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In this �rst paper of the series, we demonstrate that quarks and antiquarks are con�ned to baryons
(White Holes) and antibaryons (Black Holes), respectively; we prove color-anticolor con�nement
for a baryon-antibaryon pair in an upgraded Gribov vacuum. For this, we identify the topolo-
gies, White Black Hole Duality, fractional statistics, quantum number order parameters, baryon-
antibaryon wavefunction antisymmetries, and gauge symmetry breaking in a 4D fractional quantum
Hall super�uidic space-time scenario, where space and time are dual and conjugate. Quarks and
antiquarks are con�ned to the Time Zone of two counter-propagating edge channels with Rashba
spin-orbit coupling on the Fermi scale: a Riemannian holographic ring unit circle, Fermi surface, and
Mott insulator that is isometrically embedded on a 1D Riemann surface (2D information structure),
that is generalized to e�ective 3D Schwarzschild space. We demonstrate that red, green, and blue
visibly-colored quarks are non-Abelian color-electric-magnetic monopoles which compose baryons
and are con�ned to a White Hole Bag; at rest, the massless quarks are left-handed and circulate
counter-clockwise at the speed-of-light to generate e�ective mass. Similarly, we show that antired,
antigreen, and antiblue anticolored antiquarks are anticolor-electric-magnetic antimonopoles which
compose antibaryons and are con�ned to a Black Hole Bag; at rest, the antimassless antiquarks are
right-handed and circulate clockwise to generate e�ective antimass. The bags are dual, opposite,
inverse, and reverse, and are thereby combined to form a White Black Hole bag. The three distinct
quark-antiquark pairs for a baryon-antibaryon pair are arranged along the six-coloring kagome lat-
tice manifold of antiferromagnetic ordering in the Time Zone as three thin color-electric �ux tubes;
an SU(2) gauged Bose-Einstein condensate for 1D, 2D, and 3D skyrmions with massive �Higgs-
like scalar amplitude-excitations� and �massless Nambu-Goldstone pseudo-scalar phase-excitations�,
that serves as a common 2D surface boundary between two distinct superconductive, super�uidic
3-branes (the Non-Relativistic Space Zone and Relativistic Space Zone distance scales) and imposes
double con�nement and double stereographic superlensing on two dynamical scales; the Time Zone
is dual to both Space Zones. For this, we prove that White Black Hole Con�nement and White Black
Hole Duality are the mechanisms for the stereographic superlensing of baryons and antibaryons.

I. INTRODUCTION

Nature presents an impressive display of mass-energy
puzzles in physics. Black Holes (BH) are one of the
most intriguing objects in nature, both theoretically
and experimentally. Being predicted in 1916 by Karl
Schwarzschild, until recently there has been no clear ex-
perimental evidence of BHs [1]. White Holes (WH) are
the hypothetical reverse of BHs, which were predicted
by the theory of general relativity; amazingly, there has
been no clear experimental evidence of WHs [2]. More-
over, the apparent asymmetry of matter and antimatter
in the visible universe is one of the greatest unsolved
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problems in physics [3]. In this series of papers, we chase
down these mysteries.
Quarks and antiquarks are the fundamental building

blocks of matter and antimatter, respectively. We prove
that baryons are WHs and antibaryons are BHs. The
dual WH and BH quantum states are encoded with quan-
tum number order parameters of fractional statistics for
quasiparticles. We prove quark-antiquark con�nement in
terms of Laughlin excitations [4] that dynamically arise
due to our fractional quantum Hall super�uidic (FQHS)
space-time and topology inspired by the quasiparticle in-
terferometer experiments of Goldman [5]. We prove that
the quarks and antiquarks con�ned to the holographic
ring �cancel out� due to the CPT-Theorem. Spon-
taneous symmetry breaking (SSB) generates massless
�Nambu-Goldstone pseudo-scalar phase-excitations� [6�
9] and massive �Higgs-like scalar amplitude-excitations�
[10] of Laughlin statistics [4]
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In Section II, we introduce the quark-antiquark con-
�nement, duality, and bag models in FQHS space-time.
We explain how WHs and BHs can vary in size, where
their duality is evident on the Fermi scale. Moreover, we
investigate the two dynamical scales that arise in the dou-
ble con�nement, double stereographic superlensing, and
double horizons inherent to WHs and BHs. We prove
that a WH-BH pair is composed of three distinct quark-
antiquark pairs, which form three corresponding �thin
color-electric �ux tubes� [11] of Laughlin excitations [4]
and fractional statistics [12]. We discuss the hadroniza-
tion process and the modi�ed Gribov vacuum, where all
properties in 3D Schwarzschild space can be inferred from
the analogue of the 2D gauge �eld on the six-coloring
kagome lattice manifold. Additionally, we venture to the
interaction between the boson propagators and gravity
by introducing �gravitational birefringence�.

In Section III, we discuss the surface and generalized
Riemann coordinates used to encode our FQHS space-
time scenario. We extend the de�nition of complex num-
bers and use them to represent locations on the 1D Rie-
mann surface; we prove that the complex numbers are
both scalars and Euclidean vectors. We de�ne axis con-
straints for the vectors, which let us construct a pow-
erful 2D generalized coordinate system on the surface
equipped with the Pythagorean identity; the locations
may always be expressed in terms of right triangles with
real and imaginary components.

In Section IV, we explore the three distinct topolog-
ical sub-surface zones for a WH and BH using set and
group theory. We formally de�ne the zones using tri-
chotomy and our generalized coordinates for 2D and 3D
space. We prove that the time-like region is a holographic
ring�a closed curve and simple contour of points, which
can be scaled to, for example, the Fermi radius. We
formally de�ne space and time as being dual. Addition-
ally, we demonstrate that the time-like region represents
the U(1) and SU(2) symmetry groups, which is isomor-
phic to the SO(3) orthogonal group; all 3D properties
are inferred directly from the 2D holographic ring for the
SU(2) gauged Bose-Einstein condensate.

In Section V, we de�ne the White Black wavefunction
(WBWF) of fractional quantum number order parame-
ters (OP) for our quark (q) and antiquark (q̄) con�nement
proof. Additionally, we discuss the amplitude-excitations
[10] and phase-excitations [6�9] for Laughlin quasiparti-
cles [4] experienced by the WBWF OPs in our FQHS
space-time scenario. For this, we express the full WBWF
antisymmetries and CPT-transformations.

In Section VI, we express the Lagrangian in terms of ef-
fective potential and e�ective kinetic for our FQHS space-
time scenario. For this, we apply both Newtonian and
Einsteinian concepts to the q and q̄ con�nement proof
and thereby incorporate e�ective force, e�ective mass,
and e�ective acceleration.

To summarize, in this �rst paper of the series we in-
troduce the topologies, vacuum, generalized coordinates,
fractional statistics, quantum number OPs, WBWF,

gauge symmetry breaking, and Lagrangian for the q and q̄
con�nement proof in FQHS space-time; for the scenario,
we provide a series of colorful depictions and an array of
experiments supporting this construction. In the next pa-
per(s) of this series, we will extend our con�nement sce-
nario by discussing the anyons, phase locking [13], Hubius
helix (HH) [14], attractive and repulsive gravitational ef-
fects of quasiparticle signals on the Lagrangian, modi�ed
Gullstrand�Painlevé reference frames, and Magni�cation
E�ect.

II. ALIGNMENT TO CONFINEMENT

A BH's event horizon con�nement radius εBH =
2MBH strongly depends on it's mass MBH , which can
vary in scale from the elementary or so called quantum-
dot, to billions of solar-masses. Regardless of scale, this is
known as Black Hole Con�nement (BHC) and is modeled
as a Black Hole Bag (BHB). Similarly, a WH's event hori-
zon con�nement radius εWH = 2MWH strongly depends
on it's mass MWH , a variable which is well de�ned in
terms of the atomic numbers of the periodic table of ele-
ments and stars throughout the universe. This is known
as White Hole Con�nement (WHC) and is modeled as
a White Hole Bag (WHB). The universe is self-similar.
Within this prodigious spectrum there exists the Fermi
scale, at which baryon symmetry is perhaps most ev-
ident; here, these two seemingly unrelated phenomena
merge to re�ect quark-antiquark con�nement. For ex-
ample in a proton-antiproton pair, an antiproton of anti-
mass MBH = Mantiproton = 1 GeV precisely counterbal-
ances a proton of mass MWH = Mproton = 1 GeV due
to antiferromagnetic ordering. On this scale we iden-
tify the general mechanism, namely White Black Hole
Con�nement (WBHC), which is responsible for the dy-
namics. It is based on the appearance of a critical ra-
dius ε2M = εWH = εBH for quark-antiquark con�ne-
ment at the 1 Fermi scale and the appropriate general-
ized dynamics�e�ective gravito-strong interaction. So
in gravity plus electromagnetism, there is one interesting
mechanism�radiation trapping just on the horizon's sur-
face, that is a coherent particle accumulation structure
[13] of fractional statistics and toroidal vortex [15]. The
toroidal vortex, that stores information as in the holo-
graphic hypothesis [11], intertwines the WHC and BHC
mechanisms, creating WBHC. The toroidal vortex forms
between the spherical shells de�ned at the inner con-
�nement radius ε2M and the outer con�nement radius
ε3M = 3M (based on the e�ective potential); ε2M and
ε3M correspond to the �horizon� and �imaginary surface�,
respectively, in Figure 6 of Witten [11]; there are two dis-
tinct quantum critical points imposed by a BH or WH
for the double stereographic superlense with the meta-
material, acoustic, double-negative refractive index, and
sub-wavelength features of [16�19]�see Figure 1. These
facts are evident from the DIS modeling results of the
hadronization process [20]. Quark-hadron duality in jet
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FIG. 1: The Riemannian holographic ring unit circle of two

counter-propagating edge channels de�nes the TZ for quark-

antiquark con�nement and is isometrically embedded on the 1D

Riemann surface. The toroidal vortex between two dynamical

scales for a double stereographic superlense: the spherical shells

located at critical radius ε2M = 2M and ε3M = 3M .

formation in DIS leads to a two-step process of hadroniza-
tion, with two scales appearing: large Q2

0 � Λ2
QCD

and small Q2
0 ∼ 1GeV 2. An alternative approach in

DIS, namely �Local Parton Hadron Duality�, also leads
to the two dynamical scales: k⊥ = Q0 ∼ ΛQCD and
k⊥ = Q0 ∼ 1 GeV [20]. Both models of the hadroniza-
tion process give us the numbers in accord with our model
ε2M ∼ 0.2− 0.3 fm and ε3M ∼ 1 fm. Another fresh per-
spective can be taken from the �Glue drops� model [21],
where the authors gave �rm evidence of the existence of a
non-perturbative scale, smaller than the usual 1

ΛQCD
∼ 1

fm, which is related to gluonic degrees of freedom. The
evidence for the presence of a semi-hard scale in hadronic
structure is reviewed from many venues. The most no-
table e�ects are: quantum chromo dynamics (QCD) sum
rules gives 0.3 fm radius of the corresponding form fac-
tor, lattice gives 0.2-0.3 fm for the correlation length,
instanton radius peaks approximately at 0.3 fm, di�rac-
tive gluon bremsstrahlung in hadronic collisions leads to
k⊥ for the gluons in a proton of about 0.7 GeV [22]. At
higher scales, chiral symmetry breaking is restored and
the vacuum does not feel apparent existence of quark and
gluon condensates, which spoil the chiral symmetry from
the start�the mechanism for the spontaneous breaking
of chiral symmetry and spontaneously emergent behavior
of chaos theory on the Lagrangian.
All together, this brings us to the concept of White

Black Hole Duality (WBHD), which is responsible for
the stereographic superlensing [18] dynamics. At rest,
the massless red, green, and blue quarks are con�ned to
a WH and circulate counter-clockwise along it's event
horizon as a left-handed HH (WHH) [14] at the speed
of light to generate e�ective mass, such that all ob-
servable baryons are white; the visible colored quarks
are non-Abelian color-electric-magnetic monopoles [23]

which emit red, green, and blue light-rays to render a
WH. Similarly, the resting antired, antigreen, and an-
tiblue antiquarks are con�ned to a BH and circulate
clockwise along it's event horizon as a right-handed HH
(BHH) [14] to generate e�ective antimass, such that
all �observable� antibaryons are black ; the �visible� an-
ticolored antiquarks are non-Abelian anticolor-electric-
magnetic antimonopoles [23] which emit antired, anti-
green, and antiblue light-rays to render a BH; the rel-
ative direction of circulation (with corresponding wind-
ing number) distinguishes between mass (i.e. Mproton)
and antimass (i.e. Mantiproton). For WBHD, the WH
and BH bags are dual, opposite, reverse, and inverse,
and are therefore modeled as a White Black Hole Bag
(WBHB). The quark and antiquark trajectories follow
Wilson loops and form a self-consistent [6] SU(2) gauged
Bose-Einstein condensate [24]. These so-called screened
quark-gluon potentials are again dual to the BH radia-
tion mechanisms by Hawking. The electro-strong duality
of the potentials continuously transform in FQHS space-
time in accordance with 1D, 2D, and 3D skyrmions [24].
This rich concept of duality enables us to compute ob-

servables in time-like regions, given the physics in space-
like regions, and vice-versa. Upon considering these dual
�elds, the idea of two distance scales comes up naturally.
Our 1D Riemmann surface (2D holographic information
structure) is divided into three distinct topological sub-
surfaces for quasiparticles:

1. Non-Relativistic Space Zone (NSZ) or �Micro� dis-
tance scale of superluminal signals,

2. Time Zone (TZ), and

3. Relativistic Space Zone (RSZ) or �Macro� distance
scale of luminal signals.

The Riemannian holographic ring unit circle represents
the TZ and is isometrically embedded on the surface;
it bifurcates 3D space to establish the NSZ, such that
0 < x < ε2M , and the RSZ, where ε2M < x < ∞�
recall Figure 1. The gauge �eld is a 3D analogue of the
TZ's Rashba spin-orbit coupling [24]�see Figure 4. The
quarks (and leptons) are �split� into three distinct ex-
citation degrees of freedom, namely spinon, holon, and
orbitons [4, 25]; the Laughlin excitations of the FQHS
3-branes obey fractional statistics; luminal quasiparticle
signals of the RSZ �sea� execute a closed path around the
NSZ �island� of superluminal quasiparticle signals and
thus acquire statistical phase [5]�see Figure 5.
In QCD, WBHC is a di�cult strong coupling prob-

lem, but a somewhat similar phenomenon in nature is
much better understood in quantum electro dynamics
(QED). The Meissner e�ect is the fundamental obser-
vation that a superconductor expels magnetic �ux. Sup-
pose that magnetic monopoles become available for study
and that we insert a monopole-antimonopole pair into a
superconductor, where the two poles are separated by a
large distance x. What will happen? A monopole is in-
escapably a source of the magnetic �ux, but magnetic



4

�ux is expelled from a superconductor. So the optimal
solution to this problem, energetically, is that a thin,
non-superconducting tube forms between the monopole
and the antimonopole. The magnetic �ux is con�ned
to this region, which is known as an Abrikosov-Gorkov
�ux tube (or a Nielsen-Olesen �ux tube in the context
of relativistic �eld theory). The �ux tube has a certain
nonzero energy per unit length, so the energy required to
separate the monopole and antimonopole by a distance
x grows linearly in x, for large x.

As a non-Abelian gauge theory, QCD has �elds rather
similar to ordinary electric and magnetic �elds but obey
a nonlinear version of Maxwell's equations. Quarks and
antiquarks are particles that carry the QCD analog of
electric charge and are con�ned in to our QCD vacuum
just as ordinary magnetic charges would be in a super-
conductor. The color-electric-magnetic quark monopoles
and anticolor-electric-magnetic antiquark antimonopoles
may be separated by a large distance x to form non-
Abelian dipoles: red-antired, green-antigreen, and blue-
antiblue �thin color-electric �ux tubes� [11]. Now from
the Aharonov�Casher (AC) e�ect and Aharonov�Bohm
(AB) e�ect duality [26�28], it is evident that this analogy
immediately leads to the idea that the QCD vacuum is
to a superconductor, just as electricity is to magnetism,
and just as the AC e�ect is to the AB e�ect�see Figure
3.

Furthermore, analogy between WH and BH physics re-
vealed itself again recently in Olsson's model [29]. The
author considered a relativistic string model, where a
massless quark moves at the speed-of-light in a circular
orbit. One can see clearly the x = x0 = ε2M coordi-
nate represents an event horizon or �impenetrable bar-
rier� and the quark moves in the �half harmonic oscil-
lator� potential. When combined with the phenomeno-
logical aspects of [30, 31], a strong QCD/QED string
model for the qq̄ pairs with the associated quasiparticles
[4] emerges in our scenario. So for the qq̄ pairs we iden-
tify both open-ended (�linear�) fermionic strings and the
closed (�non-linear�/circular) bosonic strings vibrating in
our conjugate and dual space-time. All of this is sup-
ported by Glue drops [21], where the energy of a QCD
string is concentrated in a thin color-electric �ux tube
[11] of radius ε2M = 0.3 fm. All such particles and quasi-
particles on the Riemann surface which generate e�ective
mass (and antimass) are projected along the �z-axis� to
e�ective 3D space (recall Figure 4). Here, events are rep-
resented on the Lagrangian using generalized coordinates
in Schwarzschild space-time on the Riemann surface.

Viewed in certain classes of inertial frames, a superlu-
minal signal travels backwards in time. In QED, Feyn-
man diagrams involve a virtual e+e- pair that in�uences
the photon propagator. Here, positrons are replaced with
electron-holes. This gives a photon an e�ective mass (or
antimass) on the order of the Compton wavelength for the
electron (or electron-hole); leptons are split into quasi-
particles [4, 25]. All of this is generalized to QCD, where
a virtual qq̄ pair in�uences the gauge boson propagator

in FQHS space-time; the propagator is a function which
returns a probability amplitude of 1 for the quarks and
baryon con�ned to the TZ. In both QED and QCD, if
the space-time curvature has a comparable scale, then an
e�ective boson-gravity interaction is induced; the Higgs-
like amplitude excitations [10] for the WH-BH pair im-
pose e�ective mass for WHs and quarks, and e�ective an-
timass for BHs and antiquarks. This depends explicitly
on the curvature, in violation of the Strong Equivalence
Principle. The boson velocity is changed and light-ray no
longer follows the shortest possible path�it bifurcates
to both the NSZ and RSZ distance scales. Moreover,
if the space-time is anisotropic, this change can depend
on the boson's polarization as well as direction. This is
the quantum phenomena of �gravitational birefringence�.
The e�ective light-cones for boson propagation in grav-
itational �elds no longer coincide with the geometrical
light-cones �xed by the local Lorentz invariance of space-
time, but depend explicitly on the local curvature. This
formulation agrees with the von Karman �ow and sym-
metry breaking of [32], the kaleidoscope of exotic quan-
tum phases in the 2D frustrated model of [33], and the
deviant Fermi liquid of [34], where the TZ serves a Bose
metal as in [35]. All this works in 4D space-time.

The qq̄ pairs for a WH-BH pair are �superbound� to
the vacuum [36] as coupled oscillators [37] (see Figure 2)
and form red-antired, green-antigreen, and blue-antiblue
Nambu-Goldstone pions, which are Nambu-Goldstone
bosons; the SSB of the three distinct pions generates col-
ored amplitude-excitations [10] and phase-excitations [6�
9]. The qq̄ pairs of the three distinct thin color-electric
�ux tubes are con�ned to the TZ, which is a Riemannian
holographic ring unit circle on a 1D Riemann surface
equipped with a six-coloring (three coloring plus three
anticoloring) kagome lattice manifold generalization of
[38] with antiferromagnetic ordering [4]. The ring ex-
hibits the Rashba and fractional quantum Hall e�ects
[39], along with spin-Hall current [40] and chiral mag-
netic moments [41]. The qq̄ pairs are uniformly arranged
along the kagome lattice with the triangular chirality of
[42] and the self-assembling observables of [13, 43] (re-
call Figure 3). The quasiparticles of the SU(2) gauged
Bose-Einstein condensate are direct 3D analogs of the
spontaneously emerging QED and QCD. The kagome
lattice hexagonal structure is self-similar to, for exam-
ple, graphene, which explains the �plasmaron� observa-
tions in quasi-freestanding doped graphene [44] and the
�soundaron� observations of [45]. The quarks can also be
thought as moving along the �caustics� inside the toroidal
vortex, where the quark's trajectories are trapped be-
tween the dual scale dynamics�they are �gliding� along
the surface and are re�ected back to the center. The
dual con�nement boundaries located at ε2M and ε3M act
as re�ecting and focusing stereographic superlenses. So
WHs and BHs become seashells closed on ε3M [46].

When we come to the vacuum estate, the richness of
WBHD is shining brightly: Gribov's QED/QCD vac-
uum [36] resembles a complicated structure of Unruh-
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FIG. 2: Schematic of the multiple synchronized quark and antiquark solid-state oscillators (colored and anticolored circles) coupled to

generate frequencies for the SU(2) gauged Bose-Einstein condensate with skyrmions [24] in the loop con�guration based on the work of

Afshari [37]; the coupling circuits (gray triangles) shift the phase of the oscillators.

FIG. 3: The loop-induced zero-energy dynamics are described as �gluon dynamics�. The 3 distinct qq̄ pairs for the WH-BH pair are

�superbound� as coupled oscillators [37] to the Fermi surface in the upgraded Gribov vacuum generalized from [36] and are con�ned to

the kagome lattice antiferromagnet on the six-coloring manifold. The qq̄ pairs spontaneously generate phase-excitations (massless and

pseudo-scalar) [6�9] and �Higgs-like� amplitude-excitations (massive and scalar) [10] Laughlin excitations [4]. The toroidal vortex along the

Riemannian holographic ring unit circle for a WH and/or BH is de�ned as a toroidal vortex between the spherical shells located at critical

radius ε2M = 2M and ε3M = 3M ; double stereographic superlenses [18] for two dynamical scales [22]. An a�nity exists between WBHD

and M.C. Escher's duality, where the combined WH event horizon and BH event horizon at ε2M exhibit the double horizon phenomena

[47]. The qq̄ pairs con�ned to the TZ form thin color-electric �ux tubes [11] in the QCD vacuum of the NSZ and exhibit the AC e�ect, while

thin magnetic �ux tubes in the RSZ superconductive region exhibit antiferromagnetic ordering and the AB e�ect; the QCD vacuum is to

a superconductor, just as electricity is to magnetism, and just as the AC e�ect is to the AB e�ect. This model exhibits vortex-antivortex

dancing [48] and con�rms the spontaneous appearance of a stable 3D skyrmion in the SU(2) gauged Bose-Einstein condensate of [24]

con�ned to the Riemannian holographic ring unit circle on our 1D Riemann surface.

Boulware-Hartle-Hawking 's BH vacuum and is fed with
solid-state physics along with notions of forbidden zones,
Fermi surfaces, particles and holes to encode the WBHB
on the Riemann surface. But there are some new di-
agrams that arise with the new zones, and novel types
of excitations�enabling us to upgrade Gribov's model.
This new vacuum di�ers drastically from Dirac's vac-
uum and contains a total of 18 zones for the six-coloring
(kagome lattice) manifold on the Riemann surface�

Figure 4; these zones are populated with quasiparticles
[4, 25] spontaneously generated by the qq̄ pairs con�ned
to the TZ with the spin-orbit coupling of [40, 49�51].
The TZ acquires a geometric phase [26, 27, 52], so the
quasiparticles con�ned to the TZ are dual to those signals
propagated across the NSZ and RSZ zones. Laughlin's
fractional quantization [12] is axiomatic in this scenario.
Clearly, in treating the WBHD and superlensing dynam-
ics, it is very convenient to separate the RSZ and NSZ
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degrees of freedom (Born�Oppenheimer approximation).
The NSZ and RSZ both represent superconductive,

FQHS 3-branes interconnected by the TZ, which serves
as a common (2D) surface boundary at ε2M . The WH
and BH are spinning objects con�ned to the TZ so they
generate whirlpools on both 3-brane distance scales in
accordance with seashells closed on ε3M [46], thereby ex-
hibiting the Magnus e�ect [53] and generating a vortex-
antivortex dance [48]; these whirlpools are described on
the Riemann surface using spirals (i.e. weighted Fi-
bonacci sequence and/or golden spiral). The TZ is a
topological Mott insulator for [25, 49, 54, 55], a Fermi
surface as in [56], a Goldman-Laughlin quasiparticle in-
terferometer of two counter-propagating edge channels
as in [5], a Gedanken interferometer as in [57], a quan-
tum critical point as in [4, 58], and a non-perturbative,
self-consistent, SU(2) gauged Bose-Einstein condensate
as in [6] that satis�es Novikov's self-consistency principle
as in [59]; a picture emerges of the vacuum as a con-
ductor instead of �Dirac's insulator�, with a new mass
scale that re�ects the position of the �Fermi surface�
[36]. The six-coloring antiferromagnetic alignment of the
qq̄ pairs spontaneously generate the physical behavior of
the strong interaction as in [4] and thereby triggers par-
ity doubling, CPT violations, and di�erent polarization
rotation velocities on both the NSZ and RSZ distance
scales simultaneously. Here, we identify the Dirac quan-
tization and spin-charge magnetic monopole relations of
[60], Fermi liquid deviations of [58], non-linear optics,
analogue gravity, and photon emissions analogous to the
Hawking radiation as in [61], and Andreev re�ections of
[62, 63]; the TZ's current continuously undergoes charge-
transformation between the NSZ's and RSZ's supercur-
rent. The qq̄ resonances form the exotic meson and broad
locking states as in [64]. The qq̄ pairs and their waves are
phase locked, spontaneously aligning to form dynamical
1D coherent accumulation structures with time-periodic
�ows [13] and a von Kármán vortex street [15] with im-
pact parameters.

III. THE SPACE-TIME SURFACE AND

GENERALIZED RIEMANN COORDINATES

Let X be the 1D Riemann surface. We de�ne the
complex number x = xR + xI as a position-point and
position-vector on X; x ∈ X is both a complex scalar
and Euclidean vector with amplitude |x| and phase 〈x〉,
which are analogous to magnitude and direction in con-
ventional notation. The orthogonal components of x,
namely xR ∈ R1 and xI ∈ I1 as axis-constrained real
and imaginary Euclidean vectors, respectively (where in
this case I denotes imaginary rather than irrational); the
simple trichotomy axis-constraints for the R-axis are

xR > 0⇔ 〈xR〉 = 2π = 0, (1)

xR = 0⇔ 〈xR〉 = @, (2)

xR < 0⇔ 〈xR〉 = π, (3)

and for the I-axis are

xI > 0⇔ 〈xI〉 =
π

2
, (4)

xI = 0⇔ 〈xI〉 = @, (5)

xI < 0⇔ 〈xI〉 =
3π
2
, (6)

such that

|xR| = |x| cos(〈x〉), (7)

|xI| = |x| sin(〈x〉), (8)

with Pythagorean form

|x|2 = x2
R + x2

I , ∀x ∈ X. (9)

Thus, we've de�ned the 2D generalized (Riemann) coor-
dinate system of X as

2DX : (x) = (xR + xI) = (xR, xI) = (|x|, 〈x〉), ∀x ∈ X,
(10)

with respect to the unique reference origin-point O ∈ X,
such that (O) = (0 + 0i) = (0, 0i) = (0, 0π); (x) =
(xR + xI) are 1D Riemann coordinates, (xR, xI) are 2D
Cartesian coordinates, and (|x|, 〈x〉) are Polar coordi-
nates; a Complex-Cartesian-Polar synchronized and gen-
eralized coordinate system. The real and imaginary axis-
constraints ensure that the generalized coordinates may
always be expressed as a right-triangle with Pythagorean
properties.
So how to we extend our 2D generalized coordinates

of De�nition (10) to 3D Schwarzschild space? Well, for
a WH or BH of scale M (located precisely at the ori-
gin position-point O ∈ X) we de�ne the 3D generalized
(Schwarzschild) coordinate system of X as

3DX : (ux, |x|, 〈x〉) = (
M

|x|
, |x|, 〈x〉), ∀x ∈ X. (11)

IV. ZONES

We de�ne T as the TZ of X. So T is a topolog-
ical representation of a Riemannian unit circle, where
the critical radius of T is scaled and normalized to pre-
cisely ε2M = 2M = π

2 εscalar. We prove WBHC on T .
εscalar is the time unit scale-normalizing constant and
ε2M is the inner con�nement radius of T . Next, we
de�ne the circumference and wavelength of T , namely
Tλ = Tcircumference = Twavelength = 2πεscalar, as being
equivalent to the (normalized)Mikhail Grimov's area �ll-
ing conjecture [65]: Tarea = Tλ; T ⊂ X is a closed curve
and simple contour of surface position-points.
We use zone trichotomy to simultaneously de�ne the

TZ and SZ regions of X: we de�ne X− and X+ as the
NSZ and RSZ of X, respectively. The surface T delin-
eates the topological sub-surfaces X− and X+ on X; T
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FIG. 4: The gauge-invariant TZ delineates the NSZ and RSZ: a 2-sphere which is dual to both 3-branes, where the SU(2) Bose�Einstein

condensate and gauge �eld is a 3D analogue of the Rashba spin-orbit coupling of the TZ, supporting the 1D, 2D, and 3D Skyrmion

structures [24] (all). The WH-BH pair comprises the three distinct qq̄ pairs and is modeled as a WBHB in the new Gribov vacuum with

18 quasiparticle signal zones (bottom).

FIG. 5: The upgraded Gribov QCD/QED vacuum with 18 zones for quasiparticle signals pertaining to a WBHB on the 1D Riemann

surface. The qq̄ pairs are con�ned to the TZ, which is dual to the NSZ and the RSZ. The six-coloring spinon, holon, and orbiton excitations

are spontaneously generated and con�ned to the TZ, which acquires a geometric phase; the TZ excitations are dual to those of the NSZ

and RSZ 3-branes.
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FIG. 6: The TZ is dual to both distance scales and imposes the double-con�nement and double-lensing of M.C. Escher's duality [47]; it

is a stereographic superlense [18] between the two 3-brane distance scales.

FIG. 7: Inopin's interpretation of M.C. Escher's double-horizons of [47] is directly connected to the q → q̄ transitions, past-present

switching, time-reversal operation, and CPT-Theorem on the Riemann surface: time is circular and non-linear, so the past is the future.

The quarks switch back and forth between the conjugate space-time regions with the appearance and disappearance of 3 quantum critical

points in the QCD phase diagram.

is a Mott insulator [25] and Fermi surface [36] which de-
lineates two dual superconductors [25, 49, 54, 55, 62, 63].
Thus, ∀x ∈ X we know that precisely one of the following
conditions must be satis�ed:

|x| < ε2M ⇔ x ∈ X−, (12)

|x| = ε2M ⇔ x ∈ T, (13)

|x| > ε2M ⇔ x ∈ X+, (14)

where clearly X− ∩ T = T ∩ X+ = X− ∩ X+ = ∅ and
X− ∪ T ∪X+ = X. Hence, T is the multiplicative group

of all non-zero complex 1-vectors, such that

T = {t ∈ X : |t| = ε2M}, (15)

where we de�ne all T position-points as time-points and

X− = {s ∈ X : |s| < ε2M}, (16)

X+ = {s ∈ X : |s| > ε2M}, (17)

where we de�ne all S = X−∪X+ position-points as space-
points. So clearly,

ε22M = |t|2 = |tR|2 + |tI|2, ∀t ∈ T, (18)
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|x|2 = |xR|2 + |xI|2, ∀x ∈ X. (19)

So T is isometrically embedded in X with the one-to-one
holographic mappings f : T ↪→ X and f : T → X− ∪X+

with dual simultaneous bijections

fTime : X− ←↩ T ↪→ X+, (20)

fSpace : X− ↪→ T ←↩ X+, (21)

for our dual space-time; we've proven that T is dual to
X− and T is also dual to X+. Interestingly, this formula-
tion may provide a simpli�cation to the Riemann-Hilbert
problem as expressed in, for example, [66]. Now because
T is a type of Riemannian circle and holographic ring,
we know it is a 2-sphere for the SU(2) gauged Bose-
Einstein condensate [24]. Thus, for the position-point
and position-vector t ∈ T we apply De�nition (10) to ex-
press the 2-sphere generalized and synchronized 2D Rie-
mann coordinates

2DT : (t) = (tR+tI) = (tR, tI) = (|t|, 〈t〉) = (ε, 〈t〉), ∀t ∈ T,
(22)

and in 3D Schwarzschild coordinates

3DT : (ut, |t|, 〈t〉) = (
M

|t|
, |t|, 〈t〉), ∀t ∈ T. (23)

Now because ∀t ∈ T we have the uniform radius |t| =
ε2M , we can alternatively drop the |t| amplitude co-
ordinate and just use the 〈t〉 phase coordinate to di-
rectly specify position-points on the 1D non-linear sur-
face. Therefore, T is

• the 1D circular Abelian group U(1);

• the 2D spherical non-Abelian group SU(2); and

• isomorphic to the 3D orthogonal non-Abelian group
SO(3),

which directly supports 1D, 2D, and 3D skyrmions [24].
So parity doubling [22] is synonymous of the term degen-
eracy, and Escher gave an example of how one can estab-
lish 2D - 3D correspondence [47]. We see here again the
road to the t'Hooft and Maldacena holographic model for
high-energy physics�all the 3D properties are inferred
directly from the 2D (Riemannian holographic ring) do-
main [67].
We de�ne T as a �fermiwire,� which is nothing more

than a �nanowire� [51, 68] with Rashba spin-orbit cou-
pling [25, 27, 39] on the Fermi scale. The spin geo-
metric phase for electrons in [27] is applied directly to
the spin Hall e�ect [39], e�ective spin-dependent �ux,
and Andreev re�ections [62, 63] of the quarks and an-
tiquarks con�ned to the universal curve T (the holo-
graphic ring with uniform radius |t| = ε2M ) embedded
in X; the duality derivation between the AAS e�ect

and the AC e�ect of [27] is written for T as
Φmag

Φ0/2
⇐⇒

√
1 +

(
2mt〈t〉|t|

~2

)2

, ∀t ∈ T, where Φmag is the magnetic

�ux, Φ0 = h/e is the one �ux quantum period, 〈t〉 = α is
the amplitude and strength of the Rashba spin-orbit in-
teraction, andmt is the e�ective mass; the left term is the
AAS e�ect �ux and the right term is the time-reversal AC
e�ect oscillation unit with e�ective spin-dependent �ux
for the conductance modulation and voltage dependence
observations of the AAS amplitude at zero magnetic �eld
[27]. This formulation is crucial to our six-coloring quark-
antiquark con�guration for the WBHC scenario because
the magneto-resistance oscillations of [27, 69] along T are
attributed to the AAS e�ect.

V. THE WAVEFUNCTION DEFINITION OF

FRACTIONAL QUANTUM NUMBER ORDER

PARAMETERS

Landau introduced the concept of OPs [70], which we
de�ne as complex scalar �elds [6] on X. Here, we con-
struct the WBWF using OPs and Laughlin statistics [4]
in our non-Abelian SU(2) gauge theory. In the theory of
super�uidity the OP measures the existence of Bose con-
densed particles (Cooper pairs) and is given by the prob-
ability amplitude of such particles. The inter-particle
forces between quarks and antiquarks, and between 4He
and between 3He atoms, are rotationally invariant in spin
and orbital space and, of course, conserve quantum num-
ber [22]. The latter symmetry gives rise to gauge sym-
metry, which is broken in any super�uid. First, for the
theory of isotropic super�uids like a BCS superconductor
or super�uid 4He, we de�ne the global OP ψ = ψR +ψI as
a complex number (which inherits the notation similar to
x as de�ned in Section III without loss of generality); ψ
is both a complex scalar and Euclidean vector with the
amplitude |ψ| [10] and phase 〈ψ〉 components [6]. Then
for local gauge SSB, we de�ne the OP ψ[x] as the complex
scalar �eld

ψ[x] = ψ[x]R + ψ[x]I, ∀x ∈ X, (24)

where |ψ[x]| and 〈ψ[x]〉 are the �gauge� amplitude and
phase components local to x ∈ X, respectively, in ac-
cordance to Englert [6]. Furthermore, we de�ne ∆|ψ[x]|
and ∆〈ψ[x]〉 as the change of the OP's amplitude and
phase due to a �massive Higgs-like amplitude-excitation�
and �massless Nambu-Goldstone phase-excitation� com-
ponents, respectively�see Figures 8 and 9. Since the
Mott insulator and stereographic superlense T is dual to
both X− and X+, we express Equation (24) speci�cally
for time-points as the parametric function

ψ(t) = ψ(t)R + ψ(t)I, ∀t ∈ T, (25)

where the SU(2) gauge-invariant T acquires a Berry�
Aharonov�Anandan geometric phase as in [52]; T is an
ordered medium equipped with an OP space for topo-
logical defects. The classical energy density distribution
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along T is a function of the OP ψ(t); within the ordered
(super�uid) phase, Nambu-Goldstone and Higgs modes
arise from the 〈ψ(t)〉 and |ψ(t)|, respectively, where the
energy density transforms into a function for T with a
minimum at |ψ(t)| = 0 [10]. So |ψ(t)| is excited with
a periodic modulation of the spin-orbit coupling, which
amounts to a �shaking� of the energy density (e�ective)
potential for topological deformations along T in accor-
dance with [10]. Furthermore, because the WH-BH pair
is con�ned to T on the kagome lattice of antiferromag-
netic ordering [38], we de�ne the WBWF for the six-
coloring position-points {r, g, b} ⊂ T and {r̄, ḡ, b̄} ⊂ T of
three colored quarks and three anticolored antiquarks in
the vacuum, respectively (recall Figures 3 and 4).

Above the critical temperature the system is invariant
under an arbitrary change of the phase 〈ψ[x]〉 → 〈ψ[x]〉′,
i.e. under a gauge transformation. Below the critical
temperature a particular value of 〈ψ〉 is spontaneously
preferred. In anisotropic super�uids, additional sym-
metries can be spontaneously broken, corresponding to
multiple OP components of the WBWF. In 3He�the
best studied example with multiple OP components�the
pairs are in a spin-triplet state, meaning that rotational
symmetry in spin space is broken, just as in a magnet. At
the same time, the anisotropy of the Cooper-pair wave-
function in orbital space calls for a spontaneous break-
down of orbital rotation symmetry, as in liquid crystals
[22]. Including the gauge symmetry, three symmetries
are therefore broken in super�uid 3He. The theoretical
discovery that several simultaneously broken symmetries
can appear in condensed matter was made by Antony
Leggett, and represented a breakthrough in the theory of
anisotropic super�uids, 3He [70]. This leads to super�uid
phases whose properties cannot be understood by simply
adding the properties of systems in which each symme-
try is broken individually. Such phases may have long
range order in combined, rather than individual degrees
of freedom. So to construct a strong WBWF constraint
for WBHC to T , we �Cooper pair� the OP set of strongly
conserved quantum numbers

ΦOP = {ψC , ψI , ψJ}, (26)

which is listed in Table I; the spin-orbit coupling of [39,
40, 60] applies directly to T , where ψJ(t) is identical to
the �BSO-vector� of [68], such that

ψJ(t) = ψS(t) + ψL(t), ∀t ∈ T. (27)

The qq̄ pairs con�ned to T on the six-coloring kagome lat-
tice manifold are located at position-points r, g, b, r̄, ḡ, c̄ ∈
T ; they adhere to the uniformly-arranged position-point
constraints

〈r〉 = 〈r̄〉 ± π, 〈g〉 = 〈ḡ〉 ± π, and 〈b〉 = 〈b̄〉 ± π, (28)

with uniform amplitudes |r| = |g| = |b| = |r̄| = |ḡ| =

|b̄| = ε2M , and antiferromagnetic ordering

〈ψJ(r)〉 = 〈ψJ(r̄)〉 ± π, (29)

〈ψJ(g)〉 = 〈ψJ(ḡ)〉 ± π, and (30)

〈ψJ(b)〉 = 〈ψJ(b̄)〉 ± π, (31)

(recall Figure 3). A little �ight of imagination lead us to
this new approach, where the OPs ∀t ∈ T are �Cooper
paired� to form a Leggett super�uid B phase of [70] with
azimuthal �alpha� phase angle 〈t〉; the OPs ∀ψ ∈ ΦOP
rotate freely in 2D and 3D space, while the super�uid
B phase angle 〈t〉 ∈ {〈r〉, 〈g〉, 〈b〉, 〈r̄〉, 〈ḡ〉, 〈b̄〉} between
them remains constant. Such phases form correlated he-
lices along T , serving as constraints for the WBWF�see
Figure 10.
Next, we construct our WBWF for the WBHB states.

For a WH and BH centered on the origin-point O ∈ X
and con�ned to T we de�ne the full baryon and an-
tibaryon states as

Ψtotal(r, g, b) = Ψ(r)×Ψ(g)×Ψ(b) and (32)

Ψtotal(r̄, ḡ, b̄) = Ψ(r̄)×Ψ(ḡ)×Ψ(b̄), (33)

respectively, for the WBHC and WBHD; the red, green,
and blue quark wavefunctions respectively located at
time-points r, g, b ∈ T on the three-coloring triangular
sub-lattice are

Ψ(r) = ψC(r)× ψJ(r)× ψI(r)× r, Ψ(r)
def
= 〈r|Ψ〉,

(34)

Ψ(g) = ψC(g)× ψJ(g)× ψI(g)× g, Ψ(g)
def
= 〈g|Ψ〉,

(35)

Ψ(b) = ψC(b)× ψJ(b)× ψI(b)× b, Ψ(b)
def
= 〈b|Ψ〉,

(36)

and the antired, antigreen, and antiblue antiquark wave-
functions respectively located at time-points r̄, ḡ, b̄ ∈ T
on the three-anticoloring triangular sub-lattice are

Ψ(r̄) = ψC(r̄)× ψJ(r̄)× ψI(r̄)× r̄, Ψ(r̄)
def
= 〈r̄|Ψ〉,

(37)

Ψ(ḡ) = ψC(ḡ)× ψJ(ḡ)× ψI(ḡ)× ḡ, Ψ(ḡ)
def
= 〈ḡ|Ψ〉,

(38)

Ψ(b̄) = ψC(b̄)× ψJ(b̄)× ψI(b̄)× b̄, Ψ(b̄)
def
= 〈b̄|Ψ〉;

(39)

the WBWF for the three distinct qq̄ pairs that are con-
�ned to T along the six-coloring kagome lattice manifold
(recall Figure 3). So the antisymmetric WBWF is de-
scribed with the six-coloring components

Ψ(r, r̄) = −Ψ(r̄, r), (40)

Ψ(g, ḡ) = −Ψ(ḡ, g), and (41)

Ψ(b, b̄) = −Ψ(b̄, b), (42)

for the con�ned quark and antiquark (two-particle) cases.
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FIG. 8: A complex scalar �eld ψ(t) experiences a massive �Higgs-like� amplitude-excitation [10] (right), which is characteristic of the

Nambu-Goldstone scalar boson SSB order parameter �uctuations discussed by [6]; a classical wave imposes volume e�ects and stretches

the vacuum �eld.

FIG. 9: A complex scalar �eld ψ(t) experiences a phase-excitation (right), which is characteristic of the Nambu-Goldstone pseudo-scalar

SSB order parameter �uctuations discussed by [6]; a classical wave imposes rotational e�ects on the vacuum �eld in accordance with

vacuum degeneracy.

So for De�nition (32) and the related six-coloring Def-
initions (31�37), we de�ne the full WBWF antisym-
metrization via the covariant antisymmetric metric ten-
sor: the 2D antisymmetric WBWF matrix(

0 Ψtotal(r, g, b)
Ψtotal(r̄, ḡ, b̄) 0

)
(43)

and the expanded 3D antisymmetric WBWF matrix 0 Ψ(r) Ψ(g)
Ψ(r̄) 0 Ψ(b)
Ψ(ḡ) Ψ(b̄) 0

 (44)

for T . So given complex tangent vectors µ and ν we
de�ne

gx(µ, ν) = −gx(ν, µ) ∈ C, ∀x ∈ X; (45)

the tensor describes the X curvature (�vector phase�)
〈gx(µ, ν)〉 and the �eld strength (�vector amplitude�)

|gx(µ, ν)| at a position-point x ∈ X. The Levi-Civita
symbol for the color singlet function is

ζrgb = ζrgb =


+1 if (r, g, b) is (1, 2, 3), (2, 3, 1), or (3, 1, 2)

0 if r = g or g = b or b = r

−1 if (r, g, b) is (3, 2, 1), (2, 1, 3), or (1, 3, 2)
(46)

The CPT-Theorem is a fundamental property of T .
Hence, for a WH or BH of scale M we have the OP
charge transformation(s), ∀ψ ∈ ΦOP ,

C :



ψ(t) 7→ −ψ(t),(
ψ(t)R

ψ(t)I

)
7→

(
−ψ(t)R

−ψ(t)I

)
,(

|ψ(t)|
〈ψ(t)〉

)
7→

(
|ψ(t)|

〈ψ(t)〉 ± π

)
,

(47)

the parity transformation(s) (in generalized 2D Riemann
coordinates for 3D Schwarzschild space) is the �ip in the
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TABLE I: The quantum number order parameters for the WBWF states on the 1D Riemann surface X. Here, ψJ = ψS + ψL and

ψJ (t) = ψS(t) + ψL(t) for the spin-orbit coupling of the holographic con�nement ring T ⊂ X.

Order Parameter Symbol Global Local

Color Charge C ψC = ψCR + ψCI ψC [x] = ψC [x]R + ψC [x]I
Isospin I ψI = ψIR + ψII ψI [x] = ψI [x]R + ψI [x]I

Orbital Angular Momentum L ψL = ψLR + ψLI ψL[x] = ψL[x]R + ψL[x]I
Spin Angular Momentum S ψS = ψSR + ψSI ψS [x] = ψS [x]R + ψS [x]I
Total Angular Momentum J ψJ = ψJR + ψJI ψJ [x] = ψJ [x]R + ψJ [x]I

FIG. 10: Leggett's [70] six distinct super�uid B phase angles for the three qq̄ pairs con�ned to T along the six-coloring kagome lattice of

antiferromagnetic ordering [4, 38]. The super�uid B phase angles 〈r〉, 〈g〉, 〈b〉, 〈r̄〉, 〈ḡ〉, 〈b̄〉 remain constant and correlate the OPs as they

rotate freely in 2D and 3D space; this long range order applies ∀t ∈ T , ∀ψ ∈ ΦOP , to form correlated helices along T ; this concept serves

as a strong WBWF constraint and applies to all OPs for a given time-point. In this diagram, only ψC(t) and ψI(t) are shown, but ψJ (t)

is also correlated with 〈t〉.

sign of the one coordinate

P :



tRtI
M
|t|

 7→

−tR−tI
−M|t|

 ,

 |t|〈t〉
M
|t|

 7→

 |t|
〈t〉 ± π
−M|t|

 ,

(48)

and time reversal transformation(s)

T :



t 7→ −t,(
tR

tI

)
7→

(
−tR
−tI

)
,(

|t|
〈t〉

)
7→

(
|t|

〈t〉 ± π

)
,

(49)

which comprise a CPT-transformation, ∀t ∈ T . We see
that for De�nitions (47), (48), and (49) there are mul-
tiple equivalent transformations for each case because
the generalized Riemann coordinates of De�nition (10)
and the OP De�nition (24) use synchronized Complex-

Cartesian-Polar values (where the magnitude and direc-
tion of the Polar components are replaced with amplitude
and phase, respectively).

VI. THE LAGRANGIAN: EFFECTIVE

POTENTIAL AND EFFECTIVE KINETIC

Here, we express the gauged SSB in our FQHS space-
time scenario on X, which is applicable to both 2D and
3D space; the Lagrangian is de�ned as

L[x] = EK [x]− EP [x], ∀x ∈ X, (50)

using our generalized coordinates, where EK [x] and
EP [x] are the e�ective kinetic and e�ective potential, re-
spectively for a position-point x. From [71] the gauge
boson's EP is de�ned as

EP [x] =
√

1− 2ux
|x|

, ∀x ∈ X. (51)

The EP depends on the Schwarzschild geometry but not
on the choice of orbit. Only one EP is required to an-
alyze the motion of all radiation (including radio waves,
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radar pulses, gamma rays, etc.). It is important to stress
EP di�erences and similarities between a massive parti-
cle and its massless limit: radiation-rays. Next, the EK
is de�ned as

EK [x] =
1
2
mxv

2
x =

1
2
Fx
ax
v2
x, ∀x ∈ X, (52)

where Fx is the e�ective force, where mx is the e�ective
mass, ax is the e�ective acceleration, and vx is the e�ec-
tive velocity of the particle at x in the FQHS space-time.
Einstein's Fx, the EP per unit of particle e�ective mass
mx, is de�ned as

Fx = mxax =
EP [x]
mx

=

√√√√(1− 2ux)

[
1 +

( J
mx

)2

|x|2

]
, ∀x ∈ X,

(53)
where the ax along coordinate phase 〈x〉 is

ax =
1
~2

∑
mx

∂2ε(kx)
∂k〈x〉∂kmx

exEmx
, ∀x ∈ X, (54)

where kx is the wave vector, ε(kx) is the dispersion re-
lation, and ex is the point charge in an external electric
�eld E.

VII. CONCLUSION AND OUTLOOK

In this �rst paper of the series, we introduced the
topologies, vacuum, 2D and 3D generalized coordi-

nates, fractional statistics, WBWF quantum number
OPs, gauge symmetry breaking, and Lagrangian for our
WBHC proof and WBHD in FQHS space-time. In the
next paper(s) of this series, we will extend our quark-
antiquark con�nement scenario by discussing the anyons,
phase locking, HH, attractive and repulsive gravitational
e�ects of quasiparticle signals on the Lagrangian, modi-
�ed Gullstrand�Painlevé reference frames, and Magni�-
cation E�ect.

In our opinion, this proof of quark-antiquark con-
�nement with the amplitude�excitations and phase�
excitations begins to reveal additional fundamental
mechanisms and relationships inherent to our universe.
In doing so, we've been able to shed more light on a
number of mysterious concepts in nature, including BHs,
WHs, baryon asymmetry, creation, annihilation, double
horizons, and FQHS space-time. We suspect that these
formulations, which are inspired by a plethora of exper-
imental data, can be used to construct a uni�ed �eld
theory in the near future, thereby advancing physics to
the �next level.� Through global cooperation, competi-
tion, hard work, and creativity, these powerful concepts
can be further scrutinized, extended, and applied to vir-
tually all areas of mathematics, science, medicine, and
engineering.
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