Fermat’s Last Theorem

Chun-Xuan Jiang
P.O.Box 3924,Beijing 100854,China
123jiangchunxuan@gmail.com

Abstract
In 1637 Fermat wrote: “It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates, or in general any power higher than the second into powers of like degree: I have discovered a truly marvelous proof, which this margin is too small to contain.”

This means: \( x^n + y^n = z^n \) (\( n > 2 \)) has no integer solutions, all different from 0(i.e., it has only the trivial solution, where one of the integers is equal to 0). It has been called Fermat’s last theorem (FLT). It suffices to prove FLT for exponent 4 and every prime exponent \( P \). Fermat proved FLT for exponent 4. Euler proved FLT for exponent 3.

In this paper using the complex hyperbolic functions we prove FLT for exponents \( P \) and \( P \), where \( P \) is an odd prime. The proof of FLT must be direct. But indirect proof of FLT is disbelieving.

In 1974 Jiang found out Euler formula

\[
\exp \left( \sum_{i=1}^{n-1} t_i J^i \right) = \sum_{j=1}^{n} S_j J^{j-1}
\]

(1)

where \( J \) denotes a \( n \)th root of unity, \( J^n = 1 \), \( n \) is an odd number, \( t_i \) are the real numbers.

\( S_j \) is called the complex hyperbolic functions of order \( n \) with \( n-1 \) variables [1-7].

\[
S_j = \frac{1}{n} \left[ e^A + 2 \sum_{j=1}^{n-1} (-1)^{(i-1)/2} e^{B_j} \cos \left( \theta_j + (-1)^{i} \frac{(i-1)j \pi}{n} \right) \right]
\]

(2)

where \( j=1,2,...,n; \)

\[
A = \sum_{a=1}^{n-1} t_a , \quad B_j = \sum_{a=1}^{n-1} t_a (-1)^{a/} \cos \frac{\alpha j \pi}{n} ,
\]

\[
\theta_j = (-1)^{i/4} \sum_{a=1}^{n-1} t_a (-1)^{a/} \sin \frac{\alpha j \pi}{n} , \quad A + 2 \sum_{j=1}^{n} B_j = 0
\]

(3)

(2) may be written in the matrix form
From (4) we have its inverse transformation

\[
\begin{bmatrix}
    e^A \\
    e^{B_1} \cos \theta_1 \\
    e^{B_2} \sin \theta_1 \\
    \vdots \\
    \exp(B_{n-1}) \sin(\theta_{n-1})
\end{bmatrix}
= \begin{bmatrix}
    1 & 1 & 1 & \cdots & 1 \\
    1 & -\cos \frac{\pi}{n} & -\cos \frac{2\pi}{n} & \cdots & -\cos \frac{(n-1)\pi}{n} \\
    0 & -\sin \frac{\pi}{n} & -\sin \frac{2\pi}{n} & \cdots & -\sin \frac{(n-1)\pi}{n} \\
    \vdots & \vdots & \vdots & \ddots & \vdots \\
    0 & -\sin \frac{(n-1)\pi}{2n} & -\sin \frac{(n-1)\pi}{n} & \cdots & -\sin \frac{(n-1)^2\pi}{2n}
\end{bmatrix}
\begin{bmatrix}
    S_1 \\
    S_2 \\
    S_3 \\
    \vdots \\
    S_n
\end{bmatrix}
\]

(4)

From (5) we have

\[
e^A = \sum_{i=1}^{n} S_i, \quad e^{B_1} \cos \theta_j = S_i + \sum_{i=1}^{n-1} S_{i+1} (-1)^{ij} \cos \frac{ij\pi}{n}
\]

\[
e^{B_2} \sin \theta_j = (-1)^{ij} \sum_{i=1}^{n-1} S_{i+1} (-1)^{ij} \sin \frac{ij\pi}{n},
\]

(6)

In (3) and (6) \( t_j \) and \( S_i \) have the same formulas. (4) and (5) are the most critical formulas of proofs for FLT. Using (4) and (5) in 1991 Jiang invented that every factor of exponent \( n \) has the Fermat equation and proved FLT [1-7]. Substituting (4) into (5) we prove (5).
\[ \begin{bmatrix}
1 & 1 & 0 & \cdots & 0 \\
1 & -\cos \frac{\pi}{n} & -\sin \frac{\pi}{n} & \cdots & -\sin \frac{(n-1)\pi}{2n} \\
1 & \cos \frac{2\pi}{n} & \sin \frac{2\pi}{n} & \cdots & -\sin \frac{(n-1)\pi}{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \cos \frac{(n-1)\pi}{n} & \sin \frac{(n-1)\pi}{n} & \cdots & -\sin \frac{(n-1)^2\pi}{2n} 
\end{bmatrix} = e^A \begin{bmatrix}
2e^h \cos \theta_i \\
2e^h \sin \theta_i \\
\vdots \\
2\exp(B_{n-1})\sin(\theta_{n-1}) \frac{\pi}{2}
\end{bmatrix} \\
= \begin{bmatrix}
e^A \\
e^h \cos \theta_i \\
e^h \sin \theta_i \\
\exp(B_{n-1})\sin(\theta_{n-1}) \frac{\pi}{2}
\end{bmatrix}, \quad (7)
\]
where \( 1 + \sum_{j=1}^{n-1} (\cos \frac{j\pi}{n})^2 = \frac{n}{2}, \sum_{j=1}^{n-1} (\sin \frac{j\pi}{n})^2 = \frac{n}{2} \).

From (3) we have
\[ \exp(A + 2\sum_{j=1}^{n-1} B_j) = 1. \quad (8) \]

From (6) we have
\[ \exp(A + 2\sum_{j=1}^{n-1} B_j) = \begin{bmatrix}
S_1 & S_n & \cdots & S_2 \\
S_2 & S_1 & \cdots & S_3 \\
\vdots & \vdots & \ddots & \vdots \\
S_n & S_{n-1} & \cdots & S_1
\end{bmatrix} = \begin{bmatrix}
S_1 & (S_1)_{1} & \cdots & (S_1)_{n-1} \\
S_2 & (S_2)_{1} & \cdots & (S_2)_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
S_n & (S_n)_{1} & \cdots & (S_n)_{n-1}
\end{bmatrix}, \quad (9) \]
where \( (S_i)_{j} = \frac{\partial S_i}{\partial t_j} [7]. \)

From (8) and (9) we have the circulant determinant
\[
\exp(A + 2 \sum_{j=1}^{n} B_j) = \begin{vmatrix}
S_1 & S_2 & \cdots & S_2 \\
S_2 & S_1 & \cdots & S_3 \\
\vdots & \vdots & \ddots & \vdots \\
S_{n} & S_{n-1} & \cdots & S_{1}
\end{vmatrix} = 1 \tag{10}
\]

If \( S_i \neq 0 \), where \( i = 1, 2, \ldots, n \), then (10) has infinitely many rational solutions.

Assume \( S_1 \neq 0 \), \( S_2 \neq 0 \), \( S_j = 0 \) where \( i = 3, 4, \ldots, n \). \( S_j = 0 \) are \( n-2 \) indeterminate equations with \( n-1 \) variables. From (6) we have

\[
e^{A} = S_1 + S_2, \quad e^{2B_j} = S_1^2 + S_2^2 + 2S_1S_2(-1)^{j}\cos\frac{j\pi}{n}. \tag{11}
\]

From (10) and (11) we have the Fermat equation

\[
\exp(A + 2 \sum_{j=1}^{n} B_j) = (S_1 + S_2) \prod_{j=1}^{n} (S_1^2 + S_2^2 + 2S_1S_2(-1)^{j}\cos\frac{j\pi}{n}) = S_1^n + S_2^n = 1 \tag{12}
\]

**Example**[1]. Let \( n = 15 \). From (3) we have

\[
A = (t_1 + t_{14}) + (t_2 + t_{13}) + (t_3 + t_{12}) + (t_4 + t_{11}) + (t_5 + t_{10}) + (t_6 + t_9) + (t_7 + t_8)
\]

\[
B_1 = -(t_1 + t_{14})\cos\frac{\pi}{15} + (t_2 + t_{13})\cos\frac{2\pi}{15} - (t_3 + t_{12})\cos\frac{3\pi}{15} + (t_4 + t_{11})\cos\frac{4\pi}{15} - (t_5 + t_{10})\cos\frac{5\pi}{15} + (t_6 + t_9)\cos\frac{6\pi}{15} - (t_7 + t_8)\cos\frac{7\pi}{15},
\]

\[
B_2 = (t_1 + t_{14})\cos\frac{2\pi}{15} + (t_2 + t_{13})\cos\frac{4\pi}{15} + (t_3 + t_{12})\cos\frac{6\pi}{15} + (t_4 + t_{11})\cos\frac{8\pi}{15} + (t_5 + t_{10})\cos\frac{10\pi}{15} + (t_6 + t_9)\cos\frac{12\pi}{15} + (t_7 + t_8)\cos\frac{14\pi}{15},
\]

\[
B_3 = -(t_1 + t_{14})\cos\frac{3\pi}{15} + (t_2 + t_{13})\cos\frac{6\pi}{15} - (t_3 + t_{12})\cos\frac{9\pi}{15} + (t_4 + t_{11})\cos\frac{12\pi}{15} - (t_5 + t_{10})\cos\frac{15\pi}{15} + (t_6 + t_9)\cos\frac{18\pi}{15} - (t_7 + t_8)\cos\frac{21\pi}{15},
\]

\[
B_4 = (t_1 + t_{14})\cos\frac{4\pi}{15} + (t_2 + t_{13})\cos\frac{8\pi}{15} + (t_3 + t_{12})\cos\frac{12\pi}{15} + (t_4 + t_{11})\cos\frac{16\pi}{15} + (t_5 + t_{10})\cos\frac{20\pi}{15} + (t_6 + t_9)\cos\frac{24\pi}{15} + (t_7 + t_8)\cos\frac{28\pi}{15},
\]

\[
B_5 = -(t_1 + t_{14})\cos\frac{5\pi}{15} + (t_2 + t_{13})\cos\frac{10\pi}{15} - (t_3 + t_{12})\cos\frac{15\pi}{15} + (t_4 + t_{11})\cos\frac{20\pi}{15} - (t_5 + t_{10})\cos\frac{25\pi}{15} + (t_6 + t_9)\cos\frac{30\pi}{15} - (t_7 + t_8)\cos\frac{35\pi}{15},
\]

\[
B_6 = (t_1 + t_{14})\cos\frac{6\pi}{15} + (t_2 + t_{13})\cos\frac{12\pi}{15} + (t_3 + t_{12})\cos\frac{18\pi}{15} + (t_4 + t_{11})\cos\frac{24\pi}{15} + (t_5 + t_{10})\cos\frac{30\pi}{15} + (t_6 + t_9)\cos\frac{36\pi}{15} + (t_7 + t_8)\cos\frac{42\pi}{15},
\]
\[ B_t = -(t_1 + t_{14}) \cos \frac{7\pi}{15} + (t_2 + t_{13}) \cos \frac{14\pi}{15} - (t_3 + t_{12}) \cos \frac{21\pi}{15} + (t_4 + t_{11}) \cos \frac{28\pi}{15} \]
\[-(t_5 + t_{10}) \cos \frac{35\pi}{15} + (t_6 + t_9) \cos \frac{42\pi}{15} - (t_7 + t_8) \cos \frac{49\pi}{15},\]
\[ A + 2 \sum_{j=1}^{7} B_j = 0, \quad A + 2B_3 + 2B_6 = 5(t_5 + t_{10}). \]  \hfill (13)

Form (12) we have the Fermat equation
\[ \exp(A + 2 \sum_{j=1}^{7} B_j) = S_1^{15} + S_2^{15} = (S_1^5)^3 + (S_2^5)^3 = 1. \]  \hfill (14)

From (13) we have
\[ \exp(A + 2B_3 + 2B_6) = [\exp(t_5 + t_{10})]^5. \]  \hfill (15)

From (11) we have
\[ \exp(A + 2B_3 + 2B_6) = S_1^5 + S_2^5. \]  \hfill (16)

From (15) and (16) we have the Fermat equation
\[ \exp(A + 2B_3 + 2B_6) = S_1^5 + S_2^5 = [\exp(t_5 + t_{10})]^5. \]  \hfill (17)

Euler proved that (14) has no rational solutions for exponent 3\[8\]. Therefore we prove that (17) has no rational solutions for exponent 5\[1\].

**Theorem** \[1-7\]. Let \( n = 3P \), where \( P > 3 \) is odd prime. From (12) we have the Fermat’s equation
\[ \exp(A + 2 \sum_{j=1}^{3P-1} B_j) = S_1^{3P} + S_2^{3P} = (S_1^P)^3 + (S_2^P)^3 = 1. \]  \hfill (18)

From (3) we have
\[ \exp(A + 2 \sum_{j=1}^{P-1} B_{3j}) = [\exp(t_p + t_{2p})]^p. \]  \hfill (19)

From (11) we have
\[ \exp(A + 2 \sum_{j=1}^{P-1} B_{3j}) = S_1^p + S_2^p. \]  \hfill (20)

From (19) and (20) we have the Fermat equation
\[ \exp(A + 2 \sum_{j=1}^{P-1} B_{3j}) = S_1^p + S_2^p = [\exp(t_p + t_{2p})]^p. \]  \hfill (21)

Euler proved that (18) has no rational solutions for exponent 3\[8\]. Therefore we prove that (21) has no rational solutions for \( P > 3 \) \[1, 3-7\].

**References**


