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Section 1. Preliminary facts. 

 

The following reformulations have been known for some time and the proofs of the 

statements in this section can be found in many references (except for Littlewood„s 

reformulation with  rational, which is straightforward).  

 

Robin’s reformulation of RH [5]. The Riemann Hypothesis is true if and only if there is 

an n0  (and in fact n0 = 5041) such that (n)/n < e

  log(log(n)) , for all n > n0 (here (n) 

is the sum of divisors function). 

 

Littlewood’s reformulation of RH [1]. The Riemann Hypothesis is equivalent to the 

statement that for every  > 0 , we have M(x) = O(x
( 1/2 +  )

), when x   (here M(x) is 

the Mertens„ function). 

 

We write (R) for the statement in Robin‟s reformulation (that is the Robin inequality). 

We also write (L) for the statement in Littlewood‟s reformulation (that is M(x) = O(x
( 1/2 + 

 )
), when x  ).  

 

We can conclude that the statement: 

 

“there is an n0 such that (n)/n < e

  log(log(n)) , for all n > n0 “ 

 

is equivalent to the statement: 

 

“for every  > 0 , we have M(x) = O(x
( 1/2 +  )

), when x  ”. 

 

We will write (R)  (L) for this equivalence (which is proved in ZFC).  
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Observation. We also note that in Littlewood‟s reformulation we can take  rational and 

find an equivalent statement. In other words, we have: 

 

Littlewood’s reformulation of RH (with  rational). The Riemann Hypothesis is 

equivalent to the statement that for every rational  > 0 , we have M(x) = O(x
( 1/2 +  )

), 

when x   (here M(x) is the Mertens„ function). 

 

Lemma. Littlewood‟s reformulation of RH is equivalent to Littlewood‟s reformulation of 

RH with rational  > 0. 

 

Proof. It is obvious that Littlewood‟s reformulation of RH implies Littlewood‟s 

reformulation of RH with rational  > 0. For the converse implication, we note that given  

an   > 0, we can choose  a rational r such that 0 < r < , and then we have: (M(x) = 

O(x
( 1/2 + r )

) , when x   )  (M(x) = O(x
( 1/2 +  )

) , when x   ). This means that 

Littlewood‟s reformulation with rational  > 0 implies Littlewood‟s reformulation. QED.  

 

 

Section 2. Model Theory. 

 

The following theorems will be used in our results (for a brief introduction to model 

theory, see the appendix). 

 

Definition. A model M is said to be 0 - saturated if for every enumerable infinite set  

of formulas (x) in the diagram language of M, if for every finite subset of formulas 1, 

2, 3, ….n   the sentence x (1(x)  2(x)  3(x)  …. n(x)) is true in M, then 

the infinitely long sentence x (  (x)) is also true in M. 

 

The Theorem on the Existence of a Saturated Model. [2] There exists a saturated 

model over the first - order language in which we work (basically analysis with first order 

ordinary logic). 

 

Godel’s Completeness Theorem. [4] If K is a set of first - order sentences over some 

fixed language, then K has a model if and only if K is consistent.  

 

 

Section 3. The main theorem.  

 

 

Theorem. The Riemann Hypothesis (RH) is true. 

 

Proof.  Now we consider the statement (L) with rational  > 0: 
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“for every rational  > 0 , we have M(x) = O(x
( 1/2 +  )

), when x  ”. 

 

Now, we fix a rational  > 0. The statement “M(x) = O(x
( 1/2 +  )

), when x  ”, basically 

means that “there is a K > 0 such that (M(1)  < K  1
( 1/2 +  )

)  (M(2) < K  2
( 1/2 + 

 )
)  (M(3) < K  3

( 1/2 +  )
)  ……..”.   

 

We consider now the formulas x,  (K), and by definition the formula x,  (K) will mean 

(M(x) < K  x
( 1/2 +  )

). We note here that K is a free variable (that is why x,  (K) are 

formulas, not sentences). If we consider all the formulas x,  (K), when x is a natural 

number and  is a positive rational number, we have an enumerable infinite set of 

formulas. We consider the conjunction of all these formulas, and we write S(K), so by 

definition S(K) will mean (x natural and  positive rational  x,  (K)).  

 

Now, we will assume that we can find a counterexample to Robin„s inequality ( R ), and 

we will reach a contradiction, thus proving that ( R ) is true. The contradiction will take 

place in the saturated model guaranteed to exist by the theorem of the existence of a 

saturated model applied as follows. 

 

We assume that we found a n‟ > 5041 such that (n„)/n‟ > e

  log(log(n„)) (here n„ is an 

actual numerical value, as assumed found, not a variable). This n‟ would represent a 

counterexample of Robin‟s inequality (if it exists, as we assume). The key idea is to form 

an enumerable sequence of statements that starts with  

((n„)/n‟ > e

  log(log(n„))) and (n„ > 5041), and continues with all the statements from 

S. In other words, we form the enumerable sequence of statements: 

 

((n„)/n‟ > e

  log(log(n„)))  (n„ > 5041)  S(K).              (*) 

 

We notice that for any finite subset of statements of (*), as described above, there is a 

model in which all these statements (from the finite subset)  are satisfied.  The proof of 

this is based on the fact that any finite set of real numbers has a maximum and a 

minimum, and the Archimedean property. Any finite subset of statements from (*), as 

described above, involves a finite set {x1, x2, x3, …..xp} and a finite set of rationals {1, 2, 

3, …..q}. Among the values M(x1), M(x2), M(x3), ……M(xp), there is an i 

such that M(xi) takes a maximum value (among the finite set of values above). 

Without limiting generality, we can consider  x1 < x2 < x3 < …..< xp, and also  1 < 2 < 

3 < …..< q.  Obviously, we can find a K such that  (M(xi) < K  x1
( 1/2 + 1  )

), we 

just take K > M(xi)/x1
( 1/2 + 1  )

.  The inequality M(xi) < K  x1
( 1/2 + 1  )

) implies all 

the other inequalities involved in the finite subset of statements from (*) considered 

above. As a consequence, there is a K which is equal to the value K found above such 

that the inequalityM(xi) < K  x1
( 1/2 + 1  )

 is satisfied, and all the other formulas from 

the finite subset of statements from (*) (as chosen above) are satisfied.  
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We proved that for any S‟(K) that contains only a finite conjunction of formulas of the 

form x,  (K), the sentences: 

 

K (((n„)/n‟ > e

  log(log(n„)))  (n„ > 5041)  S„(K))  

 

and also 

 

K (S„(K))  are always true sentences.  

 

The fact that ((n„)/n‟ > e

  log(log(n„)))  (n„ > 5041) is included or not does not make 

any difference, because ((n„)/n‟ > e

  log(log(n„)))  (n„ > 5041) does not contain the 

variable K, so that K (((n„)/n‟ > e

  log(log(n„)))  (n„ > 5041)) is always true (if we 

already assume that we found an n„).  

 

From the theorem on the existence of a saturated model, we can conclude that there is a 

saturated model in which the sentence K (((n„)/n‟ > e

  log(log(n„)))  (n„ > 5041)  

S(K))  is a true sentence. That means that there is a model in which ((non - R)  (L)) is a 

true statement. This is impossible, because ( R)  (L) (known result), and there is no 

model in which both (non - R) and (L) are true statements. If T is the theory in which we 

work, then T  {(non - R)  (L)} is inconsistent, so it has no model, from Godel‟s 

Completeness Theorem. We reached a contradiction. As a consequence, our assumption 

that we can actually find a counterexample to Robin‟s inequality is false. There is no 

counterexample to Robin‟s inequality. ( R ) is true. As a consequence, the Riemann 

hypothesis is true. QED.  

 

Conclusions. The assumption that a counterexample to Robin‟s reformulation can be 

found leads to a contradiction in a saturated model. This methodology can lead to 

solutions to many other unsolved problems in number theory.  

 

Appendix. In this appendix, we will briefly present some facts about model theory. 

Model theory is a combination of universal algebra and logic. We have a set L of 

symbols for operations, constants and relations, called a language.  

 

Example. L = {+, , 0, 1, <}. The language L can be finite or countable. A model M for 

the language L is an object of the form M = < A, +M , M , 0M , 1M , <M  >.  A is a non - 

empty set, called the set of elements of M, and +M  and  M ,are binary operations on 

AA into A, 0M  and  1M  are elements of A, and <M  is a binary relation on A.  

Examples. The field of rationals < Q, +, , 0, 1, > is a model for the language {+, , 0, 1}.  

The ordered field < Q, +, , 0, 1, <, > is a model for the language {+, , 0, 1, <}.  
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Many facts about models can be expressed in first order logic. In addition to the  

operation, relation, and constant symbols of L, first order logic has an infinite list of 

variables, the equality symbol =, the connectives  (and),  (or),  (not), and the 

quantifiers  (for all),  (there exists). Certain finite sequences of symbols are counted as 

terms, formulas, sentences. Every variable or constant is a term. If t, u are terms, so are t 

+ u, t  u. If t and u are terms, then t = u, t < u, are formulas. If ,  are formulas and v is 

a variable, then ,   ,    ,  v ,  v  are formulas. A sentence is a formula 

all of whose variables are bound by quantifiers. For example, the sentence  

x (x = 0  y (x  y) = 1) states that every non - zero element has a right inverse. The 

central notion in model theory is that of a sentence  being true in a model M. This 

relation between models and sentences is defined by induction on the subformulas of . 

For example, the sentence x (x = 0  y (x  y) = 1) is true in the field of rationals, but 

not in the ring of integers. A set of sentences is called a theory. M is a model of a theory 

T, if for every sentence  T is true in M.  

 

Examples. The theory of rings is the familiar finite list of ring axioms. The theory of real 

closed fields is a set of sentences, consisting of axioms for ordered fields, the axiom 

stating that every positive element has a square root, and for each odd n an axiom stating 

that every polynomial of degree n has a root. For each model M, the theory Th(M) is the 

set of all sentences true in M. Two classical theorems in model theory are the 

compactness theorem and the Lowenheim - Skolem - Tarski theorem.  

 

The Compactness Theorem.[2][3][4] If every finite subset of a set of sentences has a 

model, then T has a model.  

 

Lowenheim - Skolem - Tarski Theorem. [2] If T has at least one infinite model, then T 

has a model of every infinite cardinality.  

 

Almost all the deeper results in model theory depend on the construction of a model.  

 

The diagram of a language for M is obtained by adding to L a new constant symbol for 

each element of A. the elementary diagram of M, written as Diag(M), is the set of all 

sentences in the diagram language of M which are true in M. The difference between 

Th(M) and Diag(M) is that Diag(M) has new symbols for the elements of M, while 

Th(M) does not. There are many other concepts that are fundamental in model theory, 

like elementary chains, ultraproducts, saturation, but we will stop here with this brief 

introduction (saturation and the theorem on the existence of a saturated model is 

presented in section 2, and is fundamental in this work, and we wanted to take this brief 

introduction to the point where the reader can understand the concept of saturation). 
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