Abstract: If mass of the present universe is, \(M_0 \approx \frac{c^4}{2GH_0} \approx 9 \times 10^{52} \) Kg and \((m_e \& m_p)\) represents the rest masses of electron and proton, it is noticed that \(\bar{h} \approx \frac{Gm_p\sqrt{M_0m_e}}{c} \). Considering the integral nature of number of protons in the nucleus, integral nature of \(\bar{h} \) can be understood. With reference to the classical force limit \(\frac{c^4}{G} \), minimum distance between (point electron) and (point universe) is \(d_e \approx \frac{G\sqrt{M_0m_e}}{c^3} \approx 0.213 \) fm. Similarly minimum distance between (point proton) and (point universe) is \(d_p \approx \frac{G\sqrt{M_0m_p}}{c^3} \approx 9.11 \) fm. Geometric mean of \(d_e \) and \(d_p \) is 1.39 fm.

Keywords: Hubble’s constant; present universe mass, electron rest mass; proton rest mass; reduced planck’s constant; classical force limit; strong interaction range;