(LT) : \sqrt{\hbar}/c(s^{-2}) \]
\[E : \varepsilon/(LQ) : \sqrt{\hbar}/c(s^{-2}) \]

If \(h, c \) is taken as a number instead of unit, then all physical units is described as the powers of the second: \(s^n \).

The unit of charge can be reset by linear variation of charge-unit

\[Q \rightarrow CQ, Q : \sigma/C \]

We will use it without detailed explanation.

2. Quantization

All discussion base on an explanation of quantization, or real probability explanation for quantum theory, which bases on a Transfer Probability Matrix (TPM)

\[P_i(x)M = P_j(x) \]

As a fact, that a particle appears in a point at rate 1 is independent with appearing at anther point at rate 1. There still another pairs of independent states

\[S_1 = e^{ipx}, S_2 = e^{ip'x} \]

because

\[<s_1, s_2>_4 = \int dV s_1^* s_2 = N\delta(p - p') \]

\(<s_1, s_2>_4 \) means make product integrated in time-space. Similarly the symbol

\[<s_1, s_2> \]

is the product integrated in space and always means its branch of zero frequency.

In fact in the TPM formulation, it’s been accepted for granted that the Hermitian
inner-product is the measure of the dependence of two states, and it is also implied by the formula
\[P_1 M P_2^* \]
Depending on this viewpoint one can constructs a wave
\[e^{ipx} \]
and gifts it with the momentum explanation \(p \). Then all quantum theory is set up.

3. Self-consistent Electrical–magnetic Fields

The Maxwell equations are
\[\frac{\partial H}{\partial t} + \nabla \times E = 0 \]
\[\frac{\partial E}{\partial t} - \nabla \times H + j = 0 \]
it’s discussed that plat and straight space.

Try equation for the free E-M field
\[A^{i,j} - A^{i,j} = \frac{1}{4}(- i A^{*}_\nu \cdot \partial^i A^\nu + i A^\nu \cdot \partial^i A^{*_\nu}) = J, Q_e = 1 \]

\[(A^i) := (-V, A), (j^i) = (\rho, J) \]
\[\partial := (\partial_1, \partial_{x_1}, \partial_{x_2}, \partial_{x_3}) \]
\[\partial' := (\partial^i) := (-\partial_1, \partial_{x_1}, \partial_{x_2}, \partial_{x_3}) \]
The equation 3.1 have symmetries
\[CPT, cc.PT \]
The current \(J \) is also explained as dense of matter \((J_0) \) and current of matter.
If the gauge is
\[\partial_\mu A^\mu = 0 \]
the continuous charge current meets
\[\partial_\mu \cdot j^\mu = 0 \]

4. Stable Particle

All particles are elementarily E-M fields is presumed. It’s trying to find stable solution of the Maxwell equations in complex domain. One can write down the solution initially and correct it by re-substitution. Here is the initial state
\[V = V_i e^{ikt}, A_i = V \]

Substituting into equation 3.1
\[\partial_\mu \partial^\mu A^\nu = J_i, \partial_\mu \partial^\mu A^\nu - \partial^\nu \partial_\mu A^\mu_i = J_i \]
\[J_x = \frac{1}{2}(- i A^{*}_\nu \cdot \partial^i A^\nu - cc.) \]
\[J_i = -\partial^\nu \partial_\mu A^\mu_i = \partial^\nu \partial_i V \]
It has the properties
\[\partial \cdot J_i = 0 \]
\(J_i \) causes the initial fields \(V \), so that is the real seed of recursive algorithm.

The static fields \(E_0, H_0 \)
\[\nabla \cdot E_0 = (i A^{*_\nu} \cdot \partial_i A^\nu + cc.)/4 = \rho_0 \]
$$\nabla \times H_0 = -(iA^*_{1\nu} \cdot \nabla A^\nu_1 + cc.)/4 = J_0$$

In the first round of substitution

$$4J_1 = -(i(A_{0\nu} \cdot \partial' A^\nu_0) + i(\partial' A_{0\nu} \cdot A^{*\nu}_1) + cc.)$$

We calls the fields correction with frequency nk the n-th order correction. calls the n-th re-substitution in same order the n-th rank correction.

The energy of field A is $\varepsilon = \int dV (E^2 + H^2)/2$

$$(A^i_j - A^j_i)^*(A^j_i - A^i_j)$$

$$= 2A^{*i}_j A^i_j - A^{*i}_j A^j_i - A^{*j}_i A^i_j$$

$$= 2A^{*i}_j A^i_j - (A^{*i}_j A^j)_i + A^{*i}_j A^j_i - (A^{*j}_i A^i)_j + A^{*i}_j A^i_j$$

under integration

$$\int dV (A^i_j - A^j_i)^*(A^j_i - A^i_j) = 4\varepsilon = 2 < A^i_j | A^j_i >$$

ε is energy of the field.

5. Radium Function

Firstly

$$\nabla^2 A = -k^2 A$$

is solved. Exactly, it’s solved in spherical coordinate

$$0 = r^2 \nabla^2 f + k^2 f = (r^2 f_r)_r + k^2 r^2 f + \frac{1}{\sin \theta} (\sin \theta f_\theta)_\theta + \frac{1}{\sin^2 \theta} (f_\phi)_\phi$$

Its solution is

$$f = R \Theta \Phi = R_l Y_{lm}$$

$$\Theta = P_l^m(\cos \theta), \Phi = \cos(\alpha + m\phi)$$

$$R_l = N \eta(kr), \eta(r) = r^l \int_0^\infty \frac{(1 - \lambda)^l}{(1 + \lambda)^{l/2}} \cos(\lambda r) d\lambda$$

$$\int_0^\infty dr \cdot r^2 R^2 = 1$$

R is solved like

$$(r^2 R_r)_r = -k^2 r^2 R + l(l + 1)R, l \geq 0$$

$$R \rightarrow r R'$$

$$(r^2 R')_{rr} = -k^2 r^2 R' + l(l + 1)R'$$

$$R' \rightarrow r^{l-1} R'$$

$$r R'_{rr} + 2(l + 1)R'_r + k^2 r R' = 0$$

$$r \rightarrow r/k$$

$$(s^2 F)' + 2(l + 1)F + F' = 0, F = F(R')$$

$F()$ is the Fourier transform

$$R' = \int_0^\infty \frac{(1 - \lambda)^l}{(1 + \lambda)^{l/2}} \cos(\lambda r) d\lambda$$

The function R' has zero derivative at $r = 0$ and is zero as $r \rightarrow \infty$.

6. Solution

The derivatives of the function of electron has a strange breaking point in coordinate origin hence without normal convenience of Fourier transform. The following are some proximation of the first rank. The solution of \(l = 1, m = 1, Q = e/\sigma \) is calculated or tested for electron.

\[
A_1 = NR_1(kr)Y_{1,1},
\]

The curve of \(R_1 \) is like the one in the figure 1.

The magnetic dipole moment \(\mu_z \) is calculated as the first rank of proximation

\[
\mu_z = \frac{<A_\nu| -i\partial_\phi|A''>}{2} = 1/2, \quad k_e = 1
\]

The power of unit of charge is not equal, but it’s valid for unit \(Q = e \).

\[
\frac{Q}{2k} = \mu_B
\]

7. Electrons and Their Symmetries

Some states of electrical field \(A \) are defined as the core of the electron, it’s the initial function \(A_1 = V \) for the re-substitution to get the whole electron function.

\[
e^+_r : NR_1(-kr)Y_{1,1}e^{-ikt},
\]

\[
e^-_r : NR_1(kr)Y_{1,1}e^{ikt}, \quad (CPT)
\]

\[
e^+_l = NR_{-z}(e^+_r) : R_1(-kr)Y_{1,-1}e^{-ikt}
\]

\[
e^-_l = NR_{-z}(e^-_r) : R_1(kr)Y_{1,-1}e^{ikt}
\]

\[
R_{-z} : \text{Rotation} : z \to -z, x \to x, y \to -y
\]

We use these symbols e-s to express the complete potential field \(A \) or the abstract particle.

Energy of static E-field crossing.

In the zero rank of correction ie. the static field is

\[
(e(-i\partial')e + cc.)/4 = J_e \cdot Q_e
\]

Because the equation of charge

\[
4Q_e\rho_0 = (e(i\partial)e + cc.)
\]
is used to normalization of electron function. The normalization of electron is

\[<e|e> = 2/(-k_e Q_e) \]

The static energy of electric field is

\[\varepsilon_e = -\frac{1}{2} \int dV dV' \rho(r) \rho'(r')/4\pi|v(r - r')| \]

\[\approx -\frac{e}{4\pi \sigma} \int dV \rho(r)/4\pi r = -\frac{1}{6.4 \times 10^{-16} \text{s}} \]

Energy of the static M-field crossing

\[\varepsilon_m = \varepsilon_e \]

It's easy to prove by calculating in real functions.

\[4\varepsilon_m - 4\varepsilon_e = \frac{1}{2} \int dV (A^\mu_1(r_1) \partial' \Lambda^\mu_1(r_1) - \text{cc.}) \cdot (A^\mu_2(r_1 - r_2) \partial A^\mu(r_1 - r_2) - \text{cc.})/|r_1 - r_2| = 0 \]

The value of crossing term generated by static fields between electrons are

\[
\begin{array}{ccccccc}
2\varepsilon_e & e^+_r & e^-_r & e^+_i & e^-_i \\
 e^+_r & + & 0 & 0 & - \\
e^-_r & 0 & + & - & 0 \\
e^+_i & 0 & - & + & 0 \\
e^-_i & - & 0 & 0 & + \\
\end{array}
\]

Calculating the crossing part between \(e^+_r, e^-_r\). In a electron \(e^+_r\) has two parts of first rank correction

\[J_1 = -i(-V_0 \cdot \partial V + V_0 \cdot \partial' V^*)/4 \rightarrow A_1 \]

\[J'_1 = -i(-V^* \cdot \partial' V_0 + V \cdot \partial V_0)/4 \rightarrow A'_1 \]

Between \(e^+_r, e^-_r\) the crossing part is zero in this rank. They coupling with \(V\)

\[J_2 = -i((-V_1 \cdot \partial' V + V_1 \cdot \partial' V^* - V^* \cdot \partial' V_1 + V \cdot \partial V_1))/4 \]

Its electrical part is

\[= -(G(V_0 \cdot V^*_1) \cdot V_t + G(V_0 V_t) \cdot V^*_1)/8 \]

\(G(J)\) is the potential caused by current \(J\). As the magnetic part interaction with static fields their crossing part is zero.

\[J'_2 = -i(-V'_1 \cdot \partial' V + V'_1 \cdot \partial' V^* - V^* \cdot \partial' V'_1 + V \cdot \partial V'_1)/4 = 0 \]

\(J_2\) interacts with static field (zero rank). By violent computation and sampling the radium function at 10 points with clear shape of it, the results of crossing between \(e^+_r, e^-_r\) approaches

\[2\varepsilon_x \approx -\frac{1}{1.6 \times 10^{-8} \text{s}} \]

The value of this crossing term generated between electrons are

\[
\begin{array}{ccccccc}
2\varepsilon_x & e^+_r & e^-_r & e^+_i & e^-_i \\
 e^+_r & + & - & 0 & 0 \\
e^-_r & - & + & 0 & 0 \\
e^+_i & 0 & 0 & + & - \\
e^-_i & 0 & 0 & - & + \\
\end{array}
\]
8. Mechanic Feature

As two electrons meet and effect each other, their phases of the vibrations are also key, but the effect of phase is not observed. Considering two electrons with the same phase start from the same place and meet at the other one, the relative theory give a result that their phase are the same as they meet. If one defines unitary and orthogonal frame field P_i

$$DP_i = 0, P_i(O) = P_j(O) = 0, |P_i| = 1$$

And the frame

$$g^i_j dx_i = P_i$$

and the free and orthogonal harmonic waves

$$e^{iv} \sum_{p,o}$$

In fact under this base P_i all differential is good as covariant and can be operated like in straight and flat space. More over we have the covariant spectrum indexed by p.

One can guess that all the electrons in this cosmos are generated in the same place and the same time.

If the equation that connects space and E-M fields is written down for cosmos of electrons, it’s the following:

$$R_{ij} - \frac{1}{2}Rg_{ij} = 8\pi GT_{ij}$$

$$e^2_{/\alpha} T_{ij} = F_{ij}^k F_{kj} - \delta_{ij} F_{\mu\nu} F^{\mu\nu} / 4$$

All tensors are expressed in base P_i. This equation give mass because the space is decided by E-M fields instantly. the factor $e^2_{/\alpha}$ is to balances the physical unit.

The Einstein’s Theory of space and gravity is compatible with this theory and explains the energy of space and the looking mass k (generated by moving coordinate system) of particle.

for the group of electrons, its fields F is constructed by convolution:

$$A = \sum_i f_i * \partial e_i, <f_i|f_i> = 1$$

The convolution is made only in space:

$$f * g = \int dV f(t, y - x)g(t, x)$$

It’s called propagation. Each f_i is normalized to 1. The complete coupling electrons is

$$f * \sum_i \partial e_i$$

When the mechanical physical is discussed, The mechanical dense of matter (equation 3.1) is

$$<\sqrt{|Q_e|/2A^*} \cdot i\partial_t \sqrt{|Q_e|/2A^*} + cc.>/2$$

For electron sum of the dense is

$$<\sqrt{|Q_e|/2e} |i\partial_t|\sqrt{|Q_e|/2e} >= 1$$
In order get momentum we divide the dense to harmony function and calculates its diffusion to quantize the field:

\[p^\mu = -\left(\sqrt{|Q_e|/2}A^*_\mu \cdot \partial^\mu \partial_t \sqrt{|Q_e|/2}A^\nu + cc.\right)/2 \]

The field energy equal to mechanical energy

\[p^0 = \langle \partial A | \partial A \rangle / 2 \]

This equation can deduce the natural frequency of the coupling electron system \(e_x \sum e_i \) and natural frequency of electron.

The spin of electron is calculated as

\[S_e = \int dV \frac{1}{4} \left(\sqrt{|Q_e|/2} A^*_\mu \partial_\mu \sqrt{|Q_e|/2} A_\nu + \sqrt{|Q_e|/2} A^*_\nu \partial_\nu \sqrt{|Q_e|/2} A^*_\mu \right)/2 = 1/2 \]

9. Propagation and Movement

Define symbols

\[e_{xr} := N \cdot R_1(k_x r) Y(1, 1) e^{-ik_x t}, \]
\[e_{xx} := (e_{xl} + e_{xr})/\sqrt{2} \]

The following are also (stable) classical propagations.

- **particle**
- **electron**
- **photon**
- **neutino**

<table>
<thead>
<tr>
<th>notation</th>
<th>structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e^+_r)</td>
<td>((e^+_r + e^-_r))</td>
</tr>
<tr>
<td>(\gamma_r)</td>
<td>(\nu_r)</td>
</tr>
</tbody>
</table>

We have results by mathematic

\[\varsigma_{k,l,m}(x) := R_l(kr)Y_l,m, \]

meets

Theorem 9.1. \(C_A \) is a global area with its center in \(A \) and its diameter is \(r_A \)

\[
\lim_{r_x = r_y \to 0} \int_{I - \sum C_i} dV \varsigma_{k,l,m}(x) \varsigma^*_{k,l,m}(x - y) = 0, y \neq O
\]

\[
\int dV \varsigma_{k,l,m}(x) \varsigma_{k',l',m'}(x) = 0, k \neq k' \text{ or } l \neq l' \text{ or } m \neq m'
\]

Proof. Use the limit

\[
\lim_{k' \to k} \lim_{r_x = r_y \to 0} \left(\int_{I - \sum C_i} dV \varsigma_{k,l,m}(x) - \varsigma_{k',l,m}(x - y) \right)
\]

Theorem 9.2. if \(e^{ipr}, \varsigma_{k,l,m} \) is normalized to 1, \(e^{ipr} \varsigma_{k,l,m} = e^{ipr} \)

Proof. because

\[
\int dV e^{ipr} \varsigma_{k,l,m} \cdot (e^{ipr} \varsigma_{k,l,m})^* = \int dV (e^{ipr})^* \int dV \varsigma_{k,l,m} (\varsigma_{k,l,m})^* = 1
\]
Figure 2. the shape of distribution of momenta of electron fields in one direction, calculated through spherical Bessel functions.

The figure 2 is the shape of distribution of momenta of electron function \(e_x \).

The movement of the propagation is called Movement, i.e., the third level wave, for example

\[
\text{e}^{i p r - i k t} \ast \delta(r) \ast e = \text{e}^{i p r - i k t} \ast e^{i k_e L t} \zeta
\]

\((p, -k)\) is the momentum of electron. \(k_e L \) is the value in lorentz transform. In static grid of the electron the outer eave is a stationary wave

\[
\text{e}^{i p r} \ast e^{i k_e L t} \zeta
\]

By frame transform we can find the general form

\[
\text{e}^{i p r'} \ast e^{i k'_e L t'} \ast \zeta, (p', k'_e) = L(p, k_e)
\]

\(L\) is lorentz transform. Hence

\[
\partial_x \partial'^r (\text{e}^{i p r + i k t} \ast \delta(r) \ast e) = 0
\]

The following term is frame-invariant

\[
\int dV \text{e}^{i p r + i k t} \ast (i \partial_t \text{e}^{i p r + i k t}) \cdot p^2 = k_e^2
\]

Theorem 9.3.

\[
\nabla (e_x \ast e) = (\nabla e_x) \ast e + e_x \ast (\nabla e)
\]

Proof. Calculate

\[
\nabla_t \int dV_y \delta(t - y) \int dV_x dV_x' (e_x(y - x)e(x) \cdot (e_x(y - x')e(x'))^*)
\]

\[
= \int dV_y' dV_x' \delta'(t - y' - x) (e_x(x)e(x)^* \cdot e_x(y')e(y')^*)
\]

\[
= \int dV_y' \nabla_t (e_x(t - y')e(t - y')^*) \cdot (e_x(y')e(y')^*) + \int dV_x (e_x(x)e(x)^* \cdot \nabla_t (e_x(t - x)e(t - x)^*)
\]

Theorem 9.4.

\[
(\partial_x \text{e}^{i p x}) \ast e = \text{e}^{i p x} \ast (\partial_x e)
\]
Theorem 9.5.

\[k_x^2(\nabla e_x) \ast e \cdot ((\nabla e_x) \ast e)^* = k_x^2(\nabla e) \ast e_x \cdot ((\nabla e) \ast e_x)^* \]

Definition 9.6.

\[< f_1(x_1) + f_2(x_2))|O(x)|f_1(x_1) + f_2(x_2) > \]

\[= \lim_{V \to I} \left(\int_V dV_1 \int_V dV_2 \cdot (f_1(x_1) + f_2(x_2))^*(O(x_1) + O(x_2))(f_1(x_1) + f_2(x_2)) \right) / V \]

The field of two decoupling system

\[F = F_1 + F_2 \]

\[F_1 = \sum_i f_i \ast \partial e_i(x), F_2 = \sum_i g_i \ast \partial e_i(x') \]

The additive physical of Einstein tensor is adopted to express mechanics. Energy is coupling at its elementary property.

Its static MDM (magnetic dipole moment) for wave \(F_1 \)

\[\mu = < \sum_i \int dx_i \ast f_i \ast \partial e_i(x)| - i\mathbf{r} \times \nabla | \sum_i \int dx_i \ast f_i \ast \partial e_i(x) > / 4, Q_e = 1 \]

\[= < \sum_i f_i \ast e_i(x)| - i\mathbf{r} \times | \sum_i f_i \ast \nabla e_i(x) > > k_e \]

\[\mu_z = < \sum_i f_i \ast e_i(x)| \sum_i f_i \ast (-i\partial_0 e_i(x)) > > k_e \]

The MDM couples between electrons. Its spin (decoupled) is

\[S_z = < \sum_i \int dx \ast f_i \ast \partial e_i(x)| - i\partial_0| \sum_i \int dx \ast f_i \ast \partial e_i(x) > > k_e, Q_e = 1 \]

\[= < \sum_i f_i \ast e_i(x)| \sum_i f_i \ast (-i\partial_0 e_i(x)) > > k_e / 4 \]

Mechanical spin decouples between electrons.

Calculating the following

\[e_x \ast \partial^\prime \sum_i e_i \]

\[\partial^\prime \partial_\nu e_x \ast \partial^\prime e = 0 \]

Taking this function to the equation 3.1 for a system of coupling electrons, We find the solution of it is

\[(9.1) e_x \ast \partial^\prime \sum_i e_i + \sum_i B_{0i} e^{-ik_i} \ast \partial^\prime \sum_i e_i \]

It’s with the precision to the first rank and zero order.
10. Antiparticle and Radiation

The radiation of photon is derived from this reaction
\[e^{ip_1} * e^+_r + e^{ip_2} * e^-_l \rightarrow e^{ip_3} * \gamma_r \]

The emission (of E-M fields), that’s the reason to react forward but is not the all energy variation related, is
\[2\varepsilon_e = \frac{1}{3.2 \times 10^{-16} \text{s}} \]

this energy marks the intensity of electromagnetic effect.

The wave of photon
\[e^{ipr + ikt} * (e^+_r + e^-_l) \]
has a mechanic field that describes a movement of a mass
\[k_e - k_e = 0 \]

The equivalent reaction is like
\[e^{ip_1} * e^+_r \rightarrow e^{-i p_2} * e^-_l + e^{ip_3} * \gamma_r \]

\(e^-_l \) is just the equivalent for the equilibrium after the particle \(e^-_l \) is shifted to the other side of the reaction. In fact the shift is a transform of conjugation
\[\overline{e^-_r} = (e^-_r)^* \]

The normal matter is called positive matter and this kind above is called antiparticle conventionally. (this term is different from the one derived by CPT)

Antimatter happens by reversing the world’s line, with the same map of the event.

The radiation of neutrino depends the reaction
\[e^+_r + e^-_l \rightarrow \nu_r \]

This reaction is with emission of an energy
\[2\varepsilon_x = \frac{1}{1.6 \times 10^{-8} \text{s}} \]
this energy marks the intensity of weak effect (of this kind). As a testifying one can have
\[2\varepsilon_e : 2\varepsilon_x = 0.65 \times 10^8 \]

This is the difference of the intensity between electromagnetic effect and weak effect.

The antiparticle is the particles under the operation \(PT \), comes from the inner-product probabilities. It meets

\[
A^{ij} - A^{ji} = -\frac{1}{2}(-iA^*_\nu \cdot \partial^\alpha A^{\nu} + iA^{\nu} \cdot \partial^\alpha A^*_\nu), \quad Q_e = 1
\]

With the current becomes negative. For example \(A \) is antimatter
\[A + P_1 \rightarrow P_2 \]
The arrow “\(\rightarrow \)” from left to right is the time direction.
\[P_1 \rightarrow P_2 + A^* \]

This two formula have the same scene of events. If the movement of particles is drawn the anti-operator is to reverse the world line.
11. Conservation Law and Balance Formula

No matter in E-M fields (the elementary) level or in movement (the third) level, the conservation law is conservation of momentum and conservation of angular momentum. A balance formula for a reaction is the equivalent formula in positive matter, i.e., after all anti-matter is shifted to the other side of the reaction formula. Balance formula is suitable for the analysis of the energy transition of E-M fields in the reaction. The invariance of electron itself in reaction is also a conservation law.

12. Muon

μ^+ is composed of

$$\mu_r^+ : e_{\mu x}^+ (e_r^+ + \gamma_r)$$

μ is with mass $3k_e/e_\sigma = 3 \times 64k_e$, spin $1/2$, MDM $\mu_B k_e/k_\mu$.

The main channel of decay

$$\mu_r^+ \rightarrow e_i^- + \bar{\nu}_l + \nu_l$$

is with balance formula

$$e_{\mu x}^+ e_r^+ + e^{-i\pi_1 x} e_i^- + e^{-i\pi_3 x} \nu_l \rightarrow e^{i\pi_2 x} \gamma_r + e^{i\pi_3 x} \nu_l$$

It’s balances approximately unless

$$e_{\mu x}^+ e_r^+ + e^{-i\pi_1 x} e_i^- \rightarrow e^{i\pi_2 x} \gamma_r$$

The energy gap

$$<e_{\mu x, \nu} \partial e_r^+ | e^{-i\pi_1 x} \partial \nu e_i^- > 4 - <\partial e_r^+ | \partial \nu e_i^- > 4$$

The difference exists in this term

$$= <e_{\mu x, \nu} \partial \partial e_r^+ | e^{-i\pi_1 x} \partial \nu e_i^- > 4 - \frac{k^2}{k_\mu} <\partial (e_{\mu x, \nu} e_r^+) | \partial (e^{-i\pi_1 x} \nu_l) > 4$$

$$\approx - \frac{2k_e}{k_\mu} <e_{\pi 1}^+ | e_{\pi 1}^- > 4$$

$e_{\pi 1}^+$ means the first order correction. This interaction is between J_1.

$$= - T \frac{4k_e \varepsilon_t}{k_\mu}$$

It’s

$$2\varepsilon_t = \frac{1}{1.6 \times 10^{-6} s} \left[2.1970 \times 10^{-6} s \right][1]$$

The data in square bracket is experimental data of the full width.

13. Pion Positive

Pion positive is

$$\pi_r^+ : e_{\pi x}^+ e_i^- + e_{\pi y}^+ \gamma_r$$

It’s with mass $3 \times 64k_e$, spin $1/2$ and MDM $\mu_B k_e/k_{\pi^+}$.

Decay Channels:

$$\pi^+ \rightarrow \mu^- + \bar{\nu}_r$$
It’s with balance formula
\[e^{-ip_1x} \cdot e_{\mu x} \cdot \gamma_r + e^{-ip_3x} \cdot \nu_r \rightarrow e_{\pi x}^* \cdot e_{\mu x}^+ + + e^{ip_1x} \cdot e_{\mu x} \cdot e^{-r} + e_{\pi y}^* \cdot \gamma_r \]

The emission of energy is weak interaction
\[2\varepsilon_x = \frac{1}{1.6 \times 10^{-8}s} \quad [(2.603 \times 10^{-8}s)[1] \]

The referenced data is the full width.

14. Pion Neutral

Pion neutral is atom-like particle
\[\pi^0 : e_{\pi x}^0 \cdot \nu_r + e_{\pi y} \cdot \nu_l \]

It has mass \(4 \times 64k_e \), zero spin and zero MDM. Its decay modes are
\[\pi^0 \rightarrow \gamma_r + \gamma_l \]

The loss of energy is from static field
\[8\varepsilon_e = \frac{1}{8 \times 10^{-17}s} \quad [8.4 \times 10^{-17}s][1] \]

Half of it is the gap of energy, half is the cross interaction. (see the section 18.)

15. Tau

\(\tau \) maybe that
\[\tau^- : 5e_r^+ + 5e_l^- + e_l^- \]

Its mass \(51 \times 64k_e \), spin 1/2, MDM \(51 \mu_B/k_\mu \). It has decay mode
\[\tau^- \rightarrow \mu^x \cdot \nu_r + \nu^r \]
\[e_{\pi x} \cdot 5e_r^+ + e_{\pi x} \cdot e_l^- + e^{ip_1x} \cdot e_{\mu x}^+ + e^{-ip_2x} \cdot \nu_r \rightarrow e_{\pi x}^+ \cdot 5e_r^+ + e^{ip_1x} \cdot e_{\pi x}^+ + e^{-ip_2x} \cdot \nu_r \]

The loss of energy is the difference of the static fields
\[e_{\pi x} \cdot (5e_r^+ + e_l^-) \rightarrow (5e_r^+ + e_l^-) \]

Calculating the difference between \(X = \tau \) and \(X = \delta \) we can find the emission of static E-M fields
\[\Gamma_1 = \frac{5\varepsilon_e}{k_\tau/k_e} \]
\[= \frac{1}{2.23 \times 10^{-13}s} \quad [2.9 \times 10^{-13}s, BR.0.17][1] \]

From the shape of momentum distribution I can find many experimental data has a shift of initial velocity of mass center, I judge many resonance states is evaluated with larger mass than the real. With zero initial velocity of mass center the momentum distribution is like the figure 2, with the steep edge crosses grid origin directly.
16. Proton

Proton may be like
\[p^+ : e_{px} \ast (4e_i^+ + 3e_i^- + e_r^+ + e_r^-) \]

The mass is \(27 \times 64 k_e \) that’s very close to the real mass. The MDM is calculated as \(3\mu_N \), spin is \(1/2 \). The proton thus designed is eternal because even if decay to the finest small parts the emission is negative.

17. Magic Numbers

We define an unit: Mass-number Unite
\[m := m_e \sigma/e \approx 64 k_e \]

And we presume the Mass-number (in fact relates theoretical electron number) in a particle for the four kinds of electrons are
\[e^+_r : i, e^-_r : j, e^+_l : k, e^-_l : l \]

The designation of a particle is an equation
\[
\begin{align*}
& i^2 + j^2 + k^2 + l^2 = M/m \\
& i - j + k - l = Q \\
& \pm i \pm j \pm k \pm l = 2S
\end{align*}
\]

According to Lagrange’s four Square theorem, Any integer can be sum of some four square of integers. But after adding the constraints of charge number or spin number the conditions are not so simple as the Lagrange’s theorem.

If consider more complicated design like
\[i'l^+_r, j' \overline{e_l}, i' + l = i \]

The equations for mass, charge and spin are
\[
\begin{align*}
& i^2 + j^2 + k^2 + l^2 = M/m \\
& i - j + k - l = Q \\
& i + j - k - l = 2S
\end{align*}
\]

18. Scattering and decay life

The reaction is like
\[f_i \ast e_i \rightarrow f'_i \ast e_i \]

\(e_i \) are positive matter all. Studying the interaction between electrons
\[\Delta_{t=0} I(e_i, e_i) = \Delta_{t=0} I(J(e_i), J(e_i)) \]
\[e = \sum_p C_p e^{ipx}_{t>0} + \sum_p C'_p e^{ipx}_{t<0} = A^+ + A^- \]

\(A^+, A^- \) are the initial and the final fields.
\[\Delta_{t=0} I(e_i, e_i) = I(e_i|_{t<0}) - I(e_i|_{t>0}) - I(J(e_i), J(e_i)) \]

\(I(J(e_i), J(e_i)) \) is the cross interaction, its interacting current is Because \(A^+ = A^{PT} \)
\[J_x(e) = (-iA_{-\nu}^{(*)} \partial' A_{\nu}^{+} + iA_{\nu}^{+} \partial' A_{-\nu}^{(*)})/2 \]

\(I(e_i|_{t<0}) - I(e_i|_{t>0}) \) is gap of energy, its interacting current is
\[J_x(e) = (-iA_{-\nu}^{(*)} \partial' A_{\nu}^{+} + cc.)/2, J_f(e) = (-iA_{\nu}^{+} \partial' A_{-\nu}^{(*)} + cc.)/2 \]
For example the scattering
\[e^{ip_1 x} e^+ + e^{ip_2 x} e^- \rightarrow e^{ip_3 x} e^+ + e^{ip_4 x} e^- \]
\[I(J_1, J_2) = \frac{2\varepsilon e(p_1 + p_2)\nu(p_3 + p_4)}{(2\pi)^4(p_1 - p_2)^2} \delta(p_1 - p_2 - p_3 + p_4) \]
The interaction is between \(J_0, J_2 \). For electromagnetic interaction
\[I(J_x, J_y) = \frac{2\varepsilon e(p_1 + p_2)\nu(p_3 + p_4)}{(2\pi)^4(p_1 - p_2)^2} \delta(p_1 - p_2 - p_3 + p_4) \]
The interaction is between \(A_0 \).

It's with balance formula
\[\pi^+ \rightarrow \mu^- + \nu \]
\[h_1(k'r)e^{-ik't} e^{ip_{\mu x}} e^{ip_{\nu x}} \rightarrow e^{ip_{\mu x}} e^{ip_{\nu x}} + h_1(k'r)e^{-ik't} e^{ip_{\mu x}} e^{ip_{\nu x}} \]
h is spherical Bessel function
\[h_1(k'r)e^{ikt} = \left(\frac{e^{+ik't}}{r^2} + \frac{e^{-ik't}}{r} \right) Y_{1,1} e^{ikt} \]
When \(e^{+} e^{-} + h_1(k'r)e^{-ik't} e^{ip_{\mu x}} e^{ip_{\nu x}} \) couples the transfer of particles acts. Hence the gross wave of \(e^{ip_{\mu x}} e^{ip_{\nu x}} \) is
\[e^{ip_{\mu x}} e^{-ip_{\nu x}} \]
Its distribution of momentum is like the figure 2. The momenta of the rest particles can be solved by conservation law. This is the data in static grid, the case for the moving grid can be obtained easily from this.

The scattering mixed with gap of energy and crossing interaction has the example of the reaction of decay of \(\pi^0 \)
\[\pi^0 \rightarrow \gamma + \gamma \]
The crossing interaction between \(e^+, e^- \) and between \(e^-, e^- \) acts.

In fact the potential function of the initial particles must be normalized with the sum of matter dense to value 1. For example a coupling system \(C \)
\[< \sqrt{|Q_e|/2C}|i\partial_r|\sqrt{|Q_e|/2C} > = \frac{-kC}{|kC|} C = e_{C x} \sum_i e_i \]
This formula means many symmetries.

The tension of effects is \(\varepsilon \), the transferred matter is \(\varepsilon \Delta t \) in time of \(\Delta t \) as the initial gross matter is 1, so that the life of particles is reciprocal of field's energy loss \(\varepsilon \).
19. η

Eta is in fact different particles that have mass number 10m. Their decay or scattering modes are

- 2γ (mass 8m)
 $$\nu_r + \nu_l + (\nu_l + \pi_l) \rightarrow \gamma_r + \gamma_l$$

- $3\pi^0$
 $$\gamma_r + \gamma_l + e + \tau \rightarrow 2\pi^0 + \pi^0$$

- $\pi^+ + \pi^- + \pi^0$
 $$\gamma_r + \gamma_l + e + \tau \rightarrow \pi^+ + \pi^+ + \pi^0$$

- $\pi^+ + \pi^- + \gamma$ (mass 8m)
 $$(\gamma_r + \gamma_l) + (\gamma_l + \gamma_r) \rightarrow \pi^+_l + \pi^-_l + \gamma_l$$

All have decay width at the range of times of ε_x. The decay channel of leptons with width of range ε_x is like

$$2e + 2\pi + e^+_l + e^-_l \rightarrow e^+_l + e^-_l$$

Its mass is 14m. This is a weak particle participating weak interaction.

$$(2\gamma_r + \nu_r) \rightarrow \mu^+_l + \mu^-_l$$

Its mass 10m.

20. Conclusion

The relative theory is applied to electromagnetic wave to give the looking mass of the fields which does expresses mass, for example the solved electron function in this article. In my viewpoint the sum-up of the grains (as electrons) of electromagnetic field is a mechanic movement with diverse effect. Fortunately this model will explain all the effects in the known world: strong, weak and electromagnetic effects, and even subclassify them further if not add new ones. In this model the only field is electromagnetic field except space, this stands for the philosophical with the point of that unified world from unique source. All depend on a simple fact: the current of matter in a system is time-invariant zero in mass-center grid, and we can devise current of matter to analysis the E-M current. So that all effects is explained with diffusion process.

The inertial mass is deduced by mechanical operator $i\partial_t$. But the gravitational mass (by the equation of 8.1) of the naked electron is 64 time of the inertial and mechanical mass, the photon and neutrino has zero mechanical mass but their gravitational mass is not zero obviously. this is hard problem unsettled by this article. For atom the inertial mass less then gravitational mass by 1/50 approximately.

The energy of matter would happen in this process, the hot matter distilled to protons as got cold with their wave functions dependent each others. the harmony between bent space and electromagnetic fields explain them all.

Except electron function my description of particles in fact has the same form with Quantum Electromagnetic Mechanics, and they two should reach the same result except for precision. But my theory isn’t compatible to the theory of quarks, the upper part of standard model, if not it is calculated in the style of Quantum
Electromagnetic Mechanics. In fact, the electron function is a good promotion for the experimental model of proton that went up very early.

I found these presumptions on some days of 1994-1995 and soon I grossly testify this theory the year. At that time a few people studied in HUST China knew of it. But in the following teen years I nearly forgot of it except now and several years ago a round of submission of it.

REFERENCES