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I. INTRODUCTION

We know that electromagnetic field and its interactions have been thoroughly investi-

gated during the last 150 years leaving hardly any scope for further improvement in our

understanding. While classical electrodynamics has been able to explain a vast range of

phenomena, the accuracy obtained in predicting these phenomena using quantum electro-

dynamics has been truly astounding. Nevertheless, we should remember that there are

certain problems in the theory of electromagnetic fields which have remained intractable to

this day. For example, we still do not have a clear picture as to how the electric charge gets

compacted to a point without causing the problems of infinity [1]. We still do not know

what the fine structure constant actually is except that it in some way or other represents

the relative strength of the electromagnetic interactions [2]. We also do not have a clear idea

how the amplitudes of the oscillations of electric and magnetic fields of the electromagnetic

wave are related to its frequency. Possibly, the mystery of the fine structure constant may

get unraveled if we could strike connection between these properties of the electromagnetic

wave.
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As a first step we propose to re-examine the basic concepts which go to the conventional

representation of the electromagnetic wave. It is quite possible that a slight tweaking of

the conventional picture while not altering the situation where the current theories reign

supreme may provide us with new insights. The one idea we propose to examine in this

paper is the implication of introducing spatial amplitude to the electromagnetic wave. Before

we proceed further in this direction we shall have a brief review of the solutions of Maxwell’s

equation in vacuum and see how the conventional picture emerged from it.

We know that the beauty of the Maxwell’s equations is that while they are very simple

linear equations, classically all aspects of the electromagnetic phenomena can be explained

by them. Since we propose to confine ourselves to the study of the transmission of elec-

tromagnetic waves in vacuum, we shall confine ourselves to Maxwell’s equations in vacuum

given by

∇ · ξ = 0, (1a)

∇× ξ = −∂B
∂t
, (1b)

∇ ·B = 0, (1c)

(∇×B) =
1

c2
∂ξ

∂t
. (1d)

We know that for the electric and magnetic fields these equations have solutions in the

form (see Appendix)

ξ = ξ0 sin(ωt− k · r). (2)

B = B0 sin(ωt− k · r). (3)

Note that the magnetic field will always be perpendicular to the electric field and both will

in turn be perpendicular to the direction of propagation. Another important point to be

kept in mind is that the solutions represent not a single wave, but a wave front that has the

same value for the electric ( magnetic) field at any instant in the transverse direction.
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II. INTRODUCING SPATIAL AMPLITUDE TO ELECTROMAGNETIC WAVE

The idea of the spatial amplitude of the electromagnetic wave was one of the most actively

debated topics towards the end of the 19th century. Going by the analogy with the mechanical

waves, it was generally believed by physicists during that period that the electromagnetic

wave which is a transverse wave needs a physical medium to propagate in space [5]. They

named the medium ether. It was assumed that the oscillations in the electric and magnetic

fields were set off by similar spatial oscillations in ether. But the problem with such a medium

was that it had to possess all sorts of properties which were quite often incompatible with

each other. Besides, in a way ether functioned like an absolute frame of reference against

which any motion could be reckoned. Finally when Einstein came up with his theory of

relativity in 1905 to explain the constancy of the velocity of light in all inertial frames of

references, the concept of ether was given a decent burial. It became generally accepted that

the electromagnetic waves were generated by oscillations in electric and magnetic fields only.

Such an approach has further justification in that it is based entirely on Maxwell’s equations

which deal only with variations in the electric and the magnetic fields. These equations do

not involve variations in the spatial displacement or any other field.

There is one more important reason for taking the spatial amplitude of the electro-

magnetic wave as zero. If the electromagnetic wave possessed spatial amplitude, then two

identical waves in phase will have twice the spatial amplitude as compared to a single one.

This means that the spatial amplitude of the electromagnetic waves in phase will be directly

proportional to the intensity of the waves. Therefore, light transmitted through a small

aperture should behave differently when the intensity of light is changed. For example, a

low intensity coherent light beam may travel through a small aperture without any loss of

energy while a high intensity beam should get obstructed substantially by the aperture. But

we know light does not behave in that manner. On the other hand, it is observed that the

oscillations in the electric (also magnetic) field add up when two such waves occupy the

same space. The only way this difference in the behaviour of the spatial and the electric

(magnetic) field oscillations could be resolved is by treating the amplitude of the spatial

oscillations as zero.

We know that at any point on the path of the electromagnetic wave the divergence of

the electric field (also magnetic field) in the transverse direction at any instant is zero. In
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fact the electromagnetic wave has to be seen as progressing as a wave front, rather than

as a single wave progressing along a straight line. The progression of the wave may be

represented by successive wave fronts in the direction of motion. Note that the wave front

is assumed to extend to infinity in the transverse plane. In other words, the introduction

of the spatial amplitude does not appear to be incompatible with Maxwell’s equations. In

the next section we shall go a step further and show that the electromagnetic wave could be

attributed a helical structure which will provide us with a simple picture of photon which

accounts for its spin angular momentum.

It is reasonable to assume that the spatial oscillations propagating at luminal velocities

constitute the basic wave that transports the electromagnetic oscillations and these two

oscillations could be having a phase difference of zero or π. If we denote the spatial amplitude

by η0, then we may represent the plane polarized spatial and electromagnetic waves by

η = ±η0 sin(ωt− k · r) (4a)

ξ = ξ0 sin(ωt− k · r) (4b)

The reason why the oscillations in the electric and the spatial displacement could combine

only in two ways may be due to the fact that they represent the coupling between two

different fields. If the spatial oscillations are allowed to couple with the oscillations of the

electric (and magnetic) field in all possible phases, then in the case where the wave is trapped

between two reflecting mirrors we may have a situation with the standing wave formed is

entirely by the oscillations in the electromagnetic field while the spatial oscillations get

destroyed completely. It could be the other way round also. Such coupling between the

oscillations may be disallowed in order to avoid such situations.

Note that the introduction of the spatial oscillations above does not alter the situation

represented by the solutions given in equations 2 and 3. The electromagnetic wave repre-

sented by equations 2 and 3 continues to represent the electric and magnetic fields in the

transverse planes and their variation with time. In other words, the spatial wave defined by

equations 4a and 4b is consistent with Maxwell’s equations.
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III. PHOTON AS A HELICAL CIRCULARLY POLARIZED WAVE

We saw that the solution of Maxwell’s equations in vacuum is expressed as a sine function

in equation 2. We could have taken the solution as a cosine function also. In fact, we could

have taken the linear combination of the sine and cosine waves which would represent a

circularly polarized wave. In that case treating the wave as progressing along the Z −

direction, we may represent the circularly polarized (left handed when viewed head on)

spatial and electromagnetic field oscillations by

ηx = η0 sin[ωt− kz] (5a)

ηy = η0 cos[ωt− kz] (5b)

ξx = ξ0 sin[ωt− kz] (5c)

ξy = ξ0 cos[ωt− kz] (5d)

Initially when the concept of photon was introduced by Einstein, it was treated as the

particle aspect of the electromagnetic waves. The wave nature becomes relevant when we

take a large group of the photons which can be studied classically. But the structure of

photon itself has remained an enigma. The classical picture of the wave and the quantum

picture of the particle have remained irreconcilable. There is one more reason for this

incompatibility. The classical picture deals with only the propagation of the wave front. The

idea of a wave train is not properly defined in the classical approach. With the introduction

of the spatial amplitude as explained in the previous section, photon could be attributed

the internal structure of a helical wave. To be exact, photon has to be treated as a wave

train formed by helical waves with the electric (and magnetic) field riding on it making it

circularly polarized.

We shall now show that the helical structure of the electromagnetic wave will force spatial

amplitude η0 to possess only a certain value. We know that the projection of the helical

wave given in equations 5a and 5b on to the transverse X−Y plane will be a circle (figure1).

Let us now estimate the velocity of the circular motion. The simplest case that comes to

our mind is one where the circular motion occurs at the velocity of light. Any other velocity

will involve introduction of a new attribute to the electromagnetic wave. Since it is obvious

that by the time the wave travels one wavelength along the Z−axis,it would have executed

one full circle in the



6

FIG. 1: This is the projection of a circularly polarized wave on a transverse plane. The vertical

and the horizontal lines stand for two spatial waves having a phase difference of π
2 . Here we have

also shown arrows pointing inward representing the electric field at these points having a phase

difference of π with spatial oscillations.

transverse directions. There fore, we may conclude that the radius , R of the circle will

be given by

R =
λ

2π
=

1

k
(6)

Here we have a clearer idea of the term helicity used in the case of the electromagnetic

wave because now we have the case of the spatial amplitude of the wave spinning around an

axis. This allows us to understand the concept of spin of the electromagnetic wave classically

on the basis of the helical structure of the wave. Since a point on the electromagnetic wave

executes rotational motion in the transverse direction, we may take the magnitude of its

angular momentum for this motion to be

S =| r× p |=
(
λ

2π

)(
h

λ

)
= h̄ (7)

Note that the momentum p used in the above expression represents the momentum of the

circular motion in the transverse direction. Of course, the magnitude of the momentum in

the direction of progression also has the same value.
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IV. COMPACTING OF THE SPATIAL AMPLITUDE INTO THE INTERNAL

SPACE

We shall now examine how the superposition of two waves affects the spatial amplitude.

Let us consider two identical waves both in phase represented by equations 5a , 5b , 5c and

5d. If we go by the classical theory of the mechanical waves, resultant wave will be given by

η
′

x = 2η0 sin[ωt− kz] (8a)

η
′

y = 2η0 cos[ωt− kz] (8b)

ξ
′

x = 2ξ0 sin[ωt− kz] (8c)

ξ
′

y = 2ξ0 cos[ωt− kz] (8d)

We observe that the resultant wave has amplitude which is twice that of the individual

component. Although prima-facie 8a and 8b appear to be in order, on detailed scrutiny

we encounter a serious problem. We observe that while the spatial amplitude has doubled,

the wave length of the wave has remained unchanged. This means that when we project

the helical wave on to the transverse plane, the circle so obtained will have a radius of
λ

π
.

Therefore, if the integrity of the wave is to be retained in propagation, the velocity of the

circular motion will have to be twice that of light which is not acceptable. Note that this

problem arises only in the case of the spatial oscillations. It does not arise in the case of the

oscillations in the electric and magnetic fields.

The solution to this problem can be found if we treat electromagnetic waves as constituted

by a large number of photons. Note that we represent a photon as a wave train of circularly

polarized helical waves. Here the spatial oscillations of the photons do not interfere with

each other by superposition. Only the electric and magnetic fields need to be affected by

superposition. The spatial amplitude remains unaffected by superposition for reason that

the velocity of circulation in the transverse plane can only be c. In other words two photons

travelling in the same direction cannot be represented by waves in the classical sense by

adding up their spatial amplitudes. In fact, it will be impossible to resolve the helical

wave into two plane polarized spatial waves orthogonal to each other. Two helical waves of

opposite helicity will travel along the same path without affecting the spatial amplitude of

each other by the process of superposition. Note that this property is peculiar to only the
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spatial oscillations. As regards the oscillations in the electric and magnetic fields, they will

behave in the classical manner interfering with each other constructively or destructively

according to the phase difference between the waves.

The picture described above will be identical to the conventional picture provided we treat

the diameter of the helical wave as negligibly small and equate it to zero for all practical

purposes. But once the radius is treated as zero, it becomes impossible to account for the

spin angular momentum of the wave. Therefore, spin will have to be accounted for by

introducing an internal space to the wave and defining it there. Note that this procedure is

nothing but treating the radius of the helical wave as zero by compacting it into the internal

coordinates. In such a mathematical construct the helical path of the electromagnetic wave

becomes a straight line and the internal space will have the form of a cylindrical tube.

We should understand that compacting the spatial amplitude into the internal space is a

mathematical program which accounts for the fact that the spatial oscillations of two waves

occupying the same region in space-time do not interfere with each other. If the mechanical

properties of the wave propagation are to hold good such a situation would arise only when

the spatial amplitude is zero. In the process of compacting the amplitude into the internal

space it becomes possible to treat its value in the external coordinates as zero and this way

the compatibility to the mechanics of the wave propagation is taken care of. We should

keep in mind that the so called internal space is actually an innate part of the external

space which is spanned by the laboratory coordinate system. The process of compacting of

the amplitude into the internal coordinates should be understood as just a mathematical

procedure to account for the peculiar nature of the spatial oscillations in the electromagnetic

wave propagation.

Since this compacting is a mere mathematical construct one may presume that the spatial

amplitude of the electromagnetic wave could be experimentally measured to the required

accuracy. In the light of the above discussion we are tempted to conjecture that a coherent

beam of light passing through a circular aperture of diameter less than
λ

π
(being twice the

spatial amplitude of the electromagnetic wave) should cut off transmission of waves through

it thereby firmly establishing the existence of the spatial oscillations in the electromagnetic

wave. But unfortunately the situation is not that simple as there is a cut off in the intensity

of the transmitted wave when the aperture has a diameter of only
λ

2
which is confirmed on

the basis of the conventional approach [4]. Therefore, it will not be possible to observe the
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attenuation of the wave transmission at the aperture diameter of
λ

π
. In fact, this could be

one of the reasons why the existence of the spatial oscillations in the electromagnetic wave

has remained unnoticed.

V. INTRODUCING VECTOR POTENTIAL AS A REAL QUANTITY

In the conventional approach the vector potential is introduced as a mathematical con-

struct devoid of physical reality. In spite of the fact that the Aharanov−Bohm effect has

been experimentally observed proving the physical reality of the vector potential, it appears

that no success has been achieved in incorporating this aspect into the theory. We shall

show that with the introduction of the spatial amplitude to the electromagnetic wave the

physical reality of the vector potential can be explained. We know that the electric and

magnetic fields can be expressed in terms of the vector potential as

ξ = −∇φ− ∂A

∂t
(9a)

B = ∇×A (9b)

Note that we have to ignore the gradient of the scalar potential in the expression for the

electric field as we are dealing with vacuum which is a charge free state. Let us now examine

how the vector potential will fit into the helical structure of the electromagnetic wave.

The best way to introduce vector potential is attribute to it a path along a solenoid which

wraps tightly around the helical path. In other words, the path of the vector potential will

be a solenoid which in turn forms a helix (fig.2a). But the problem with the figure given

in 2(a) is that the direction of
∂A

∂t
will be always directed to the axis of the solenoid and

therefore in terms of equations 9a and 9b the electric field (we may take φ to be zero as we

are dealing with the charge free case) will keep undergoing rotation at a higher frequency

than the frequency of the helical wave with the result that the electric field cannot remain

pointed in the radial direction of the helical wave continuously as demanded by Maxwell’s

equations. However, this problem can be resolved if we assume that the vector potential

completes only one turn of the solenoid in one wavelength of the helical wave. In that case

the path of the helical wave and the vector potential could be represented by a helical stair

case (fig.2b).
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The helix formed by the inner railing would represent the helical electromagnetic wave

while the helix formed by the outer railing could represent the path of the vector potential.

Note that fig.(2b) is obtained from fig.(2a) by taking the number of solenoid contained in

one helix to be unity. The direction of the electric field will be parallel to the edges of the

steps which are in the radial direction. It can be easily shown (see annexure B) that the curl

of A which represents the magnetic field will be directed perpendicular to both the electric

field and the direction of propagation and is therefore no different from what we have in the

conventional solutions of Maxwell’s equations.

VI. GAUGE INVARIANCE OF THE SPATIAL AMPLITUDE AND THE REAL

NATURE OF THE VECTOR POTENTIAL

We know that Maxwell’s equations possess the gauge freedom in terms of vector potential

and scalar potentials which satisfy the relations

A′ = A +∇χ (10a)

φ′ = φ− ∂χ

∂t
(10b)

where χ satisfies the wave equation

∂2χ

∂x2
−
(

1

c2

)
∂2χ

∂t2
= 0 (11)
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Needless to say equations 10a and 10b are the direct results of the introduction of the Lorenz

gauge condition

∇ ·A−
(

1

c2

)
∂φ

∂t
= 0 (12)

It can be easily shown that the values of the electric field and the magnetic field given by

equations 9a and 9b are independent of χ . In fact, till recently it was presumed that only

ξ and B represent whatever is observable in an electromagnetic field. The vector potential

A and the scalar potential φ were not considered to be observable entities. However this

assumption had to be changed after the discovery of Aharonov −Bohm effect [6].

Let us now examine the gauge transformation given in 10a and 10b to find out what

χ stands for in the light of the helical wave structure of the electromagnetic wave. In the

previous section we had taken A to be a vector with constant magnitude defined at every

point on the solenoid which wraps around the helical path of the electromagnetic wave

with its direction along its tangent. In the more general case we may attribute a normal

component at every point on the solenoid. Therefore, we may resolve the vector potential

A′ as

A
′
= AT + AN (13)

where AT is the component tangential to the solenoid while AN is normal to it.Since AN is

in the direction of the radius vector η , we may express it as a gradient in the form

AN = ∇χ (14)

There fore when we take the curl of A we obtain

∇×A
′
= ∇×AT (15)

since

∇×AN = 0 (16)

As far as the electric field is concerned, the componentAN gets cancelled from the right hand

side of equations 9a and 9b and therefore it will not contribute to the observable electric

field. This means that whatever be its value, AN does not alter the magnetic field. We may

now re-express 13 as
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A
′
= AT +∇χ (17)

In the light of the above analysis we also observe that the second term of the Lorenz gauge

condition given in equation 12 will always be zero because φ is zero everywhere in the

charge free situation. This means that ∇·A = 0. Such a result is possible only if the vector

potential A has no contribution from AN and is constituted entirely by AT . In the charge

free case this is the essence of the Coulomb Gauge condition. Here we see that Coulomb

Gauge condition and Lorenz Gauge conditions coincide. We know that the electric and the

magnetic field are defined only on the helical path of the electromagnetic wave. But this

does not mean that A and χ are also defined only on the helical path of the wave. We shall

show that even points removed from the helical path may be identified with specific values

of A and χ. Here we should keep in mind that A and χ possess directional symmetry in a

plane transverse to the direction of propagation of the helical wave. Therefore, the value of

A at a point could be taken as a function of r, where r is the radial distance of the point

from the axis of the helical wave. In other words, if we take a transverse cross section of the

helical electromagnetic wave, each point on the plane could possess vector potential A(r, θ)

where r and θ are the polar coordinates of the point. For the sake of convenience we shall

take the transverse cross section to be in the X−Y plane assuming that the electromagnetic

wave is propagating in the Z − direction. In the case of χ , since it is scalar it will be a

function of only x and y. We may now re-express equation ??13) as

A
′
= AT +∇rχ(r) (18)

This requirement ∇rχ(r) = AN will be met if we express χ(r) as

χ0 = ±g(t, z)

r
= ±g(t, z)

(
x2 + v2

)−1

2 (19)

where g(t, z) is a function of t and z. Remember that χ satisfies the wave equation 11

and therefore g(t, z) represents a wave propagating in the Z − direction. It is interesting

to note that eχ has the dimension of action and therefore
eg(t, z)

h̄
has the dimension of

length. In other words,
eχ

h̄
would represent the length of the arc of the circle with radius

r = (x2 + y2)

1

2 . It is obvious that in such a situation
eχ

h̄
could represent a rotation through a
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certain angle in the X−Y plane. The gauge freedom ultimately boils down to this invariance

in an arbitrary rotation. Recall that we had compressed the spatial amplitude into the

internal space. Therefore, the rotation here pertains to the internal coordinates. In the

forthcoming paper we shall show that this freedom to choose any value for χ (gauge freedom)

actually translates into the invariance of the wave function in an arbitrary phase change.

VII. DISCUSSION

From the above analysis it becomes quite clear that the introduction of the spatial am-

plitude to the electromagnetic wave not only simplifies many aspects of the theory but also

provide us with a consistent physical picture. We further observe that the vector and scalar

potentials are no more just mathematical constructs, but real fields which are defined in the

three dimensional space.

We observe that the approach based on the classical mechanics has to treat A as a

mathematical construct for two reasons. The first one is that the limiting condition on the

spatial amplitude cannot be introduced based on classical physics. We saw the limit to

the spatial amplitude is imposed due to the fact that the velocity of light is the limiting

velocity for any physical entity. The second requirement for a solution of the problem is

the introduction of the concept of photons as the basic state of the electromagnetic waves.

Without the concept of photons, it will be impossible to account for the oscillations of two

waves at a given spatial point as their displacements do not add up.

The introduction of the spatial amplitude to the electromagnetic wave implies the exis-

tence of a new field. It will be shown in a separate paper that electron-positron pair can

be created from the confinement of the electromagnetic waves and they could be attributed

the structure of confined helical half wave. The generation of the rest (mass) energy of the

particle is seen to be the direct result of the localization of the energy of the electromagnetic

wave contained in the spatial oscillations. It is observed that the fine structure constant, is

the ratio of the energy of the electromagnetic field of the electron to its rest mass. Since

the fine structure constant represents the strength of the electromagnetic interactions in

relation to some other basic field, we are tempted to conclude that the rest mass of electron

obtains its contribution from some other field. This leads to the suggestion that the energy

of the spatial oscillations belongs to new field. We should keep in mind that the existence
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of the Higgs field has been mooted for quite some time as the field that creates mass [6].

We shall use the term Higgs field in the limited sense as a field which creates mass. We

do not propose to relate our approach to the standard model. If the proposed approach is

to hold good, the electromagnetic wave will have to be treated as a composite wave having

oscillations both in the Higgs field and in the electromagnetic field.

VIII. CONCLUSION

Although prima-facie the idea that the electromagnetic waves possess spatial oscillations

goes against all long established concepts, its existence does not warrant any modification

in the conventional approach. This is because the concept of the spatial amplitude has

already been accounted for in the conventional approach by the introduction of the internal

coordinates. That apart, the existence of the spatial amplitude of
λ

2π
cannot be directly

observed because even by the conventional approach where the electromagnetic wave is

supposed to propagate along a straight line a circular aperture of
λ

π
will cut off transmission

of waves through it. In a series of papers we shall show that we could treat electron as

a confined helical wave formed from the electromagnetic wave with its spatial amplitude

playing a crucial role in explaining the spin and electric charge of the particle. Therefore, it

is a comforting thought that the introduction of the spatial amplitude will in no way affect

the results validated by the conventional approach. The idea that the major part of the

energy of the electromagnetic wave is constituted by the oscillations in the Higgs field, if

found acceptable, may result in a completely new way of looking at the basic structure of

particles.

IX. APPENDIX

Maxwell’s equations in vacuum are given by

∇ · ξ = 0, (20a)

∇× ξ = −∂B
∂t
, (20b)

∇ ·B = 0, (20c)

c2 (∇×B) =
∂ξ

∂t
. (20d)
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We shall now solve these equations using Feynman’s insightful approach to understand how

the concept of the electromagnetic wave emerges from them [2] .

We know that the equation 20a could be expanded to obtain

∇ · ξ =
∂ξx
∂x

+
∂ξy
∂y

+
∂ξz
∂z

= 0 (21)

here we assume that there are no variations in the field variables with respect to x and y so

that the first two terms could be taken as zero. Hence we have

∂ξz
∂z

= 0 (22)

This means that ξz is a constant in the z-direction. If we study Maxwell’s equation 20d

assuming that just as in the case of the electric field, the magnetic field also has no variation

in x and y directions, then it can be seen that ξz is also a constant in time. Such a field could

be conveniently taken as zero as we are interested in only dynamic fields. Therefore we may

take ξz = 0. In other words, the electric field exists only in the x and y directions. Now as a

first step, for the sake of simplicity, we may assume that the electric field has a component

only in the x-direction and obtain a solution on that basis. Later we may take up the case

where the electric field has a component only in the y-direction and get the corresponding

solutions. Then, the general solution could always be expressed as the superposition of the

two cases.

Let us take the Maxwell’s equation 20b and express the components along the three

coordinate axes as

(∇× ξ)x =
∂ξz
∂y
−
∂ξy
∂z

(23a)

(∇× ξ)y =
∂ξx
∂z
− ∂ξz

∂x
(23b)

(∇× ξ)z =
∂ξy
∂x
− ∂ξx

∂y
(23c)

Here (∇ × ξ)z will be zero because the derivatives with regard to x and y are zero. Note

that from equation 21 we have already taken ξx as a constant while ξy is taken as zero.

(∇ × ξ)x is zero because the first term which is a derivative of ξz is zero while the second

term is zero for reasons already stated. The only component which is not zero is (∇× ξ)y

which is equal to
∂ξx
∂z

. Setting the three components of (∇× ξ) equal to the corresponding
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components of
∂B

∂t
, we obtain

∂Bz

∂t
= 0 (24a)

∂Bx

∂t
= 0 (24b)

∂By

∂t
=
∂ξx
∂z

(24c)

Since the z and x components of the magnetic field have zero time derivatives, they represent

constant fields. Such a field could be conveniently taken as zero as we are interested in only

dynamic fields. Therefore, we may take Bz = Bx = 0. The equation 24c shows that the

electric field has only the x-component while the magnetic field has only the y-component.

This means ξ and B are perpendicular to each other.

Let us now take the last Maxwell’s equation whose components along x, y and z directions

could be written as

c2
(
∂Bz

∂y
− ∂By

∂z

)
=
∂ξx
∂t

(25a)

c2
(
∂Bx

∂z
− ∂Bz

∂x

)
=
∂ξz
∂t

(25b)

c2
(
∂By

∂x
− ∂Bx

∂y

)
=
∂ξy
∂t

(25c)

On the left hand sides of the above equations, with the exception of
∂By

∂z
all terms are zero.

Therefore

− c2∂By

∂z
=
∂ξx
∂t

(26)

Now taking partial differentiation with regard to t and using the equation 24c, we obtain

the wave equations
∂2ξx
∂z2

− 1

c2
∂2ξx
∂t2

= 0 (27)

and
∂2By

∂z2
− 1

c2
∂2By

∂t2
= 0 (28)

Note that the above equations represent waves having polarization in one plane. Similarly,

we can obtain the equations for waves having polarization in a perpendicular plane involving

only ξy and Bx as
∂2ξy
∂z2

− 1

c2
∂2ξy
∂t2

= 0 (29)
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and
∂2Bx

∂z2
− 1

c2
∂2Bx

∂t2
= 0 (30)

The solutions for these equations can be written as

ξx = ξx0 sin(ωt− k · z). (31a)

ξy = ξy0 sin(ωt− k · z). (31b)

By = By0 sin(ωt− k · z). (31c)

Bx = −Bx0 sin(ωt− k · z). (31d)

where ω is the angular frequency and k is the wave vector. Actually we could have as well

taken cosine function or even a complex function of the type ξ0e
−i(ωt−k·z) . It is a matter

of convenience. However, the fact that the sine function could be expressed as a linear

combination of two waves, one travelling forward in time and the other travelling reverse

in time is an added advantage as the wave equations given by equations 29 and 30 possess

functions representing both waves as its solutions. Combining both, the wave equation in a

general direction will be given by

ξ = ξ0 sin(ωt− k · r). (32)

Similarly, we may obtain the wave equation for the magnetic component also which may be

written as

B = B0 sin(ωt− k · r). (33)

where B0 will always be perpendicular to ξ0

[1] L. Smolin, Three Roads to Quantum Gravity, Phoenix(Orion Books Ltd.), London, Paper back

edition (2003), p.114

[2] R. P. Feynman, QED The Strange Theory of Light and Matter, Princeton New Jersey Press

(1983)

[3] E.D.Jordan, K.G.Balmain, Electromagnetic Waves and Radiating Systems, (second Edition)

Prentice-Hall of India, New Delhi (2008), p.113-26.

[4] Richard Feynman, The Feynman Lectures on Physics (The Definitive Edition), Vol.2, Dorling

Kindersley (India) Pvt. Ltd.,(2009). p.20.4-20.6.



18

[5] E.T.Whittaker, A History of the theory of aether and electricity:From the age of Descartis to

the close of 19th century.

[6] Higgs Waves


	Introduction
	Introducing Spatial Amplitude to Electromagnetic wave 
	Photon as a Helical Circularly Polarized Wave
	Compacting of the Spatial Amplitude into the Internal Space
	Introducing Vector Potential as a Real Quantity
	Gauge Invariance of the Spatial Amplitude and the Real nature of the Vector potential
	Discussion
	Conclusion
	Appendix
	References

