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It is shown that Lorentz Invariance is a wave phenomenon. The relativistic mass, length
contraction and time dilation all follow from the assumption that energy-momentum
is constrained to propagate at the speed of light, c, in all contexts, matter as well as
radiation. Lorentz Transformations, and both of the usual postulates, then follow upon
adopting Einstein clock synchronisation. The wave interpretation proposed here is para-
dox free and it is compatible with quantum nonlocality.

1 Introduction
“But the division into matter and field is, after

the recognition of the equivalence of mass and energy,
something artificial and not clearly defined. Could we
not reject the concept of matter and build a pure field
physics? What impresses our senses as matter is really
a great concentration of energy into a comparatively
small space. We could regard matter as the regions in
space where the field is extremely strong. In this way a
new philosophical background could be created.” —
Einstein & Infeld [1].

Modern Physics relies heavily on relativistic wave equa-
tions, especially the d’Alembert, Helmholtz and Dirac [2]
equations, that feature either propagation at the characteristic
velocity, c, or a velocity operator of constant modulus equal
to c [3]. There are also many Lorentz covariant classical field
theories in the literature, including nonlinear theories with
subluminal soliton solutions that serve as candidate models
for the fermions. [4–10] are just a few to illustrate the diverse
range of approaches. This Article shows that the first, neces-
sary step towards achieving Einstein’s dream of a pure field
physics is to recognise that, whether it appears as radiation or
as matter, energy is a propagative phenomenon.

We shall consider the basic mechanics of luminal wave
systems, i.e. systems of waves that propagate at c. Adapt-
ing the Newtonian momentum equation, p = mv, for use
with constant speed luminal waves and then applying univer-
sally accepted basic principles of mechanics to luminal waves
leads to a general structural analysis of luminal wave systems
that is inherently relativistic without asserting any principle
of relativity. The usual relativistic mechanics of matter can
thus be interpreted as the basic mechanics of subluminally
moving systems constructed entirely from luminal waves.

The proposed luminal wave ontology provides new per-
spectives on many issues including the Dirac velocity oper-
ator, angular momentum quantisation, the structure of Elec-
tromagnetics [11], gravity [12], the existence of nonlocal re-
lations between observables, and interference phenomena in
matter beams. The plan of the Article is as follows:

Section 2 defines the basic principles of mechanics that
are regarded as universally accepted and identifies the simple
general relationship that governs the connection between in-
ertial frames for systems of luminal wave momenta. Section 3

shows that the usual relativistic momentum equation for par-
ticles applies to systems of luminal wave momenta. Section 4
derives the (forward) relativistic transformation of wave mo-
menta in a form that is useful for analysing wave systems
as a whole. Section 5 extends the results to any kind of lu-
minal wave system, provided a wave vector in the direction
of propagation can be defined, linear momentum is locally
conserved, and propagation is luminal. In particular, linear
superposition is not required so the method is applicable to
nonlinear wave systems with subluminal soliton solutions.

For luminal waves the speed of propagation is, by def-
inition, fixed and any luminal wave model of a subluminal
massive particle is immediately subject to the kinematic con-
straint that, when the speed of the particle changes, the speed
of its constituent wave components does not. Sections 6 and
7 show that length contraction and time dilation are the con-
sequences of this kinematic constraint, so luminal systems
display all the usual relativistic phenomena.

Section 8 addresses the question how the physical phe-
nomena of length contraction and time dilation constrain the
coordinate transformations. Selleri [13, 14] has shown that,
subject mainly to the use of Einstein clock synchronisation,
Lorentz Transformations follow directly from length contrac-
tion and time dilation, which are derived here from the basic
principles of mechanics without making any further assump-
tions. As discussed in Subsection 8.2, the proposed wave in-
terpretation is also equipped with a readily observable pre-
ferred frame, eliminating the paradoxes associated with the
usual, relativist interpretation.

It remains only to point out, in Section 9, that any form of
non-luminal structure for the massive particles is implausible,
hence the conclusion reached is that the relativistic phenom-
ena imply the luminal structure. Finally, Section 10 outlines
the reasons why Lorentz Invariance does not preclude nonlo-
cal relations between observables in this pure field context.

2 Basic physics of luminal waves

2.1 The basic principles of Mechanics

The usual classical field approach to mechanics in wave sys-
tems begins by choosing wave or field equations. Any analy-
sis is immediately limited to the mechanics of one particular
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kind of wave system. We would identify various solutions
to the chosen equations, which are in general expressed as
spatial distributions of some field variables. Field energy and
momentum densities must be induced from these field vari-
ables. After evaluating the spatial integrals of the energy and
momentum densities we would arrive at expressions for the
momenta and energies of the wave solutions and we could
begin the mechanics.

Unfortunately, in many circumstances we do not know
what equations to use, much less their solutions. Moreover,
the great variety of Lorentz covariant wave equations sug-
gests that relativistic mechanics is a general feature that many
wave systems have in common. What kind of wave sys-
tems? As mentioned in the introduction, the leading relativis-
tic wave equations feature the characteristic velocity, suggest-
ing that, when the field energy-momentum in a wave system
is constrained to propagate at c (i.e. luminally), then the sys-
tem displays the usual relativistic mechanics.

Therefore, instead of taking the usual fields approach to
mechanics let us take a mechanics approach to fields, ap-
plying the basic principles of mechanics directly to a field
energy-momentum density that propagates at c. The univer-
sally accepted principles to rely upon can be stated as follows:

1. The momentum of an object is defined as the product of
its inertia times its velocity. Similarly, field momentum
density is the product of inertia density and velocity.

2. Momentum is conserved. Field momentum is locally
conserved.

3. The principle of local action means that wave objects,
as defined below, may interact with each other only in
regions of space where they overlap.

4. The force acting on an object is equal to its rate of
change of momentum.

5. The resulting change in the energy of the object is given
by the work integral.

6. Energy is conserved. Field energy is locally conserved.

Here ‘wave object’ means: some set of functions on a
3-space∗, which together induce a field momentum density,
~ρp (x, y, z, t), that propagates luminally according to a unique
unit wave vector, k̂ (x, y, z, t) and whose spatial integral,∫ ∫ ∫ +∞

−∞
~ρp(x, y, z, t) dxdydz, is finite.†,‡,§

∗That is, spatial distributions of field variables.
†In addition to inducing the field momentum density, the space functions

that define wave objects in a nonlinear field theory may also act as sufficient
causes for any interactions that there may be.

‡Note that infinite plane waves are not wave objects.
§Neither the propagation of the space functions nor their relation to the

linear momentum density are specified here. This allows for wave objects
with intrinsic field angular momentum and, more generally, the definition
accommodates two kinds of internal evolution, via the internal movements
of an otherwise invariant set of functions and via their individual time evolu-
tions.

We are interested in the mechanics of systems that com-
prise multiple wave objects. This begins with non-interacting
systems, where the wave objects are not presently interacting
with each other. The next Subsection focusses on the case
where each object’s unit wave vector, k̂ (x, y, z, t), is a con-
stant vector, independent of x, y, z and t. The momentum den-
sity distribution of such wave objects moves through space in
a self similar form at c. We shall refer to this special kind of
wave object as a light flash.

2.2 Application to light
Consider a source that simultaneously emits a set of N light
flashes in various directions. The development here can be
applied to any kind of light flashes, including individual pho-
tons, short segments of laser beams, or collimated beams in
general, monochromatic or not. We require only that each
flash propagates at c, carrying a finite linear momentum in a
well-defined direction in space.

Let the ith light flash carry linear momentum pi. Accord-
ing to the first basic principle, momentum equals the product
of inertia and velocity and the wave inertia of the ith light flash
is therefore defined as mi = pi/c, where pi = |pi| is the mag-
nitude of the momentum of the ith light flash, also called the
‘scalar momentum’:

pi = mi c . (1)

This Article is essentially a consistent application of the
basic mechanics principles, using (1) in place of the familiar
p = mv, where the speed v is a variable. Note that, prima
facie, the inertia, mi, of a wave propagating in a well-defined
direction in space has nothing to do with the mass of a par-
ticle. However, we use the symbol mi because, unless they
ALL propagate in the same direction, the total inertia of a set
of N waves will be found to correspond to the usual, relativis-
tic particle mass. The time differential of (1) is:

dpi

dt
= c

dmi

dt
. (2)

Having fixed the propagation speed, c, changes of the scalar
momentum are thus associated with changes of the wave in-
ertia. It will become clear in Sect. 8 that the inertia changes
we will be discussing throughout this Article are in fact fre-
quency changes. Such changes may be due to a change of
observer or they may be physical changes due to any forces
that are acting on the wavefield.

In general, if a force acts on a light flash then, since (2)
is the force component parallel to the light flash’s motion, the
work integral is:

W =

∫ pf

ps

dp
dt
· ds =

∫ mf

ms

c
dm
dt

cdt = (mf − ms) c2 , (3)

where subscripts s and f refer to the words ‘start’ and ‘fin-
ish’. The radiation reaction force that acts on a light flash
reflected by a moving mirror is an example that highlights the
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role of the work integral in a basic mechanics calculation∗.
According to the fifth basic principle, the work done equals
the energy change, and we may assume that a light flash that
has zero momentum requires zero energy, so the energy of the
ith flash is:

Ei = mi c2 = cpi . (4)

According to the second basic principle, momentum is
conserved so the total momentum of a set of N wave objects
is given by the vector sum over their momenta:

P =

N∑
i=1

pi . (5)

Suppressing the summation range henceforth, we write the
total inertia as me =

∑
i mi. The total energy of the set is then:

E =
∑

i

cpi = mec2 . (6)

According to the (first and second) basic principles, the
velocity of the centre of inertia of a system of objects is the in-
ertia weighted average velocity, V =

∑
i mivi/

∑
i mi, so that:

V =

∑
i pi

me
⇒ P = meV . (7)

For a relativistic analysis, these basic Equations (1) - (7)
must be good for any observer, however, since we intend inter
alia to show it, no principle of relativity will be asserted a pri-
ori. Consider an incremental change that affects the system of
light flashes as a whole. For example, an incremental change
in the condition of motion of the observer would alter all his
observations of the pi. Similarly, a single observer consider-
ing light flashes emitted by otherwise identical sources that
are in different conditions of motion will find different values
for the pi. Since these two cases are not a priori assumed
equivalent, consider the latter one, and consider, specifically,
two otherwise identical sources moving at velocities v and
v + dv in the inertial frame of a single inertial observer.

This scenario closely corresponds to applying a Lorentz
boost to a system of wave momenta. We may write the mo-
menta of the light flashes as pi and pi + dpi respectively and
their totals as P and P + dP. We are interested in how the dpi

are related to dP. As shown in Appendix 2, this is determined
by the relevant known facts, the relativistic Doppler shift and
aberration phenomena, which together imply:

dpi =
pi

mec
dP . (8)

We are assuming neither special relativity nor the relativ-
ity principle by referring to these phenomena. Indeed, while
Lorentz Transformations correctly imply each of them, there
exist other coordinate transformations [13] that also correctly

∗See Appendix 1, which shows that the ratio of reflected and incident
momenta is the square of the relativistic doppler shift.

predict these observables [15]. Because (8) is a direct conse-
quence of the phenomena themselves, it necessarily applies
to any theory that correctly accounts for them†.

It is nonetheless relevant to consider what, if anything,
the facts here are introducing over and above the basic prin-
ciples stated above. If our coordinate transformations are to
be linear and homogeneous, as is usually assumed, then dpi

will be linear in pi. Similarly, when considering the case of
a single light flash, (the case N = 1), dpi should be linear
in, and parallel to, any incremental change of momentum of
the light source, dPLS , prior to emission. Since the same ap-
plies to each of the light flashes in our system it follows that
dpi ∝ dP and we can safely assume that: dpi = αi pi dP.

Eq. (8) means that all the weights, αi, are the same,
αi = α. Summing over i gives α = 1/mec (since

∑
i dpi = dP).

In particular, under an incremental momentum boost of the
whole system, the momentum shifts, dpi, applied to the vari-
ous wave momenta, pi, depend linearly on their energies but
not on their directions of propagation, k̂i.

The next two sections show how (8) governs the connec-
tion between inertial frames for systems of luminal wave mo-
menta. In order to avoid asserting the relativity principle, the
boost will not presently be associated with a change of ob-
server. It will turn out to work relativistically, but for the
present purposes the incremental momentum boost, (8), has
only the restricted meaning of an incremental change dv in
the velocity of a light source, the result of which is to add dP
to the total wave momentum by adding wave momentum dpi

to each of the N constituent light flashes‡.

3 The relativistic momentum
This section shows that systems of luminal wave momenta
that are connected by incremental momentum boosts obey the
usual relativistic momentum equation for particles.

In subsection 2.2, the incremental change in the scalar
momentum of the ith light flash, dpi, is given by the com-
ponent of dpi parallel to pi, which is:

dpi = dpi ·
pi

pi
.

Substituting (8) in this gives mec dpi = pi · dP. Noting that∑
dpi = c dme, summing over i gives c2medme = P · dP,

and integrating this we obtain the common expression for the
invariance of the 4-momentum:

m2
ec2 = P2 + m2

0c2 , (9)

where m0 is the value of me for P = 0. Let β = V/c as usual
so β is a +ve real number in the interval [0, 1]. The basic
equations of relativistic mechanics, P = γm0V and me = γm0,
where γ = 1/

√
1 − β2, follow upon substituting (7) into (9).

†When Appendix 1 is generalised to the case of non-normal incidence,
the result is the product of the two relativistic Doppler shift and aberration
operations involved. The basic principles are thus arguably sufficient to de-
rive (8) by themselves, although the analysis is tedious.

‡Note that we do not need to assume that dV = dv
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Fig. 1: Binary light flash systems whose centers of inertia are (a) at
rest (b) moving at speed V = βc.

4 Wave system transformations in mo-
mentum space

In this section we show how the momenta of individual wave
objects in a multi-object wave system transform under the ac-
tion of (8).

By analogy to the usual comoving frame for massive par-
ticles, let us define the rest frame of a multi-object wave sys-
tem as the (unique) inertial frame for which the right hand
side of (5) vanishes. This definition is convenient, but not es-
sential. Given the definition, let us now adopt the perspective
of a single inertial observer who compares systems of light
flashes emitted by two otherwise identical sources in differ-
ent conditions of motion such that he considers one system’s
centre of inertia to be at rest, i.e. P = 0 in (5) and V = 0 in
(7), and the other’s to be moving at speed V in the x-direction,
so that, from Section 3, P = γm0V .

Let us refer to these two systems of light flashes as the
‘rest system’ and the ‘moving system’ respectively. We shall
use a 0 subscript to refer to rest system momenta, so P0 =∑

i pi0 = 0. The analysis is expressed in momentum coordi-
nates and it does not involve anything about spatial relations
between the waves until Section 6.

The simplest case of a compound wave system where
P0 = 0 consists of 2 light flashes of equal scalar momen-
tum, p10 = p20 = p0, propagating in opposite directions, as
shown in Fig. 1a. The moving system is shown in Fig. 1b,
where the x-components of the wave momenta, p10 and p20,
have been modified in accordance with (8) so that the centre
of inertia moves at speed V in the x-direction.

In Fig. 1a, m0 = (p10 + p20)/c = 2p0/c. Recalling from
Section 3 that me = γm0, the sum of scalar momenta in the
moving system of Fig. 1b is:

p1 + p2 = mec = 2γp0 , (10)

whilst the total momentum, P = meV, is the vector sum of
momenta:

P = p1 + p2 =
2γp0

c
V = 2γβp0 î .

Consider the vector p′ in Fig. 1b, where p1 = P/2 + p′ and
p2 = P/2 − p′. Using the law of cosines, its magnitude, p′, is

Fig. 2: Individual momenta in an isotropic wave system modified
such that V = βc.

such that:

p2
1 = p′2 + (γβp0)2 + 2γβp0 p′ cos θ (11)

p2
2 = p′2 + (γβp0)2 − 2γβp0 p′ cos θ , (12)

where θ is the angle p′ makes with the x-axis. Upon elimi-
nating p1 and p2 from (10)-(12) we find that p′ = p′(θ) is the
ellipsoid:

p′(θ) =
p0√

1 − β2 cos2 θ
. (13)

Writing the momenta in component form as {pi j}i=1,2 ; j=x,y,z,
(13) is then the ellipsoid:

(p′x/γ)2 + p2
iy0 + p2

iz0 = p2
i0 ,

where p′x = p1x −γβp10 = −(p2x −γβp20), so that the moving
system momenta satisfy the following equation:(

pix − γβpi0

γ

)2

+ p2
iy0 + p2

iz0 = p2
i0 . (14)

Eq. (14) is here derived only for the case N=2, how-
ever this equation also covers the general case, as we shall
now show. Consider as initial condition an arbitrary system
of light flashes, comprising a number N > 2 of wave mo-
menta of scalar momentum, pi0, whose directions of propa-
gation are distributed in space such that P0 =

∑
i pi0 = 0 and∑

i pi0 = m0 c. In the rest system components are such that:

p2
ix0 + p2

iy0 + p2
iz0 = p2

i0 . (15)

The example for N = 2 above suggests that after (8) acts on
the set, bringing the total momentum to P = γm0V î, then
(14) applies to the moving system momenta. Fig. 2 shows
the moving system momenta when all the rest system scalar
momenta are the same, i.e. pi0 = p0 for all i. Differentiating
(14) with respect to β gives:

dpix

dβ
= γ (pi0 + γβpix) . (16)
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Expanding the first term in (14) and using γ2β2 = γ2 − 1 gives:

pi =
pi0 + γβpix

γ
. (17)

From Px = γm0V , we also have dPx = γ3m0 dV, so that:

dpix =
dpix

dV
dV =

dpix

dβ
dPx

γ3m0 c
. (18)

Finally, substituting (16) and (17) in (18):

dpix =
pi

γm0 c
dPx ,

which is the x-component of (8). Due to the choice of coordi-
nates, the y and z components of momentum were unaffected,
so the ellipsoidally modified distribution (14) is generated by
the action of (8) on our arbitrary initial condition as expected.
Comparing (14) and (15), the components of the moving sys-
tem wave momenta are:

pix = γ(pix0 + βpi0) ; piy = piy0 ; piz = piz0 . (19)

Note that these physical transformations due to changes
in the condition of motion of a light source are identical to
Lorentz Transformations of wave momenta between different
reference frames in standard configuration. However, as we
are not asserting the Principle of Relativity there is no guar-
antee (so far) that our analysis works relativistically, and (19)
corresponds only to the forward transformations of wave mo-
menta in relativity theory.

We can now calculate the relative velocity of the ith light
flash, which is to say its velocity relative to the centre of iner-
tia of the system, which our observer considers to be moving
at V in the x-direction. The total velocity of the ith flash has
components {vi j = cpi j/pi}i=1..N ; j=x,y,z. Using γ2β2 = γ2 − 1
with (17) and (19), it is readily shown that the relative veloc-
ity, vri, has components∗:

vrix = vix − V =
cpix0

γpi
; vriy = viy =

cpiy0

pi
; vriz = viz =

cpiz0

pi
.

If vri makes the angle ϑi with the x-axis, then:

tanϑi =

√
v2

riy + v2
riz

vrix
= γ tanϑi0 , (20)

where ϑi0 is the corresponding angle in the rest system. Sect.
6 shows how this basic kinematic relationship leads to length
contraction in ‘pure field’ models of the massive particles
where all the field energy propagates luminally. Such models
are discussed in the next section.

5 Luminal wave models of matter
Up to this point the analysis has dealt with systems of light
flashes emitted by identical sources in different conditions of

∗Since V, vi and vri are all referred to the same observer

motion. No functional description of the light flashes was
required, neither as photons nor as solutions to any particular
wave equation. The fact that these systems obey the usual rel-
ativistic momentum equation for particles strongly suggests
that the massive particles should also be thought of as lumi-
nally propagating field systems. This Section shows how the
basic mechanics principles can be applied quite generally to
compound, interacting systems of wave objects that are com-
mensurate with modelling subluminally moving systems.

5.1 Compound wave systems
At any point in a system of disjoint light flashes (i.e. whose
momentum densities do not overlap), there is a single field
momentum density associated to a well defined unit wave
vector. In principle, this field momentum density could be
induced from a set of space functions in accordance with
the definition of a wave object, so the entire system can be
thought of as a single wave object, but there are also wave
systems that cannot be represented as single wave objects.

Consider instead a system of N light flashes that propa-
gate towards each other. When the field momentum densities
of the various light flashes meet and overlap, the physical sit-
uation is inevitably such that there are multiple waves coex-
isting at the same place, propagating in different directions†.
Since the set of space functions that comprises a wave object
only induces a single momentum density at each point, when
wave objects collide the luminal wave description necessarily
involves multiple wave objects coexisting at the same place
and time.

We shall now see that interactions between these distinct
entities are required in order to construct luminal wave mod-
els of subluminally moving matter.

5.2 Forces, field variables and superposition
The force operating on a wave object is, by definition, equal
to its rate of change of momentum, which is to say the space
integral of the rate of change of its momentum density‡. Mo-
mentum is locally conserved, so forces necessarily manifest
as reciprocal local exchanges of momentum between the mo-
mentum densities of the participating wave objects. These
exchanges necessarily sum to zero locally as well as globally,
so ‘local action’ can only mean that the objects’ momentum
densities must overlap. Now, when the momentum density
distribution of a wave object changes then so must the field
variables that induce it, so the essential nature of forces in a
wave theory is to modify wave objects.

In a compound wave system formed by intersecting light
flashes, if there were no forces between wave objects, then the

†Note that the vector addition of two non-collinear luminal wave vectors
is not a luminal wave vector because there is no wave actually propagating
at c in the direction of the resultant vector.

‡There is also generally a rate of change of a wave object’s momentum
density at every fixed point due to the movement of the object, but the space
integral of such changes obviously vanishes.
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momentum distributions pertaining to each object would not
change as they move through each other, the same space func-
tions could be retained for each wave object throughout the
encounter and it is reasonable to think of each object’s field
variables as being the same as if it were by itself. A linear
field theory is then appropriate. In Electromagnetics, for ex-
ample, the wavefields interact with charges but not with each
other. The chosen field variables, E and H, are force fields
defined by the force that the wavefield exerts on a standard
reference system, a 1 coulomb point charge. The global val-
ues of these field variables are given as linear superpositions
of the disjoint values pertaining to individual wavefields.

In linear field theory, wave components evolve indepen-
dently of each other, there are no interactions amongst the
waves and any superposition must dissipate unless all of the
wave vectors are parallel, in which case the motion of the
centre of inertia of the wave group is V = c. Electromag-
netic field models of subluminal massive particles are thus ex-
cluded. The idea that a finite subluminal image can be formed
as an interference pattern can also be excluded as it requires
infinite wave trains, which requires infinite energy. Therefore,
the construction of luminal wave models for the massive par-
ticles requires multiple distinct wavefields that share the same
space and interact with each other to form bounded systems,
which is to say they form wave solitons.

When the wavefields in a model do interact with each
other, the forces that are actually operating on a given wave
object still superpose (by definition). However, as mentioned
above, the definition of force also implies that wave objects
are distorted under interaction. If the wave object is defined
by force field variables, as in Electromagnetics, then its force
fields (which are propensities to exchange momentum as op-
posed to actual forces) are not the same under interaction as
would be the case if it had been disjoint. Furthermore, if a
wave object in an interacting system persists in a self-similar
form then that form depends in an essential way on the forces
that are operating on it. It is obviously counterfactual to con-
sider such an object as if it were disjoint from the others that
are actually present. If they were not present, it would be a
different object.

Overall, once we include interactions between wave ob-
jects, the global values of field variables cannot be expressed
as a linear superposition of disjoint values so a nonlinear the-
ory is required. If the chosen field variables are force fields,
then global values are by definition still given as a linear su-
perposition, but this is a linear superposition of conjoint val-
ues that correspond to actual transfers of wave momentum
from one object to another.

Of course one might choose other field variables besides
force fields. With water waves for example the vertical dis-
placement of the water surface is commonly used as a field
variable. Such alternatives also do not generally superpose
linearly. Whatever field variables we may choose and how-
ever they may induce it, the field momentum density is lo-
cally conserved. As we shall see in the next two sections,

the field momentum density is also the physical basis for any
mechanical quantities that we may observe including not just
momenta but also lengths and times.

5.3 Wave trajectories
Whereas a field variables description immediately confronts
us with some unknown nonlinearity, we can focus directly on
the inherently linear field momentum density by considering
a wave trajectories description. This kind of description is of-
ten useful in Electromagnetics, where it arises from the field
variables description as follows. Electromagnetic waves in a
vacuum obey the well known d’Alembert wave equation:{

∇2 −
1
c2

∂2

∂ t2

}
ψ = 0 (21)

where ψ (x, y, z, t) may be any component of either the Elec-
tric field E or the Magnetic field H. Electromagnetic waves
involve both Electric and Magnetic fields and the linear mo-
mentum density is −→ρ p = S/c2, where the Poynting vector
S = E×H is aligned with the wave vector, k (which by defini-
tion points in the direction of propagation). The field lines of
the wave vector trace out well defined trajectories at the ray
velocity vray = c (in vacuo) [16,17], and the linear momentum
carried by the Electromagnetic wave propagates along these
trajectories at the characteristic velocity.

Any luminal wave theory, linear or nonlinear, has a wave
vector pointing in the direction of propagation, and once we
have a wave vector, the wave trajectories description works
as in Electromagnetics.

5.4 Closed wave systems
Whether we consider a subatomic particle or some macro-
scopic object, it is a basic premise that the energy that con-
stitutes a persistent subluminally moving system must remain
in the same general vicinity as the object. From the perspec-
tive of a luminal wave model where the energy is moving at
c, any trajectory of the wave vector will remain bound to the
system because any wave trajectory that leaves the system
bleeds energy from it. Therefore, when considering lumi-
nal wave models for matter, we shall restrict our attention to
closed trajectory systems, where the trajectories may or may
not form closed loops, but any given trajectory remains within
some finite distance of the centre of inertia of the system.

5.5 Towards coordinate transformations
In order for wave trajectories to remain bound to a sublumi-
nally moving centre of inertia they must be curved. There-
fore, the unit wave vector for any given wave object in a
closed system must be position dependent and may in gen-
eral also be time dependent. Consequently, space functions
that describe light flashes, where the unit wave vector is con-
stant (see for example [18–20]), are unsuitable for describing
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closed systems, so we cannot think that the massive particles
are constructed of light flashes. Therefore, we now require
the incremental momentum boosts to operate directly on the
momentum densities.

Eqs. (1) - (7) can be rewritten in terms of momentum den-
sities, however it is more convenient to preserve the notation
by converting momentum densities into momenta as follows.
Let the entire space be divided into small regions of dimen-
sion δx = δy = δz = δl, where δl is sufficiently small that
any of the momentum densities, −→ρ pi(x, y, z, t), can be consid-
ered constant within each region so that −→ρ pi(x, y, z, t) δl3 is a
linear momentum propagating at c in a definite direction in
space. Introducing a new subscript, k, to label the regions,
we write the linear momentum of the ith field in the kth re-
gion as pik(t) = −→ρ pi(rk, t) δl3, where rk is the position vector
to the centre of the kth region. Since the space integral of
the momentum boost must recover (8) for all possible light
flashes, the incremental momentum boost operating on the
pik can only be:

dpik =
pik

mec
dP , (22)

where P =
∑

k
∑

i pik, pik = |pik | and me = 1
c
∑

k
∑

i pik , and
the rest goes through as before.

The rest system in Sect. 4 could be a particle or any
macroscopic system that is comoving with the observer. The
moving system’s internal momenta, pik, are related to the pik0
by (19), with an additional k subscript inserted. The system’s
momentum is P = γm0V, where the velocity of the centre of
inertia of the wavegroup, V, is simply the observed velocity
of the system. The relative velocity we developed at the end
of the last section, vrik = vik −V, describes the internal move-
ments of the system as seen by an observer who considers it
to be moving at V.

Since internal movements obviously change in response
to changes in the observed velocity, neither the shape nor the
internal evolution of a subluminally moving wave system can
be assumed to be velocity independent so that, in order to
determine coordinate transformations, we must first calculate
the impacts this has on rulers and clocks constructed from
luminal wave energy.

Before moving onto the analysis of length contraction and
time dilation in luminal wave models let us contrast (22) with
the Newtonian concept of a force field acting on a point-like
massive particle. According to the fourth basic principle, the
force acting on an interacting field is, by definition, equal to
its rate of change of momentum∗. It might appear at first blush
that:

dpik

dt
=

pik

mec
dP
dt

(23)

and the left hand side of (23) should be interpreted as the force
acting on the ith wave object in the kth region when the total
externally applied force acting on the particle is F = dP/dt.
Such a dynamic interpretation requires making unreasonable

∗Donev and Tashkova [20] have also developed this within a field vari-
ables approach to luminally propagating bivector fields.

extraneous assumptions, including not least a uniform applied
field. This is unnecessary for our analysis, for which (22) ap-
plies to the relationship between systems in steady state con-
ditions, before and after (but not necessarily during) some
physical process that results in an incremental boost to the
system’s momentum. A one-to-one correspondence between
the momentum densities of rest and moving systems is as-
sumed, but without such an assumption no inherently rela-
tivistic structure would be possible because we could never
equate a boost with a change of observer.

6 The Lorentz-Fitzgerald contraction
This section shows that closed wave trajectory systems con-
tract in the direction of motion. This is easily understood by
considering the special case of a rest system where the wave
vector is transverse to the direction to the centre of inertia so
that the system evolves under rotations and any wave trajec-
tory exists on the surface of a sphere. Such systems are of
particular interest because the usual interpretation [21] of the
little group of transformations that preserves the linear mo-
mentum of a particle in Special Relativity is that rest particles
evolve under the action of elements of the rotations group.

Consider a system of concentric spherical surfaces con-
structed about the rest system’s centre of inertia, which we
shall assume is at the origin. Given the abovementioned con-
dition, all rest system wave trajectories through a given point,
rk0, lie instantaneously in the tangent plane at that point to
the sphere of radius rk0. Without loss of generality, let us
consider the trajectories passing through a point in the xy
plane where the tangent plane makes the angle θ0 with the
x-axis, as shown in the top left of Fig. 3. The wave mo-
mentum along a trajectory lying in this plane has components
in the form px0 = p0 cos θ0 cos φ0 , py0 = p0 sin θ0 cos φ0 ,
pz0 = p0 sin φ0, where φ0 is the angle the trajectory makes
with the xy plane. Note that this is just the component form of
any of the pik0. The i and k subscripts can be omitted without
ambiguity: px0 means pikx0 and so on. Using (19), the com-
ponents of the corresponding wave momentum in the moving
system are:

px = p0γ(cos θ0 cos φ0 + β) ; py = py0 ; pz = pz0 .

The moving system momenta for different values of φ0 are
not coplanar. As shown in the top right of Fig. 3, they lie on
a conical surface whose vertex is at the origin of momentum
coordinates, and whose base is the intersection of the plane
at angle θ, where tan θ = tan θ0/γ, with the moving system
momentum distribution. This elliptical intersection is shown
in the bottom right of Fig. 3.

The (total) velocity for each of these momenta has com-
ponents of the form {v j = cp j/p} j=x,y,z, where p is given by
(17):

p =
p0 + γβpx

γ
=

p0

γ

(
1 + γ2β(cos θ0 cos φ0 + β)

)
. (24)
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Fig. 3: Momenta and Positions in Rest and Moving Luminal Wave Particle Models.

The group velocity is V î, so using (24) the relative velocity
components are:

vrx =
cpx − pV

p
=

cp0 cos θ0 cos φ0

γp
,

vry =
cp0 sin θ0 cos φ0

p
and vrz =

cp0 sin φ0

p
.

The ratio vry/vrx = γ tan θ0 is independent of φ0 (and φ), so
the velocities that lay in a given tangent plane in the rest sys-
tem transform into relative velocities lying in a corresponding
moving plane, tangent to the moving trajectory system∗. Let
α be the angle between the plane at θ and the tangent plane,
as shown in the bottom left of Fig. 3. The moving system
tangent plane makes the angle α + θ with the x-axis, where
tan(θ+α) = vry/vrx = γ tan θ0 = γ2 tan θ. Using the angle sum
trigonometric relations we obtain:

tanα =
β2 sin θ cos θ
1 − β2 cos2 θ

. (25)

The set of all tangent planes defines the surface up to a
scale factor. Due to rotational symmetry we can anticipate
being able to write the equation describing this surface in the
form r = r(ψ), where ψ is the angle from the position vector

∗Recall that we showed in Section 4 that the relative velocity of any
trajectory is rotated by the kinematic relation tanϑ = γ tanϑ0, where ϑ was
the angle vr makes with the x-axis. We now see the consequence of the little
group: Locally flat surfaces formed by sets of trajectories at a given point
in the rest system transform into locally flat moving surfaces, rotated so that
the tangent of the angle the moving surface makes with the x-axis is γ tan θ0,
where θ0 is the angle the rest system surface makes with the x-axis.

to the x-axis. For any function r(ψ) the angle between the
tangent plane and the plane transverse to the radius vector is:

tanα′ =
1
r

dr
dψ

. (26)

Consider as trial function the ellipsoid:

r(ψ) =
λ√

1 − β2 sin2 ψ

, (27)

for which

tanα′ =
β2 cosψ sinψ
1 − β2 sin2 ψ

, (28)

independent of the scale parameter λ. With ψ = π/2 − θ, this
is identical to (25), which therefore describes an ellipsoid of
revolution (27), such that the plane at θ is transverse to the
position vector, r, shown in the bottom left of Fig. 3.

The scale factor, λ, is readily found by inspection. The
moving system equatorial plane is the plane x = Vt and ψ =

π/2. The tangent plane at any point in the equatorial plane
is parallel to the x-axis so the dpik at these points lie in the
tangent plane. Therefore the equatorial tangent planes are not
altered by the action of (22). Therefore the radius of a cir-
cumferential trajectory in the equatorial plane is invariant un-
der the dimensional transformation (27), and λ = r0/γ, where
r0 is the radius of the spherical surface in the rest system.

The result is that, for our rest observer, any wave trajec-
tory in the moving system lies on the surface of an ellipsoid
moving along the x-axis at speed V and of the form:
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r(ψ) =
r0

γ

√
1 − β2 sin2 ψ

. (29)

The moving system wave trajectories are thus compressed by
the factor γ in the direction of motion. Let us now consider
general wave trajectories that are not confined to the surfaces
of spheres in the rest system. The analysis above shows that
any short segment of the general trajectory is rotated so that
the ratio of its dimensions parallel and transverse to V is sup-
pressed by γ. Since this applies to every segment it applies
to entire trajectories and since we have already identified spe-
cific trajectories whose transverse dimensions are invariant,
the same scale factor applies to the general case.

Closed luminal wave trajectory systems are thus physi-
cally compressed by the factor γ in the direction of motion so
that any macroscopic physical objects, including rulers, that
are constructed entirely from luminal wave energy undergo
the usual Lorentz-Fitzgerald length contraction.

7 Time dilation
It can be seen from (7) and Fig. 2 that any movement of
a closed luminal wave system through space is the result of
correlations amongst the directions of propagation of the in-
ternal momenta, k̂i(x, y, z, t). On the other hand, if all the
trajectories of a wave system were exactly parallel the spa-
tial configuration of the system would not change and there
would be no internal evolution. Just as correlations are nec-
essary for movement in space, decorrelations are necessary
for evolution in time. There is a direct tradeoff involved, so
some form of time dilation is an inevitable consequence of
constructing variable speed particles from fixed speed waves.

We shall now show that internal processes in wave sys-
tems slow down according to dt/dt0 = 1/γ. The analysis is
similar to the standard analysis of a light clock.

With respect to the rest system’s wave trajectory system,
consider any closed trajectory formed by n segments, where
the ith segment has length li0 and makes the angle θi0 with the
x-axis. The speed on all segments is v0 = c so the period
around the closed trajectory is T0 = 1

c
∑n

i=1 li0, where T0 is
the time elapsed on a clock in the rest frame to traverse the
trajectory in the rest system. Lengths in the rest system may
be written in component form such that:

l2i0 = l2ix0 + l2iy0 + l2iz0 .

Let the trajectory system now move in the x-direction at speed
V . Given the length contraction, x-components contract by
the factor γ and the corresponding relationship is:

l2i =
l2ix0

γ2 + l2iy0 + l2iz0 .

It is readily shown that:

l2i = l2i0(1 − β2 cos2 θi0) . (30)

The moving and rest system angles are related by tan θi =

γ tan θi0, from which it is easily shown that:

cos θi

cos θi0
=

√
1 − β2 sin2 θi . (31)

The relative velocity on the ith segment in the moving system,
vri, is constrained by:

(vri cos θi + V)2 + v2
ri sin2 θi = c2 , (32)

which leads to: vri + V cos θi = c
√

1 − β2 sin2 θi, from which,
using (31):

vri =
li0 c (1 − β cos θi0)

γli
.

The time taken to traverse the ith segment in the moving
system is li/vri = l2i /vrili, so, using (30), we may write the pe-
riod elapsed on clocks in the rest system for traversals around
the Lorentz contracted moving system trajectory as:

T V
0 =

n∑
i=1

l2i
vrili

=
γ

c

n∑
i=1

li0(1 + β cos θi0) .

Since
∑

i li0 cos θi0 = 0 it follows that T V
0 = γT0. It might be

argued that trajectories need not form closed loops, but a path
that crosses a given plane transverse to V must eventually ei-
ther recross the same plane or become confined to a smaller
region, in which it must either routinely recross a transverse
plane or become confined to an even smaller region and so
on. In steady state, the trajectories can only be transverse
or regularly recross a transverse plane. The analysis above
also covers open paths between points in the same transverse
plane, for which the condition

∑
i li0 cos θi0 = 0 is also full-

filled. The time between such crossing points dilates by γ.
We conclude that the internal processes of a luminal wave
system slow down by the factor γ. The argument from in-
ternal processes to real world clocks is well established [23],
and tested [24–26], so moving clocks will run slow according
to the usual relation dt/dt0 = 1/γ.

A similar tradeoff occurs in the Dirac Equation. Consider
the equation for the time dependence of the velocity operator
in the Heisenberg representation of the Dirac theory [22]:

−→α (t) =

(
−→α (0) −

p
H

)
exp (−2iHt) +

p
H
, (33)

where p and H are both constants, c = 1 and the group veloc-
ity is p/H = vg = const.. The first term on the right is rou-
tinely interpreted to represent the internal movements of the
electron, the ‘Zitterbewegung’. Since −→α has real eigenvalues,
its quantum mechanical expectation, < Ψ | (−→α (0) − vg) | Ψ >

/ < Ψ | Ψ >, varies with vg as
√

1 − v2
g. In other words, the

Zitterbewegung slows down by a Lorentz factor as the group
velocity increases.

Whilst we can now write down a constant overall rate
of spatiotemporal evolution for a single observer as c2dt2 =

c2dt2
0−dx2

0, Lorentz Transformations do involve an additional
ingredient, Einstein clock synchronisation, which will be the
focus of the next Section.
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8 Coordinate transformations
We have shown length contraction and time dilation as phys-
ical effects in luminal wave models subject to the basic me-
chanics Eqs. (1) - (7) and the incremental momentum boost
generator (22). The analyses were constructed from the per-
spective of a single observer so the principle of relativity, co-
variance, coordinate independence, and coordinate transfor-
mations were all irrelevant.

Let us now focus on the question of how these physical
phenomena of length contraction and time dilation constrain
the coordinate transformations. Selleri has studied this ques-
tion in some detail [13, 14]. He considered three assump-
tions, namely: length contraction, time dilation and constancy
of the 2-way velocity of light. He showed that any two of
these assumptions both implies the third and constrains the
coordinate transformations between a preferred rest frame,
S 0 = (x0, y0, z0, t0) and a frame S = (x, y, z, t) in standard
configuration moving with speed v to the following form:

x =
(x0 − βct0)√

1 − β2
; y = y0 ; z = z0 ;

t =

√
1 − β2 t0 + e1(x0 − βct0) ,

where β = v/c and e1 is a synchronisation parameter.
Setting e1 = −β/(c

√
1 − β2) corresponds to the usual Ein-

stein clock synchronisation convention and reduces this to the
Lorentz Transformation. Our coordinate transformations are
therefore Lorentz Transformations and the relativity principle
and the constant speed of light for all observers are therefore
results, not postulates. It is also now finally clear that the
wave inertia changes we have analysed are frequency changes
corresponding to the relativistic Doppler shift, as opposed to,
say, amplitude changes.

8.1 Other synchronisation protocols
Selleri also discusses alternative clock synchronisation proto-
cols, especially the case e1 = 0 which corresponds to using
Einstein synchronisation in a preferred rest frame, and setting
clocks in the moving frame to coincide with nearby clocks
in the rest frame at t = 0. Both sets of observers agree that
clocks in the moving system run slow, and they also agree on
the simultaneity of spatially separated events. The transfor-
mations in this case, known as the inertial transformations,
were first found by Tangherlini [27]. The empirical conse-
quences of inertial transformations have been shown to com-
ply with experimental evidence in a wide variety of situations
[28]. As far as the present article is concerned, Appendix
2 derives (8) from the relativistic Doppler shift and aberra-
tion results, which apply equally well to inertial transforma-
tions [15], and therefore so do the structural consequences
developed above.

Selleri and others have advanced various arguments in
favour of absolute simultaneity [29–34] (notably a simplified

analysis on the rotating platform), but nothing that questions
the Lorentz form within the domain of inertial frames. Iner-
tial transformations do not preserve the line element, ds2 =

c2dt2 − dx2 − dy2 − dz2, the physical laws are frame dependent,
the inverse transformation is different, the relative velocity of
the origin of S as seen by S 0 does not equal the relative ve-
locity of S 0 as seen by S and the inertial transformations do
not form a group [14]. In short, they fail to deliver elegant
and simple analysis in most physical situations.

The conventional nature of the Einstein protocol has, of
course, always been stipulated in relativity theory but Sell-
eri has shown something important: Like the choice between
Cartesian and Spherical coordinates, the choice of a clock
synchronisation protocol really is only a matter of conve-
nience. Provided they use it consistently, physicists solv-
ing problems on a rotating platform and engineers developing
GPS satellite networks (which use an inertial clock synchro-
nisation protocol) can use whatever protocol is most effective.

The self-evident fact remains that the events that hap-
pen in the world cannot depend on the coordinate systems
we use to describe them. Coordinate independence is one
of the most powerful practical tools for the development of
new physics. Other coordinate transformations may be em-
pirically adequate, but special status is rightly afforded to
Lorentz Transformations on the basis of symmetry and utility,
not uniqueness, and what we have shown is that their ‘natural
habitat’ is field theory.

8.2 Objective simultaneity and the preferred
frame

An immediate consequence of the Einstein synchronisation
protocol is that observers in relative motion find themselves
in disagreement over intrinsically objective facts such as the
rates of their respective clocks and the temporal ordering of
spacelike separated events.

Philosophical relativism sought to leave these conflicts
unresolved on the basis, ultimately, that a preferred frame
cannot be observed. This approach induces numerous para-
doxes that have been criticised for over a century [35]. More
recently, Hardy [32] and Percival [33, 34] have each shown
that relativity of simultaneity when combined with quantum
nonlocality leads to more than just conflicts between different
observers. It leads to manifest contradictions for individual
observers.

Percival’s double Bell paradox, for example, considers
two EPR/Bell experiments in relative motion. According to
relativity of simultaneity, a temporal loop can be constructed
by using the measurement results in one arm of each experi-
ment to select the measurement axis in the corresponding arm
of the other experiment. Given the quantum predictions for
individual EPR/Bell experiments, he showed that an observ-
able measurement result is, on at least some occasions, in-
verted by the loop becoming equal to its own opposite which
is a manifest contradiction.
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The long standing loopholes [36] in EPR experiments fi-
nally having been closed [37], it can no longer be argued that
the quantum predictions are somehow “wrong” when they
correctly predict the experimental outcomes. Instead, one
must simply admit what good sense always demanded: When
two observers disagree about an objective fact, they cannot
both be right. The temporal loop relativistically assumes that
each observer’s view of the temporal order of the relevant
events is indeed “true”, which is impossible because their
views are mutually exclusive.

Therefore, we must admit a distinction between the real
physical state of affairs and how things appear to a given ob-
server. Two different concepts of simultaneity, apparent and
objective, arise. Apparent simultaneity is what appears to ob-
servers using a given clock synchronisation protocol. Pro-
vided the protocol corresponds to a definite value for the syn-
chronisation parameter, e1, apparent simultaneity is sufficient
for making valid predictions — an essential consideration
since Physics expresses itself in terms of observable quanti-
ties∗. Relativistic simultaneity is just the apparent simultane-
ity for observers who use the Einstein protocol and there is
no need to assert the truth value of this clock synchronisation
protocol (which would imply that the forbidden double-Bell
temporal loop is real).

As far as objective simultaneity is concerned, the forego-
ing wave analyses have shown that motion induces objective
changes in clocks and rulers that are constructed entirely from
luminal waves. A unique preferred frame, in which these de-
vices are undistorted, can now be identified in two different
ways, because an observer’s velocity relative to either (a) the
medium in which waves propagate or (b) the universe as a
whole can be determined from Doppler effects in the wave
interpretation.

Of course, the nett observed Doppler shift for a given
source and detector depends only on their relative velocity
and the direction to the source, so that we cannot isolate the
detector’s velocity. However, with a large number of sources
lying in different, random directions whose individual masses
and conditions of motion are independent of the direction in
space, we can determine the detector velocity relative to the
centre of mass of the group as a whole. Similarly, measure-
ments on an a priori isotropic radiation bath are sufficient [38]
to determine the detector velocity relative to the rest frame of
the bath, as defined in Section 4.

As discussed in [12] and references therein, two important
cases have already been studied, namely the anisotropies of
(1) the Cosmic Microwave Background Radiation (CMBR)
[38, 39], which gives Earth’s velocity relative to the medium
and (2) the angular number density of observable astronom-
ical objects [40], which gives Earth’s velocity relative to the
rest of the universe. In both cases, an identical velocity dipole
of magnitude ∼ 350 km/sec is observed!

It is anticipated that future observations on other isotropic

∗Note that the quantum predictions for EPR experiments are insenstitive
to the temporal order of the Bell measurements, so they cause no difficulty.

radiation baths will show the same anisotropy and the same
velocity dipole. Variations in the average red shift of distant
galaxies as a function of the direction in space constitute a
further example that can be tested in the future to confirm
this prediction. Note that these results are at odds with the
relativist interpretation.

Within the wave interpretation of Lorentz Invariance, we
see from Section 2 that the momentum density distribution
of a system whose centre of inertia has zero velocity relative
to the medium really has no bias in any given direction, and,
with Sections 6 and 7, we can now safely state that clocks
in this condition of motion really do run faster, rulers really
are longer and so on. The existence of this preferred frame
is implied by the wave analysis and its observability provides
the essential empirical basis for asserting at last that objective
simultaneity coincides with the Einstein simultaneity of ob-
servers at rest in the CMBR frame. The wave interpretation
presented here has therefore eliminated all the paradoxes as-
sociated with Special Relativity without sacrificing any of the
practical benefits of Lorentz symmetry, whilst also covering
a wider range of observables.

However, this interpretation assumes a wave ontology,
with energy constrained to propagate at c. The idea of matter
as constructed from some form of energy that does not prop-
agate at c is considered, and rejected, in the next Section.

9 Non-luminal structures
It is of course possible that wave propagation slows down or
stops altogether under interaction, so that the wave energy
is transformed into some ill-defined notion of ‘substance’.
Nothing prevents applying the same basic mechanics princi-
ples to such non-luminal structures, however once we intro-
duce entities that do not move at c, an immediate casualty is
the work integral connection between momentum and energy.
We would have no choice but to re-define inertia as being fun-
damentally velocity dependent.

Such a flexible approach to so pivotal a definition might
raise eyebrows if it were not for the fact that this particular
step is an integral part of Special Relativity. So, let us assume
that we could somehow make sense of the relativistic inertia
in its own right, as we have done in this Article but on some
other grounds that are also independent of Special Relativity.

As far as the structure of particles is concerned, without
the concept of internal movements it would not seem pos-
sible to provide any account of internal processes (such as
muon decay for example). Likewise, the fact that the massive
particles possess angular momentum implies the existence of
internal movements†. Let us consider internal movements at
speeds other than c. To illustrate the difficulties this causes,
we shall also assume that we can somehow produce Lorentz
contracted moving system trajectories on other grounds that

†The quantisation of angular momenta is also readily explicable as a
wave phenomenon [12, 20].
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are also independent of Special Relativity.
We must still use (32), with v2

i replacing c2 on the RHS,
to connect the total and relative velocities on the ith segment
(as both are referred to the same observer). If vi were the
same in the moving and rest systems, then clearly the periods
would not dilate by γ, and yet we know that for any physical
system, not just luminal systems, periods must dilate by γ
under Lorentz Transformations.

The resolution is most easily seen from Special Relativity.
If the total speed, vi0, on the ith segment as seen by a comov-
ing observer is such that vi0 , c, then for observers in other
frames, vi , vi0 and must in general be calculated according
to the relativistic composition of velocities:

vi =
V + vi0‖ +

√
1 − β2 vi0⊥

1 +
V·vi0

c2

.

Now as we Lorentz boost a particle in the frame of a single
observer, there are two possibilities. If vi0 = c, then vi = c
for all i independent of the condition of motion of the par-
ticle, and structural models incorporating length contraction
and the relativistic momentum are readily available. Sect.
8 showed that these phenomena imply Lorentz Transforma-
tions, whose elegance and simplicity therefore has a coherent
explanation based on the very definition of momentum as in-
ertia times velocity, p = mc.

Alternatively, if vi0 , c the total velocities of internal
movements, vi, must depend on both the particle velocity and
the orientation of individual segments in the above compli-
cated manner. Why? The elegance and simplicity of Lorentz
Transformations then has at its very foundations an implau-
sibly inelegant, complex structure. We are left reasoning in
a circle from Lorentz Transformations to the composition of
velocities to the proposition that such complex structures are
necessary as the basis for our simple coordinate transforma-
tions and we have no physical basis for either length contrac-
tion or the relativistic momentum. Ockham’s razor insists that
we reject nonluminal structures.

Therefore, we must conclude that, in the comoving frame,
Lorentz invariant structural models of the massive particles
should have internal movements at, and only at, c.

10 Does local action imply retarded in-
teraction?

Local action is the single most basic, self-evident principle in
Physics — interaction requires colocation. Both Newton and
Einstein agreed. This section considers the logic of interac-
tion at a distance, subject to local action, but from a pure field
perspective where mass energy propagates luminally.

In Classical Physics it was taken for granted that matter
emits field, leading to the idea that the far fields of a particle
propagate away from it at c. It then follows that long-range in-
teractions between particles are retarded and the unavoidable

consequence is that there can be no causal relations between
space-like separated events. On the other hand, Quantum Me-
chanics predicts instant causal correlations at a distance and
experiments replicate these predictions [41–43]. However, if
matter and field are one and the same, as Einstein suggested,
then the idea that matter emits field is meaningless. We need
to consider whether or not the far fields propagate away from
the centre of inertia in a pure field particle model.

Section 6 considered a rest system that evolves under rota-
tions, corresponding to Special Relativity’s little group. Note
that the radius of the rest system sphere was not relevant —
the analysis applies to any radius, and there is no good reason,
neither in our analysis nor in Special Relativity, to distinguish
between the near and far fields of a particle. The distinction
in Electromagnetics between the ‘attached’ field [44] and the
‘body’ of the particle is arguably incompatible with Special
Relativity because it implicitly introduces (radial) field move-
ments that contravene the little group.

Consistent with Einstein’s view that relativity theory ren-
ders the division into matter and field ‘artificial’, our luminal
wave structure implies that particles are unbounded with far
fields that propagate transverse to the radius∗ rather than ra-
dially away from a ‘body’. There is then no good reason to
presume that local action implies retarded interaction.

The long range interaction between two particles, A and
B, depends on the colocation of their respective fields. It is an
integral over all space, dominated by terms close to the two
centres, but any far fields of A that become colocated with the
B particle’s centre of inertia did not travel there from A’s cen-
tre of inertia. They are part of the extended wave system that
is comoving, as a whole, with the A centre of inertia so one
might anticipate that the direct impact of A’s far fields on the
observed location of the B particle would be instantaneous,
while the reaction impact on the observed location of the A
particle might be retarded.

However, it is more apposite simply to observe that field
theory problems are usually formulated and solved on whole
regions evolving subject to local action at all points in par-
allel. The idea of a local realist wave ontology is inherently
Lorentz invariant, but waves are inherently distributed. They
run on correlations at a distance sustained by strictly local ac-
tions. Distributed interactions between distributed waves can
have distributed impacts, occurring simultaneously in differ-
ent places. Waves exemplify Redhead’s conclusion that on-
tological locality does not rule out instant relations between
observables [45]. Trajectories in local realist wave systems
display entanglement as shown in [16], where a Madelung
decomposition of the Helmholtz wave equation shows that
it contains Bohmian mechanics’ nonlocal quantum potential
within it. Therefore, quantum nonlocality and entanglement
can perhaps be interpreted as locally realistic wave phenom-
ena. With specific reference to the EPR paradox [46], the Bell

∗As is also consistent with Electromagnetics’ radial Coulomb field be-
cause E and H are each transverse to the momentum density S/c2, whilst H
fields cancel in the rest particle due to balanced movements.
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Inequalities [47] depend on a causality analysis that uses light
cones emanating from point events [48], presuming a one to
one correspondence with point-like ‘beables’ [49], but for in-
herently distributed systems like waves neither beables nor
events can be presumed to be point-like.

11 Discussion
Since massive particles have finite energy, the volume integral
of the field energy density must not diverge as r → ∞. The
1/r2 long range force fields for the charged particles imply
a 1/r4 energy density asymptote for both charged and neutral
particles in luminal wave models [12]. The energy density in-
tegral does not then diverge as r → ∞ so finite but unbounded
luminal wave structures are compatible with the usual basic
physics. They appear as pointlike particles because the field
energy is highly concentrated near the centre. For example,
according to a 1/r4 energy density asymptote the maximum
energy density for a particle with the mass of an electron, at
the radius r ∼ 4 × 10−13m, is ∼ 400, 000 times greater than
that at a radius of 0.1 Angstrom unit.

Unlike Electromagnetics, nothing prevents the method in
this Article from applying to the fermions. A wide range of
candidate models for the massive particles, in the form of
subluminal soliton solutions found in typically nonlinear field
theories, have been reported in the literature. The appearance
of Lorentz covariance in so many disparate field models is
no coincidence as they are all subject to the same basic kine-
matic constraints used in Sects. 2 - 7 to show that Lorentz
invariance is the consequence of constructing subluminally
moving particles from fields that are constrained to propagate
luminally.

While the constraints are simple, the structures of soliton
solutions are generally not simple. For example, evolution
under rotations does not imply spherical symmetry and nor
does it imply that the particle rotates as a whole in a simple
manner, like a solid ball. Due to the kinematic constraint, tra-
jectories at different radii necessarily evolve at different angu-
lar rates and, similarly, wave trajectories at various points on
the same spherical surface in the rest system generally rotate
about different axes.

12 Conclusions
This Article has developed a particularly simple hypothesis:
Energy-momentum propagates at c. It has shown why sublu-
minally moving physical systems, including observers’ mea-
suring devices, then display time dilation and length contrac-
tion, so that an underlying luminal wave reality, although ob-
jective, presents a Lorentz covariant “spacetime” to its ob-
servers. Neither the Relativity Principle nor the invariance of
the observed speed of light were assumed. These two corner-
stones of relativity theory were shown as results, not put in as
postulates.

This 3D+t reality also entails a preferred frame that has
been observed in practice in at least two independent ways,
providing a natural definition of objective simultaneity. All
the paradoxes formerly associated with Special Relativity’s
subjective notions of reality are thus removed, and, unlike
Special Relativity, the proposed luminal wave interpretation
of Lorentz invariance is consistent with all the relevant facts.

Although the Lorentz covariance of luminal wave systems
was perhaps already familiar, the basic mechanics underly-
ing Lorentz symmetry remained unnoticed for over a century.
The discovery of this direct link between wave systems and
relativistic mechanics has wide ranging implications for the
interpretation and unification of modern physics.

Rather than replacing Newtonian Mechanics, Einstein’s
relativistic mechanics is the natural step accompanying the
shift in our founding physical ideas from particle to wave con-
cepts. The wave packet is reformed by giving explicit recog-
nition to the conservation of momentum between wave com-
ponents and particles, which can now be seen as widely dis-
tributed systems with instantly correlated far fields. Quantum
nonlocality can be understood within this framework whilst
general covariance is readily incorporated, conceptually and
analytically, with a refractive medium approach to gravity
[12] that produces the relevant phenomena without the raft
of problems flowing from the usual field equations.

Hopefully, this article has highlighted the absence of any
good reason to presume that any non-propagative form of
mass-energy exists. It’s not so much the introduction of a
new hypothesis, as the removal of an old one — the idea of
matter as a distinct ontological class in its own right.
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Appendix 1
Consider a constant momentum density ~ρpi in a region of
transverse crossectional area A and length li. The total mo-
mentum is pi = Aliρpik̂. Let this be normally incident on
a mirror that is moving with velocity v = −vk̂. Let the re-
flection begin at t = 0. It then ends at ∆t = li/(c + v), after
which there is a reflected wave with momentum density ~ρpr
that occupies a region of length lr = (c − v)∆t and crossec-
tional area A, so the momentum of the reflected light flash is
pr = −Alrρprk̂.

During the reflection, the rates of change of momentum
for the incident and reflected waves are ṗi = −(c + v)A~ρpi
and ṗr = (c − v)A~ρpr respectively, where a dot over a variable
indicates the time differential. The total rate of change of
momentum is:

ṗ = ṗi + ṗr = −A((c + v) ρpi + (c − v) ρpr)k̂ ,

where ρpi = | ~ρpi| and ρpr = | ~ρpr|. As far as scalar momentum
is concerned, for the incident wave ṗi = cṁi = −A(c + v) ρpi,
for the reflected wave ṗr = cṁr = A(c− v) ρpr and the total is:

ṗ = cṁ = cṁr + cṁi = A((c − v) ρpr − (c + v) ρpi) .

The work done by the mirror on the incident and reflected
waves is:

∫
ṗi · dsi = −

∫ ∆t
0 A(c + v) ρpi cdt and

∫
ṗr · dsr =∫ ∆t

0 A(c − v) ρpr cdt respectively, where dsi and dsr are the
incremental movements of the incident and reflected waves,
in the directions k̂ and −k̂ respectively. The total work done
is just W =

∫ ∆t
0 c ṁc dt = (mr − mi)c2.

The energy change of the light flash is of course equal
and opposite to the work done by the radiation pressure force
on the mirror, so (mr − mi)c2 = −(−ṗ)(−v)∆t, and it is easily
shown that pr/pi = (c+v)/(c−v), from which we may infer the
momentum shift factor for light emitted by a source moving
towards an observer as

√
(c + v)/(c − v), in agreement with

the usual relativistic doppler shift.

Appendix 2
With respect to the system of light flashes in Subsect. 2.2,
let us impose the condition in some inertial frame that P0 =∑

i pi0 = 0. The momentum of the ith light flash, referred to
this frame, is then:

pi0 = pi0

(
cos θi0 î + sin θi0 cos φi0 ĵ + sin θi0 sin φi0 k̂

)
,

where θi0 is the angle with the x-axis and
∑

i pi0 cos θi0 =∑
i pi0 sin θi0 cos φi0 =

∑
i pi0 sin θi0 sin φi0 = 0.

Let an observer move relative to this frame with veloc-
ity v = −βcî. Since pi/pi0 = fi/ fi0, the standard relativistic
doppler shift and aberration formulae (with the observer mov-
ing towards the source at speed v) give, respectively:

pi = pi0γ
(
1 +

v

c
cos θi0

)
and cos θi =

cos θi0 + v
c

1 + v
c cos θi0

.

Note that the same result also holds for non-monochromatic
light flashes. The scalar momentum of the ith flash in the
observer frame is:

pi = pi0γ(1 + β cos θi0) .

Summing over i, the total energy, mec2 = γc
∑

i pi0 = γm0c2,
where me and m0 are as defined in subsection 2.2 and Section
3 respectively. The (vector) momentum of the ith flash is:

pi = pi0(γ(β + cos θi0) î + sin θi0 cos φi0 ĵ + sin θi0 sin φi0 k̂) .

Summing over i, the total momentum is P = γβ
∑

i pi0 î. Dif-
ferentiating each of the two previous equations with respect
to β, we get dpi/dβ = γ2 pi î and dP/dβ = γ2mec î, so that:

dpi

dβ
=

dP
dβ

pi∑
j p j

=
dP
dβ

pi

mec
.

Finally, since the above expressions for pi and P are func-
tions of β alone, the incremental changes can be written as
dpi = (dpi/dβ) dβ and dP = (dP/dβ) dβ, upon which:

dpi =
pi

mec
dP .

Therefore (8) holds for a collinear incremental boost. For
transverse boosts, consider as initial condition a system with
a centre of inertia that is moving in the y-direction at speed
V , so me = γ(V)m0. We may repeat the above analysis for an
observer moving at speed vx in the x-direction with β = vx/c
and

∑
i pi0 sin θi0 cos φi0 , 0. Evaluating the resulting ex-

pression for dP/dβ at vx = 0, then yields the same result,
dpi = pi dP/mec, for an incremental transverse boost. In Spe-
cial Relativity, the general boost decomposes into a collinear
boost, a transverse boost and a rotation (a Thomas preces-
sion). As the latter has no impact on linear momenta, (8) is
generally valid for incremental boosts of systems of luminal
wave momenta.

15


