
Multiplication Modulo n Along The Primorials With Its

Differences And Variations Applied To The Study Of The

Distributions Of Prime Number Gaps

Russell Letkeman
r. letkeman@ gmail. com

Dedicated to my son Pangya

July 24, 2012

Abstract

The sequence of sets of Zn where n is a primorial gives us a surprisingly simple
and elegant tool to investigate many properties of the prime numbers and their dis-
tributions through analysis of their gaps. A sensible reason to study multiplication
on these boundaries is a natural construction exists which evolves the sets from one
primorial boundary to the next via the sieve of Eratosthenes. To this we add a
parallel study of gaps of various lengths all of which together informs what we call
the S model. These sets can be individually broken down into their respective p.m.f.
from which we build a purely probabilistic model of gap distributions. We use this
framework to prove some interesting distributional properties of the prime numbers.

1 Conventions And Notations And The Birth Of The S Model

We sequence the primes using the canonical order with Pm < Pm+1 < Pm+2 ∀ m ≥ 0
with P0 = 1. That is 1 is the zeroth prime making 2 the first prime.

Primorials are to primes as factorials are to the positive naturals. Using the symbol
# instead of ! we define the mth primorial as Pm# =

∏m
i=0 Pi which gives us the familiar

recursive form Pm+1# = Pm+1Pm#.
We also use 3 variants of the primorial, the multiplicative moment, the additive

moment and the minor. The jth primorial multiplicative moment is Pm#
Pj

, while the

jth primorial additive moment is Pm#
Pj
±Pj ∀0 < j < m. This means the zeroth primorial

has no additive moments while all others have their full compliment. This can be further
generalized by using any subsequence of unique primes < Pm, for example 11#

7∗3 ± 7 ∗ 3 is
the 7 ∗ 3 moment of 11#.

The rth primorial minor is defined as P−rm # =
∏m
j=k (Pj − r) such that k is the

smallest prime where Pk − r ≥ 0. The primorial minors also preserve the recursive
relation P−rm+1# = P−rm+1P

−r
m #. In fact the basic primorials are simply the 0th minor. As
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in factorials if Pm = r we set P−rm # = 1 and ∀m s.t. Pm ≥ r have our normal product
while it is undefined ∀m s.t. Pm < r.

The following is trivial to prove

Pm+1P
−1
m # = (Pm+1 − 1 + 1)P−1m # = (P−1m+1 + 1)P−1m # = P−1m+1# + P−1m # (1)

as is its generalization
Pm+1P

−r
m # = P−rm+1# + rP−rm # (2)

Since we will study the properties of Zn where n is a primorial we will write Sm = ZPm#

to save complex subscripting. We will use Sm to represent Sm and all its residuals.
We choose S because as we will see the processes we examine results from the common
prime sieve. Membership in Sm and Sm is denoted by a superscript Pmj . It is very easy
to show

Sm+1 ⊂ Sm ∀ m ≥ 0 (3)

We will also maintain a second set called the midden which contains all the primes up to
our mth and denoted as {Pm}. There can never be any confusion between membership
in Sm and the midden as it is straight forward to prove ∀x > 1 x ∈ midden⇒ x /∈ Sm.
The order of Sm is determined from the Euler totient function7 11

| Sm |= φ (Pm#) = P−1m # (4)

The ring Sm is the direct product of the prime factors7

Sm = Z2XZ3X . . .XZPm (5)

and
∀m > 0∀Pmj ∈ Sm → Pm#− Pmj ∈ Sm (6)

That is restricting our multiplication to finite groups over supplies us with information,
internal symmetries must supply half of the distributional information.

Beginning with a zero based index, instead of writing the usual

Sm =
{

1, Pm1 , P
m
2 , · · · , PmP−1

m #−1

}
we will write it in matrix form of n rows, the top row being our set of co-primes.
The second row is the successive difference; written gmj = Pmj+1 − Pmj and occasionally

represented separately as the gap class Gm =
{
gmj

}
. The third row is the difference

between 2 successive gaps or difference of differences; written cmj = Pmj+2−Pmj = gmj+1+g
m
j

and represented separately as the coalescence class Cm =
{
cmj

}
. We have had to draw

upon residuals to determine all the values. There is no limit for the number of successive
differences and eventually we use them all but we will generally only refer to the first 3
as such

Sm =


1 Pm1 · · · Pm

P−1
m #−1

gm0 gm1 · · · gm
P−1
m #−1

cm0 cm1 · · · cm
P−1
m #−1


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2 S Model Counting

2.1 The Gap Palindrome

Sm Gap Palindrome Theorem. ∀m > 1 or Pm > 2 Sm has a palindrome in its
gaps of length P−1m # − 1, the entire sequence always ends in a 2 and the middle of the
palindrome is always a 4.

Proof. The following is trivially true, Pm0 = 1∀m as is if Pmj ∈ Sm than Pm#−Pmj ∈ Sm
therefore

Pm#± 1 ∈ Sm → the last gap is a twin

Since P−1m #∀m > 1 is even, the set minus the capping twin has an odd length so it has
a well defined middle. It is also trivially true that

Pm#

2
± 2 ∈ Sm → the middle gap is a cousin

and finally

gmj = Pmj+1 − Pmj = (Pm#− Pmj )− (Pm#− Pmj+1) = gm
P−1
m #−j−1∀j <

P−1m #

2

If we expand the residuals to form Sm than it is trivially apparent that the corre-
sponding gap set Gm is periodic with period P−1m #. That is gmj = gm

j+P−1
m #
∀j.

2.2 The Construction Of The Construction Using A Construction

The word sieve is both a noun and a verb. Until now we have only considered the
constructions in situ, as we found them. Now we show how to construct Sm+1 from Sm,
the construction of a construction using a construction.

In our Sm notation we do the following

Sm+1 = Pm+1 ⊗ Sm − Pm+1S
m (7)

Where ⊗ says to to use the first Pm+1 * |Sm| members of Gm and the second term is
minus a scaler multiplication of the members of Sm.

That is with Sm, when we reframe our number span alignment to the next primorial
we have exactly |Sm| extra members composed against Pm+1. The recipe to remove
them is using Pm+1 multiples of Sm because P−1m+1# = Pm+1P

−1
m #−P−1m #. This set of

constructions is a manifestation of the primorial algebra or in the words of a friend of
the author, “This thing writes itself” .

For example S3 = Z30 with P3 = 5 has P−13 # = 8 members. To generate S4 we lay
7 sets of (our next prime) gaps in a row. This set has 7 ∗ 8 = 56 members while our
target has P−14 # = 48 members. We know in advance we’ve polluted our set and each
extra false member is simply one of 7 times our original co-prime members.
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However using the above palindromic nature of each set’s gaps gives us a remarkable
2n speedup since using it reduces the above work load by half at each step. We need
our sets to have at least 2 members to manifest both the capping twin and the pivotal
cousin so we can use any m > 1. That is given we have computed some Sm using only
the gaps proceed as follows

1. allocate an array of size P−1m+1# and set an accumulator to 1

2. systematically copy the gaps from Sm one at a time while adding them to the
accumulator

3. in parallel compute the next composite via Pm+1S
m

4. if the accumulator equals our next composite skip the copy but add this gap to
the next gap, we call this coalescence.

5. continue until you have completed
P−1
m+1

2 − 1 steps

6. copy a mirror image of the new gap sequence to our sequence after adding the
pivotal cousin gap (hence its’ name)

7. append the capping twin

Of course there is no need to ever allocate the full sequence length since we know in
advance it has this symmetry. If we desire we can simply read our progeny set forward
and backward as needed.

Also, instead of using the verbose construction of the construction using a construc-
tion we will also use the Composite Killing Machine or the CKM just because it sounds
cool.

2.3 The Induced P.M.F. Of Sm

We know our sets have exactly P−1m # members. We can immediately deduce

P−1
m #−1∑
j=0

gmj = Pm# (8)

Which leads to the average gap size in Sm is

ĝm =
Pm#

P−1m #
(9)

We also have
j<P−1

m #∑
j=0

cmj = 2Pm#→ ĉm = 2ĝm (10)
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That is on average successive pairs sum to twice the average gap. This immediately
leads to the general form

j<P−1
m #∑

j=0

Sm,nj = nPm#→ 〈Sm,n〉 = nĝm (11)

where Sm,nj are chosen from the nth row, where for convenience index the first row from
0 counting the number of successive differences. Because the basis of Sm is modular we
also have if n > 1

Sm,n
j+kP−1

m #
= Sm,nj ∀k (12)

That is though the co-prime row is most definitely not periodic every row of successive
differences is.

The astute reader may have already sensed that our random variable sounds re-
markably like ln (Pm). We now consider Merten’s theorem6 which is very elegant in our
notation.

Merten’s Theorem And ĝm.

lim
m→∞

ln (Pm)

ĝm
= e−γ

with γ being the Euler–Mascheroni constant3 0.5772156649 . . .. That is for large m
we have an asymptotic approximation

ĝm ' eγln (Pm) (13)

If we are to reconcile our work with the PNT8 we need to scale our set counts with eγ .
That is given a subsequence of gap from Sm which sums to S, we have

count =
eγS

ĝm
' eγS

eγln (Pm)
=

S

ln (Pm)

That is we can (and do) causally switch between the 2 as long as we account for the
conditions. For example Gm is periodic with period P−1m # and here we need an exact
rational form, but generally this is not the case, especially for large numbers.

2.4 Survivorship Of Gap Sequences Across The CKMs

Without performing the multiplication we don’t know where Pm+1P
m
j is but we know

where ever it is its current gap is gmj . And when it is removed as a composite we know
that the new gap will be exactly cmj . Equation 10 also tells us that on average the
new gaps have doubled in size because the sum across the whole of the set of possible
changes is double the gap sum of the progenitor set. That is P−2m+1P

−1
m # of our original

Pm+1P
−1
m # members survived coalescence while 2P−1m # members were coalesced in pairs

to form new gaps.
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The easiest way to picture this is consider the fact that every gap is a pair of co-prime
members, each pair has 2 ways to die and each way to die happens with certainty. The
same being true for any gap tuple length of r will have r+1 ways to die, hence the name
CKM.

Given Sm, consider any consecutive sequence of gaps of length r = 1 up to r = P−2m+1.
During the construction of Sm+1 we make exactly Pm+1 exact copies of your random
selection. However the final coalescence stage will kill all but Pm+1 − (r − 1) of them.

That is, as we showed above for single gaps, P−2m+1 copies survive intact. This gener-

alizes to P−3m+1 pairs,P−4m+1 triples and so on up to P
−P−1

m+1

m+1 tuples of length P−2m+1. This
implies the primorial minors form tuple duplication machinery, acting as conveyors for
future gap cluster production, becoming active as soon as Pm becomes large enough.

2.5 A Few Examples

We stop with theory and examine the first few m, but let’s begin with a question. You
are given a zero based array and told it has been sieved to some mth prime and it contains
some unknown number of residuals, can you determine m?

Perhaps some starting points would be after the zeroth member 1, the next number
is the next prime and the first composite is the next prime squared.

2.5.1 The Curious Case of S0

Chapter m = 0, the genesis of the primes.
In the beginning; before the first big bang of the composite killing machine, the primes
were almost without form.

We consider the first and always ignored Z1 = S0 = {1} which generates S0 =
{1 + n | ∀n ≥ 0}. The first few rows of S0 are

1
2
3
4
5




2 3 4 . . .
2 2 2 . . .
3 3 3 . . .
4 4 4 . . .
5 5 5 . . .


where we have added some residuals to make the form more apparent. From this per-
spective everything looks prime and we have no multiplication, no fast way to get to
a next number in a sequence; all that remains is addition by 1. But in fact we have
more, since the next number must be prime, not simply co-prime. In fact all consecutive
members are prime until this next prime squared or {1, 2, 3}.

That 1 is the first (zeroth) prime and equal to its own square, i.e. 1 = 12 is the basis
of its total degeneracy in multiplication among the naturals. However it is clear that
the positive naturals are born sieved by 1. Also it’s why we must set P−10 # = 1 since
φ (1) = (1− 1)# = 1 as |S0| = 1.
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The fact it is so degenerate is also why its most primitive minor doesn’t exist. The
positive side exists since Pm# + 1 is always co-prime to Pm#, however 1 − 1 = 0 /∈ S0

so in this case the negative side makes no sense.
Since the next (first) prime is 2, the largest subset of gaps that can be successfully

replicated is zero, that is all gaps of size 1 are consumed in S1 so we can never see
another gap of unit length after 4.

However since our next prime is 2 P−2m+1# = 1 will exist/exists by definition, and
since the next generation will first use a pair of 1′s to create the first twin gap a single
virtual span of 2 already exists.

2.5.2 S1,The Death Of A Subring

The first few rows of S1 are 
1
2
4
6
8




3 5 7 . . .
2 2 2 . . .
4 4 4 . . .
6 6 6 . . .
8 8 8 . . .


Following our construction to generate S1 from S0 we have consumed all gaps of unit
length to produce a single twin gap. Define Tm2 to be the count of twin gaps in any
Sm, T 0

2 = 1, at least as a virtual span which can/will coalesce into twins. We already
know for each target gap in Sm that P−2m+1 copies will survive in the next set. We don’t
know what will happen in any future coalescence event without the requisite hard work.
Since the next prime is 3 we will see our single twin survive along with all its children.
However 3 is small enough that only a single twin can survive even though 3 copies will
be made. That is after this set is expanded we will never see pairs of twin gaps again.

At this point we can now count all twins because the P−2m # copy machine is running
and we trivially have a single gap type to track, that is

Tm2 = P−2m #∀m > 0 (14)

Referring to equation 5 we see the ring of any Sm is the product of rings of our
primorial but Z1 is absent for very good reasons, yet Z2 = S1 would not be constructible
without it. That is Z1 = S0 has a unique property of acting like a bootstrap, letting us
build our next generation in the series before gracefully disappearing and we will never
see its impact again. We don’t know of any other examples of bootstrap structures in
nature.
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2.5.3 S2,The Birth Of Deep Gap Structure

The first few rows of S2 are
1 5
4 2
6 6
8 10
12 12




7 11 13 17 . . .
4 2 4 2 . . .
6 6 6 6 . . .
8 10 8 10 . . .
12 12 12 12 . . .


giving us our pivotal cousin and capping twin though the palindrome is the trivial
sequence {4}. As predicted, a single twin survived and the virtual span of the single
event of pairs of twins was consumed to produce our pivotal cousin. It seems it is no
coincidence (2− 2) # = (3− 2) # = 1. The single possibility for pairs of twins to enter
the gap formation machinery ended at their birth. We now have 2 distinct gap types;
twins and cousins each count synchronized to P−2m #, that is

Tm4 = Tm2 = P−2m #∀m > 1 (15)

Since the next prime is 5 we know all spans of length 3 survive with certainty. However
since the current prime is 3 the mechanics of pair reproduction is available and the only
pairs currently in existence are {{4, 2}, {2, 4}},that is

Tm{4,2} = Tm{2,4} = P−3m #∀m > 1 (16)

Also just as cousin gaps can no longer percolate from coalescence, the same is true for
our new pairs. These are what we call primal atoms, they form lowest density regions
of gap spans of particular length for all space and time as it were. Once these atoms are
created in a particular Sm they will faithfully reproduce and nowhere after this can any
region of matching size versus span achieve a lower sum for the same tuple count. Not
only will twins exist forever but they are as small as are allowed, the same is true for
the atomic pairs {{4, 2}{2, 4}}, all future iterations of the S model will inherit them.

2.5.4 S3 And The Explosion Of Complexity

We apologize in advance for the short treatment we present for S3 as it truly deserves a
substantial investment in time while the rewards it returns are beyond description. The
first few rows of S3 are

1 7 11 13 17 19 23 29
6 4 2 4 2 4 6 2
10 6 6 6 6 10 8 8
12 10 8 10 12 12 14 12
16 12 12 16 14 18 18 14
18 16 18 18 20 22 18 18


Notice how G3 forms our beautiful palindrome about the pivotal cousin with a cap-

ping twin.
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It is now clear to see how gaps and spans of 6 or sexy size evolve, for brevity we will
simply state the results. Let Sm,ns represent the set of the sequences of gaps of length
n such that their sum is s. Let Sms be the sum of all possible sequence lengths. For
example the sum of all ways to span a gulf of 6 with any length of consecutive gaps in Sm

is Sm6 = 2P−2m #. While individual gaps of 6 are counted as Tm6 = 2
(
P−2m #− P−3m #

)
.

This leads to a remarkable conclusion, there must exist an underlying algebra based
on the primorial minors whose linear combinations generate finite equations describing
the counts of patterns of gap subsequences.

2.6 Primorial Minor Linear Algebra And Gap Evolution

We have seen that subsequences of gaps of length up to P−1m+1 in Sm will be faithfully
replicated with certainty. We have also seen that the accessible replication machinery,
the primorial minors don’t so much as copy specific contents but rather subsequences
of specific length are copied without regard to content. That Tm2 = Tm4 = P−2m # have
simple forms is birth order luck.

LetOM (m, r) be an (r + 1)x (r + 1) matrix for some starting from somem where the

members omi,j = P
−(1+i)
m+j #∀1 ≤ i, j ≤ r. That is each column is a particular primorial

minor at some index, and successive columns are deeper minors, while rows represent the
index to the primes. It’s name comes from Primorial Minor Matrix shortened to Orial
Matrix and is pronounced ‘om’, an old Sanskrit term chanted at the start of meditating
the perfection of the universe.

OM (m, r) =
P−2m # P−3m # . . . P−rm #

P−2m+1# P−3m+1# . . . P−rm+1#
...

...
. . .

...

P−2m+r# P−3m+r# . . . P−rm+r#

 (17)

Also, let Tm,rs be a sequence s of interest such that we form a vector of length r + 1
where each member is the count of the sequence in Sm+k∀0 ≥ k ≤ r. For each such
sequence there exists by construction a sequence of rational numbers Cs such that

Tms = OM (m, r)Cs∀m > m0 (18)

Or given the type counts we can invert this to get our constants

Cs = OM−1 (m, r)Tms ∀m > m0 (19)

finally

Tms =
R∑
r=1

crP
−(r+1)
m #∀m > m0 (20)

The first gap types we have been able to count are

T2 = T4 = P−2m #∀m > 0 (21)

9



T6 = 2P−2m #− 2P−3m #∀m > 1 (22)

The terms are getting too large so we’ll just write out the coefficients

T8 = {1,−2, 1}∀m > 2 (23)

T10 = {4

3
,−3, 2}∀m > 2 (24)

T12 = {2,−7, 10,−2}∀m > 2 (25)

T14 = {6

5
,−5,

28

3
,−3}∀m > 2 (26)

T16 = {1,−5, 12,−6, 1}∀m > 2 (27)

T18 = {2,−23

2
,
100

3
,−22, 6}∀m > 2 (28)

T20 = {4

3
,−39

4
,
116

3
,−40, 24,−2}∀m > 3 (29)

T22 = {10

9
,−63

8
,
632

21
,−175

6
,
72

5
}∀m > 2 (30)

T24 = {2,−17,
1738

21
,−344

3
, 108,−21}∀m > 3 (31)

T26 = {12

11
,−209

20
,
11090

189
,−1536

16
,
4224

35
,−119

3
,
28

5
}∀m > 3 (32)

T28 = {6

5
,−186

16
,
456

7
,−325

3
,
662

5
,−42,

16

3
}∀m > 3 (33)

T30 = {8

3
,−4823

160
,
12946

63
,−10367

24
,
3568

5
,−41135

12
,
442

5
,−35

4
}∀m > 4 (34)

T32 = {1,−1979

160
,
1949

21
,−5173

24
,
2743

7
,−202,

143

3
}∀m > 3 (35)

Notice that gaps of size 20 appear out of order and that the sequence length of non-zero
constants does not grow monotonically.

We’ve computed a great deal of tuples of 2 and more gap sets as well, for example

Tm{2,4,6,2,6,4} =
5

2
P−7m #∀m > 3
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2.6.1 How Big Is P−2m #?

Since P−2m # is central to prime gap evolution it helps up to understand how big it is
relative to other features of Sm. We will show

P−1m−1# < P−2m # < P−1m #∀m > 1 (36)

Second Minor Growth Lemma.

Proof. The right hand side is trivial so proceeding by induction looking at the left hand
side we can check the first few values.

m Pm P−1m−1# P−2m #

1 2 1 1

2 3 1 2

3 5 2 3

4 7 8 15

5 11 48 135

Assume P−1m−1# < P−2m #, the next iteration we multiply the lhs by P−1m and the rhs

by P−2m+1. But Pm+1 ≥ Pm + 2 so P−2m+1 ≥ Pm > P−1m , therefore P−1m # < P−2m+1#∀m >
1.

This has profound consequences on our distributions. Because of this there will
always be more twin gaps in Sm+1 than there were all gaps combined in Sm. The same
is true for all gap types whose growth rates are ≥ P−2m # which are {2, 4, 6, 8, 10, 12} for
large enough m. Dividing 36 by P−1m # gives us

1

P−1m
<
P−2m #

P−1m #
< 1∀m > 1 (37)

2.7 Hardy-Littlewood Prime Distribution Model

The Hardy-Littlewood twin prime constant in our notation is

lim
m→∞

Tm2
P−1m #ĝm

= T2 = 2C2 '
4

3
(38)

except they computed it over the odd primes while we do so over all primes, the result
is our constant is twice as large. This is more natural as we need no extra constants
in our description. Earlier we pointed out the fact that T2 = P−1m # is a coincidence of
birth order, we need a notation to distinguish our primorial minor constants at infinity.
We’ll define them as

Er =
lim

m→∞
P−rm #

P−1m #
ĝm

read as the limiting value of the Euler product of a primorial minor of depth r.
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With Merten’s theorem they have taken the limit of the twin frequency against the
logarithm noticing it converges they divide back by the logarithm to estimate the local
frequency distribution as follows

P−2m #

P−1m #
' E2

ln (Pm)
(39)

or in general
P−rm #

P−1m #
' Er
ln (Pm)

(40)

Of course estimating based on deeper minors will over estimate because the deeper the
minor the slower it converges to its constant. So being able to compute the actual Euler
products for specific indexes will always yield a closer result.

2.7.1 Evolution Of The Deeper Minors

Higher order or deeper minors can be studied via the ratio of their Euler product with
the Euler product of P−2m # as follows

Rmr =
P−rm #

P−1m #

P−1m #

P−2m #
=
P−rm #

P−2m #
(41)

The ratio being defined where the products are defined.
Both original products tend to constants as m grows large so their ratio also tends to

a constant. We have found no general form for them, experimentally however e−(2r+1)

seems a good fit. That is though any length of gap sequences of length r can be found to
repeat infinitely often, they will occur at a rate of roughly 1 over twice the exponential.

For example consider a sequences of length 100 which could be found around x =
1032 = 10609 and will repeat on the distance scale of 103# however your odds of finding
another are about 1 in 2 ∗ 1087 at each trial.

There is a powerful motivation to explore this deeper as we discussed earlier primal
atoms are sequences of gaps whose equations have a single term. That is atoms =
CP−rm # and these act as building blocks of lowest density regions which dominate most
of Sm.

2.8 The Relative Size Of Gap Covariances

Every gap has a left and right neighbor. For example the sum of twins is P−2m #, we
can rewrite this as the sum of twins and their neighbors which summing to some local
maximum we get

P−2m # =
∑
j=1

(2|2j) =
∑
j=1

(2j|2) (42)

That is we’re adding the number of twins given all the possible neighbors on some side of
each twin. We already know how to count some of the pairs since Tm{4,2} = Tm{2,4} = P−3m #
so

P−2m # = P−3m # + . . . (43)
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or
P−2m #

P−2m #
= 1 =

P−3m #

P−2m #
+ . . . (44)

which for large m becomes
1 = 0.09 + . . . (45)

That is over the entire set of the primes if you find a twin gap it is paired with a cousin
about 0.09% of the time, everything else through infinity must share the remaining
distributional space. Not only is the induced p.m.f. fat headed and a long tailed but so
are all of its covariances.

2.9 Gap Behaviors At Different Ranges

The group structure manifests a handedness due to Z6 and this will be inherited by all
future sets. All primes must now either be of the form 1 + 6n or 5 + 6n. As well, all
prime gaps must now evolve from various sequences of gaps which began life as sequences
of various lengths of {4, 2} or their symmetric cousin {2, 4} while never allowing the
possibility of ever having had {2, 2} or {4, 4} in any subsequence (except S2). That is

• If the order of the set is even its sum mod 6 is 0, and if its anchor prime is

– left handed than to the right is a right handed gap or it is

– right handed and to the right is a left handed gap

• Or if the order of the set is odd its anchor prime is either

– left handed and has a left handed neighbor to the right

– it is right handed and has a right handed neighbor to the right

We also have the following rule, only different hands can touch. This protects us from
ever seeing {2, 2} and {4, 4}.

We refer to these as S(hort) R(ange) R(ule)(s).

2.9.1 Immediate Consequences Of The SRRs

The obvious first rule is that a gap of size 6n can pair with anything while gaps of 2+6n
or 4 + 6n must mismatch, unless it’s with a gap of size 6n. That is if these were the only
rules for tuples of arbitrary length, choosing a random sequence of length n has about a
1 in 2

3

n
chance of existing.

Examples of higher banned pairs are {2, 8}, {8, 8},{4, 10},{10, 10} and their mirrors
and so on. Also any pair of numbers which does not violate the SRRs will also occur,
the same is true for triples. But it breaks here.

13



2.9.2 Longer Range Rules

There is an infinite set of these because for each length scale there is an absolute lower
bound on minimum densities as a result of the primorial copy machinery. That is, though
the average gap is growing and so is the average size of tuples of length say n we still
have tuples of length n which originated long before and so retain their lower density; in
fact they dominate the space. As well, experimentally the gaps seem as defined by what
is banned as by what is allowed. For example, though gaps of 6 are the most popular,
as are pairs and triples, 4 consecutive gaps of 6 is banned as its feedstock was killed in
S3. For the first few larger prime gap sequences we could study experimentally, about
one half of ‘expected’ sequences; i.e. not violating the SRRs, were missing. That is there
are infinitely many gap combinations of counts of 4 or more which pass the SRRs that
are ultimately banned by construction.

2.10 The Minimum Gap Guarantee

Given the nature of replication and coalescence we see that all gaps predicted by Sm and
hence all consecutive subsequences are absolute minimums. This holds for subsequence
length predictions of appropriate length as well. That is if the machinery predicts a gap
or sequence at some offset as soon as we advance to higher sets some of the anchoring
co-prime members will certainly be composites. However if the first anchoring prime
of the sequence survives, the nearest next prime must be at least as large as predicted.
That is an intervening member can not suddenly appear. That is if we randomly choose
a member Pmj in some Sm and it predicts some gap gmj , as far as Sm knows this gap

pattern will occur at Pmj + nPm#∀n > 0, we call the nth anchor. If this anchor still
exist the nearest prime is at least gmj away.

A wonderful way to picture this is by drawing a particular prime spiral we call the
Sm model spiral. Generate a list of the first million primes and plot them as follows.
For some small m

xj = Pjcos(
Pj
Pm#

)

yj = Pjsin(
Pj
Pm#

)

Further, choose the color based on a temperature map where you have assigned a unique
color for each gap type. For example if m = 3 Sm has 8 members while 5# = 30, and say
you assigned red to gaps of 2 and blue to gaps of 4 and black for all other gaps (white
background). The plot will have 8 rays radiating from a confusing center. Because
T 3
2 = T 3

4 = P−23 = 3 only 3 of the lines will have red dots and especially they will never
have blue dots while 3 other lines will favor blue dots and no red dots while 2 of the
lines will be pure black.
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2.11 Induced Topology

Recall
Sm+1 ⊂ Sm ∀ m ≥ 0 (46)

That is given Gm, the set of gaps in Sm, we say the set of its ordered subsets is closed for
all Gm+k∀k > 0 and open ∀−m ≥ k ≤ 0 in the sense that earlier gap sets can cover most
but not all of each model. For example the first step in constructing Sm+1 is building
Pm+1 copies of Sm gaps which is followed by consuming P−1m # sets of pairs to create
P−1m # new gaps that can not be covered by older rules.

That is Sm can accurately describe

P−2m+1P
−1
m #

P−1m+1#
=
P−2m+1

P−1m+1

parts of Sm+1. That is the degree of self-similarity comes arbitrarily close to 100% as m
becomes arbitrarily large.

But it is also recursive such that given we understand Sm, its knowledge of Sm+k is

P−2m+k#

P−1m+k#

P−1m #

P−2m #
' ln(Pm)

ln(Pm+k)

Realistically we can never have very much knowledge because the sets grow too quickly
but knowing that first little bit does at least begin to describe a portion of about

1

ln(Pm+k))

2.12 How Random Is Sm

Given that we can exactly predict at least the count of twin gaps we can ask what
would happen at some m if instead of the composites being kicked out rationally it went
haywire and the members kicked out were chosen randomly? At some m we have P−2m #
twins from a collection of P−1m # gaps, we make Pm+1 copies and randomly choose P−1m #
pairs of gaps to coalesce into new gaps. Twins can only be eaten and never born during
coalescence so the count in the next generation is expected to be

Pm+1P
−2
m #− P−2m #P−1m #

P−1m+1#
= P−2m #

(
Pm+1 −

1

Pm+1

)
or

P−2m+1#

(
Pm+1

P−2m+1

− 1

P−2m+1Pm+1

)
That is the S model approaches a uniform random behavior as m becomes arbitrarily

large.
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3 The S Model P.M.F. Geometry

We now ask what is the maximum allowed gap maxm in Sm. We have argued the gap
distribution is highly random with its unique distribution for each m, now we assert this
as an axiom. We claim the distribution of gaps is a random bag and the particular order
we measure in the primes is a single sample drawn from the bag. That is the sequence
of intervening gaps is a random walk of gaps of unit length selected from the derived
frequency table Fm from Sm where instead of selecting direction we choose a particular
realized instance of the unit step. Given this we note Bertrand’s lemma1 which states

Bertrand’s Lemma1. ∀ n > 1 ∃ P ∈ primes such that n < P < 2n

If maxm is the largest gap and the gaps are chosen at random the only possibility
allowed which satisfies all Sm is if maxm ≤ 2 P−1m < 2Pm. That is since

Pm > Pm+1 < 2Pm

or
Pm − 1 > Pm+1 − 1 = gm0 ≤ 2Pm − 2 < 2Pm − 1

or finally since the smallest gap is a twin we get

Pm + 2 ≥ Pm+1 ≤ 2Pm − 2 = 2P−1m + 1 = maxm + 1

While this protects the first non-trivial member’s gap from violating the rule it does so
at the price of capping the entire set.

The flavor of random is not uniform because we clearly have stable covariance and
memory via the SRRs. This forces the largest span between any 3 primes (sum of 2
gaps) is 2P−1m+1 since the CKM will cause such pairs to coalesce in the next iteration of
the model. The same is true for the next few tuple lengths as well such as gap triples and
quads. Sm must know at least something about the future of other primorial modular
sets because they evolve from it. Nature’s solution is to make the gaps random but
bounded.

The following table gives the first few local maximums.
m Pm gmaxm 2P−1m

0 1 1 undef

1 2 2 2

2 3 4 4

3 5 6 8

4 7 10 12

We see gap max is undefined in S0 because 2(1− 1) = 0 /∈ S0. Our p.m.f. now has
a local maximum size though we see not all the tables are necessarily fully filled.

3.1 Building Our Gap p.m.f.

We will also use 2 more sets that are only interested in gap type counts which we’ve
already introduced, and densities. Our energy will be focused on the even gaps m > 1.
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Recall Tm2j =
{
tj | ∀0 > j ≤ P−1m

}
is the collection of counts of even gap types of size

2j in Sm. That is
j≤P−1

m∑
j=1

2jtmj = Pm# (47)

Since Sm has a count of P−1m # let Fm = {fmj =
tmj

P−1
m #
} be the frequency density of 2j

in Sm. That is
j≤P−1

m∑
j=1

fmj = 1 (48)

with

f̂m =
1

P−1m
(49)

While its first additive moment is half the average gap

j≤P−1
m∑

j=1

2jfmj = ĝm = 2
〈
Fm,1

〉
=

Pm#

P−1m #
(50)

This comes as a surprise that we can decompose our complex primorial minor product
into a sequence of length P−1m . Sm is the template from which the random future is built
while Fm is its current gap spectral distribution.

This also leads to the remarkable conclusion that the local mean of the gaps is really
twice the log of the square root of your location. This is since the mean of the distribution
is

ln(Pm)

2
= ln(

√
Pm )

which when we multiply by 2 to get the mean of the gaps gives us

2
ln(Pm)

2
= ln(Pm)

Also referring to equation 37 tells us that gaps of twins and cousins will always be the
most common gap type, always occurring at a frequency greater than the naive expected
average.

3.2 A Probabilistic Look At The Primes

Just as π(x) is the member counting function for primes on the naturals below some
value x we can define a similar function in the S model

πm(Pmj ) = j

that is our member counting function returns the index of the nearest member not greater
than some value. By doing this we rid ourselves of the pesky issue of counting the fully

17



degenerate and emotionally discordant zeroth prime, 1 as we had cleverly set its index
to zero. To compare this co-prime member counting function with the natural version
we need to add the m members lost to the midden and remember our first composite is
P 2
m+1. That is

π(x) = m+ πm(x)∀x < P 2
m+1

and in particular
π(P 2

m+1) = m+ πm(P 2
m+1)− 1

because P 2
m+1 is counted in the local function. So

π(P 2
m+1)− π(P 2

m) = πm(P 2
m+1)− πm(P 2

m)− 1

Define
∆(Pm) = πm(P 2

m+1)− πm(P 2
m)

as the expected count in which we naively assume the span between our anchors is
uniformly filled with the effective unit operator. Notice ln (Pm) is the mean of the local
distribution in this region and the average local gap is twice the local mean. Next we
have 2 paths; the first is no knowledge of the next gap and the second is knowing the
proceeding gap.

∆(Pm) =
(Pm + ln (Pm))2 − P 2

m

2ln (Pm)

this becomes

∆(Pm) =
2Pmln (Pm)− ln2 (Pm)

2ln (Pm)

and finally

∆(Pm) = Pm +
ln (Pm)

2
(51)

That is we can expect Pm with a half gap contribution when sampled over many m.
However the last term is a small contribution which vanishes since Pm >> ln(Pm) for
large m.

We also examine

∆(Pm) =
(Pm + gm)2 − P 2

m

2ln (Pm)

which becomes

∆(Pm) = Pm
gm

ln (Pm)
+
ln (Pm)

2

Once again we can make sense of this probabilistically as a large enough sample of m
will average out our surviving product term or in other words

lim
m→∞

∑ gm
ln (Pm)

= 1 (52)

So both models are the same in the end as they must be.
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3.3 Chebyshev’s Function2

We can find the mth + 1 prime if we have knowledge of the first m gaps as follows

Pm+1 = 1 +
m∑
j=1

gj (53)

Replace the actual gap with its random variable

Pm+1 ' 1 +

m∑
j=1

ln(Pj) (54)

and we get Chebyshev’s function. We can extend this for prime squares as follows. We
notice

P 2
m+1 = 1 +

m∑
j=1

(P 2
j+1 − P 2

j ) (55)

We can reformulate our definition as follows

P 2
m+1 = 1 +

m∑
j=1

(Pj+1 + Pj) (Pj+1 − Pj) =

1 +
m∑
j=1

(Pj+1 + Pj) gj = 1 +
m∑
j=1

(
2Pjgj + g2j

)
Replacing our gap with the random variable, simplifying and taking square roots gives
us

Pm+1 '

√√√√ m∑
j=1

(2Pjln(Pj) + ln2(Pj)) '

√√√√ m∑
j=1

2Pjln(Pj) (56)

The 2 different forms tell us 2 different stories, the first that each gap has a unique
meaning, different from the previous and different from the next. The second shows us
on the scale of the primes squared they appear locally the same.

3.4 Backbones And Hard-Stops

3.4.1 The Backbones

We can compare the actual primal counts against something we call the primal backbone
function, our line of expected outcomes. Let x = 1 + jĝm be our estimator for the jth

member, define

Lm(x) =

⌊
x− 1

ĝm

⌋
to be the expected count for some x. Notice once again we ignore 1 by subtracting it to
maintain alignment with our member counting function. It is straight forward to show

Lm(P 2
m+1)− Lm(P 2

m) = Pm +
ln(ĝm)

2
(57)
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as expected from equation 51. That is

Lm(P 2
m+1)− Lm(P 2

m) = πm(P 2
m+1)− πm(P 2

m) (58)

or
Ψm(Pm) = πm(P 2

m+1)− Lm(P 2
m+1) = 0 + error (59)

That is Ψm(Pm) represents the accumulated error between the actual member count and
the backbone estimator in our region of interest.

We can generalize this to examine the entire space of Sm by defining

κm(x) = πm(x)− Lm(x)

which has the following properties

κm(0) = 0∀m

and it is periodic
κm(x) = κm(x+ nPm#) = 0∀n

κm(x) is an example where we must use the exact rational form while Ψm(Pm) we can
use the asymptotic form.

3.4.2 Analytically Continuing The Backbones Of The S Model

Since the expectation operator is a function of m we have an infinite number of back-
bones, for each unique m. We can ask 2 questions of the backbone, that it satisfy both
forms of the Chebyshev functions. That is we want

L (x+ ln(x))− L (x) = ln(x)

and
L
(
(x+ ln(x))2

)
− L

(
x2
)

= 2xln(x)

Both generate the same function when Taylor expanded to first order, it is easy to show

L(x) = Li(x) (60)

That is, the analytic continuation of the backbone of the S model is Li(x), the logarithmic
integral function5 which means Li(x) is indeed the best possible representation of the
primes.

3.4.3 The Hard-Stop

We prove the following

Legendre’s Prime Density Conjecture4. ∀n > 1∃ a prime P s.t. n2 < P < (n+1)2
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Proof. The span between our bounds is 2n + 1 while the largest gap in the population
of gaps in this neighborhood is ≤ 2(n− 1) = 2n− 2 so we can always fit at least one gap
or 2 primes in this space.

Since Legendre’s prime density is true we have a natural bound on the error, we
expect roughly Pm members between successive primes squared and there must always
be at least 2

πm(P 2
m+1)− πm(P 2

m)− Pm > 0 (61)

or
− CPm > πm(P 2

m+1)− Lm(P 2
m) (62)

for some positive constant C. If the order of the error were any different from 1, say
1 + ε than for large enough Pm the expected error would eventually lead to an infinite
number of violations. This only represents the tightest density case which given that
Sm is a p.m.f. we assume is symmetric leading to

− CPm > πm(P 2
m+1)− Lm(P 2

m) < CPm (63)

A reasonable continuation of 63 is

|Ψ(x)| = |π
(
(x+ ln(x))2

)
− Li

(
(x+ ln(x))2

)
| ≤ Cx (64)

or
|Ψ(x)| = |π

(
x2
)
− Li

(
x2
)
| < Cx (65)

3.4.4 Another Approach

Returning to examine tuples of a certain length and their variability, because the tuple
rows of Sm are periodic Sm,nj = Sm,n

j+nP−1
m #
∀n we can draw a ray joining each of the

periodic points and it’s slope will be ln(Pm). This means we have a family of P−1m #
parallel rays and we want to find the intercepts furthest from the backbone.

We note all tuples of length 2 are size bounded from above because the densest a
pair can be in Sm is 2P−2m+1 since it is certain such pairs will coalesce in Sm+1. The same
is true for all tuples up to length Pm, actually Pm+1 − 2 ≥ Pm + 2 − 2 because of the
CKM. Thus we replace all the gaps with multiples of the random variable which in this
case the upper bounding values become

max(n) = CPm + nln(Pm) (66)

Identifying the lower bounding envelop is a bit more complex. For example the
smallest pairs in each set {{4, 2}, {2, 4}} are independent of the current index, this is
true for all tuples up to length Pm. The first few smallest tuples sum to {2, 6, 8, 12, 16}.
These early gap tuples grow as ln(Pl) in the iteration m = l they were created. For
example twins when m = 1, pairs summing to 6 when m = 2, tuples of 3,4 and 5 when
m = 3 and so on. By the time we reach the region of tuples bigger than those that
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can sneak past the CKM they must catch up to the stable growth rate of the backbone
because that is its feedstock, this occurs around P 2

m+1. That is, the rays below the
backbone slowly spread away as the tuples grow until they reach the average expected
size driven by the local mean. On the scale of Sm this is actually rapid as the size of
the set is roughly exponential while this catchup game is played on order P 2. So by
symmetry

min(n) = −CPm + nln(Pm) (67)

That is we have 3 parallel lines, a central backbone and 2 equidistant neighbors which
represent the expected bounding limits of of tuple count to span. However when we ask
questions of the primes they are always of the form given a span what is the count, this
while we can only currently answer given a count to predict the span. We can translate
from count to span by checking our limits from normal projections of the expected line
instead of normal to the axes. That is we simply divide by the slopes and the ranges
now become

max(n) = Cm+ n (68)

min(n) = −Cm+ n (69)

so
|Ψ(Pm)| ≤ Cm∀m (70)

or when continued

|Ψ(x)| < Cx

ln(x)
(71)

However a little insight into the behavior of Li(x) lets us rewrite equation 71 as

|Ψ(x)| < CLi(x) (72)

3.4.5 The Riemann Prime Counting Function9

π(x) = Li(x) + . . . (73)

The first term is as expected the primal backbone and the rest are correction terms. We
do a variable transform to x2

π(x2) = Li(x2) + . . . (74)

or
π(x2)− Li(x2) = Ψ(x) = . . . (75)

referring to 72 we get
− CLi(x) < Ψ(x) < CLi(x) (76)

and finally

− C <
Ψ(x)

Li(x)
< C (77)
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3.4.6 Crossing The Backbone

At the birth of the primes we have P0 = 1, P1 = 2 and π0
(
P 2
m+1

)
− π0

(
P 2
m

)
for

m = 0 becomes π(4) = 2 which is exactly on the backbone since S0 is degenerate.
The same holds for m = 1. This means the prime distribution begins on the central
backbone. Naively given Sm generates a random walk periodic on P−1m # and that we
have completely symmetric local absolute bounds we expect by symmetry “frequent”
crossings.

Littlewood showed that π(x) crosses the primal backbone infinitely often10 and our
work not only fully substantiates this but given all the symmetries expect nothing less.
That is we’re modeling a random walk about a central expected moment, little more
than a coin toss experiment. What is completely impossible to explain is the frequency
of crossings, occurring at numbers referred to as Skewes’ numbers10. The smallest known
crossing other than 1 is near e727.95133 as opposed to say 10 or even 100.

3.5 Experimental Observations And Sub-Spines Revealed

We used Mathematica to generate the table {m,Pm, P 2
m, π(P 2

m), Li(P 2
m)}∀0 < m ≤

200000. Given the above hypothesis and assuming C = 1 we found

E

(
Ψ(x)

Li(x)

)
' −1

2

in the region of study. That is the distribution of the primes are actually random
valued between the backbone and the negative hard-stop with an expectation along
the negative sub-spine at least until they spontaneously cross the backbone at the next
Skewes number. We conjecture the following, C = 1 and if the last Skewes number’s
index is even

E (Ψ(x)) ' −1

2
(78)

for all large enough samples until the next crossing. While if the index is odd we would
have

E

(
Ψ(x)

Li(x)

)
' 1

2
(79)

for all large enough samples in the region until the next crossing. While sampling over
the entire space for large even valued Skewes indexes we would have

E

(
Ψ(x)

Li(x)

)
' 0 (80)

The above possibility means the oscillatory component of Ψ(x) has 2 hidden strange
attractors,

Ψ(x)

Li(x)
= ±1

2
+ “noise”

and it switches between the attractors on perhaps the longest length scale studied any-
where to date.
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