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ABsTRACT. Definitions from the theory of point processes are recalled. Models of inten-
sity function parameterization and maximum likelihood estimation from data are explored.
Closed-form log-likelihood expressions are given for the Hawkes (univariate and multi-
variate)process, Autoregressive Conditional Duration(ACD) and a hybrid model combining
the ACD and the Hawkes models. Diurnal, or daily, adjustment of the deterministic pre-
dictable part of the intensity variation via piecewise polynomial splines is discussed. Data
from the symbol SPY on three different electronic markets is used to estimate model param-
eters and generate illustrative plots. The parameters were estimated without diurnal adjust-
ments, a repeat of the analysis with adjustments is due in a future version of this article.
The connection of the Hawkes process to quantum theory is briefly mentioned.
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1. DEFINTIONS

1.1. Point Processes and Intensities.



2 PoIiNT ProcEss MoODELS FOR MULTIVARIATE HIGH-FREQUENCY IRREGULARLY SPACED DATA

Consider a K dimensional multivariate point process. Let NF denote the counting process
associated with the k-th point process which is simply the number of events which have occured by
time ¢. Let F; denote the filtration of the pooled process IV; of K point processes consisting of the
set th <th <tk <...<tF<... denoting the history of arrival times of each event type associated with
the k=1...K point processes. At time ¢, the most recent arrival time will be denoted t’fvtk. A process

is said to be simple if no points occur at the same time, that is, there are no zero-length durations.

0 t<0

The counting process can be represented as a sum of Heaviside step functions 0(t) = { 1150

Nf=Y" 0t —th) (1)
th<t

The conditional intensity function gives the conditional probability per unit time that an event of
type k occurs in the next instant.

Pr (Nfae— NF > 0| Fy)

k _ .
VR =, AP )
For small values of At we have
Nt Fy) At = E(NFy ar — NEFIE) +0(At) (3)
so that
E((Nfpae— NF) — ME(t| Fy) At) = o(At) (4)

and (4) will be uncorrelated with the past of F; as At— 0. Next consider

(s1—s0)
At
Aliglo (N&jae—NE L -1ae) = M(so+ jALFy) At
= (s1—s0) ( )
At 5
j=1

S1
—(NE _NF) - / (e[ Fy)dt

0

which will be uncorrelated with Fy, that is

E(/ /\k(t|Ft)dt) =Nk - NE (6)

0

The integrated intensity function is known as the compensator, or more precisely, the F;-compen-
sator and will be denoted by

A¥(s0, 51) = / YRR (1)

50

Let z = t¥ — t¥_, denote the time interval, or duration, between the i-th and (i — 1)-th arrival
times. The F}-conditional survivor function for the k-th process is given by

Sk(af) =Pt > af|Fy,_ 4r) (8)
Let

~ ti
ék / Ne(E[F)dt = AR (8,1, 1)
t

1—1

then provided the survivor function is absolutely continuous with respect to Lebesgue mea-
sure(which is an assumption that needs to be verified, usually by graphical tests) we have

— [l AR F)dt i
L T )



and 5~N(t) is an i.i.d. exponential random variable with unit mean and variance. Since E(SNN(t)) =1
the random variable

Exw=1-Enw (10)

has zero mean and unit variance. Positive values of &y () indicate that the path of conditional
intensity function A\*(¢|F;) under-predicted the number of events in the time interval and negative
values of Ey () indicate that A*(¢|F}) over-predicted the number of events in the interval. In this
way, (8) can be interpreated as a generalized residual. The backwards recurrence time given by

UB(t) =t —tneg (11)
increases linearly with jumps back to 0 at each new point.

1.1.1. Stochastic Integrals.
The stochastic Stieltjes integral[l, 2.1] of a measurable process, having either locally bounded
or nonnegative sample paths, X () with respect to N* exists and for each ¢ we have

X(s)ANE=S" 0t — )X (¢1) (12)

(0,¢] i>1

1.2. The Autoregressive Conditional Duration(ACD) Model.

Letting p; be the family of conditional probability density functions for arrival time ¢;, the log
likelihood of the ACD model can be expressed in terms of the conditional densities or intensities
as [8]

InL({ti}i=0..n) ZZ log pi(tilto, ..., ti—1)

n tn
(Z log)\ ﬁ'|’i — 1,t0,...,ti_1)> —/ )\(u|n,t0,...,tNu)du

to

n ti

(Z log A(;|i — 1,t0,...,ti,1)f/ )\(u|n,t0,...,tNu)du> (13)
—1 ti—1

(Z 10g>\ t |’L 1,t0,...,ti,1) (i)

1=
tn

[

tTI,
I A(t)dAN; — / )t
to tO
We will see that A can be parameterized in terms of
Ny
ANt s tn) =w+ > TN, 10— N, i) (14)
i=1
so that the impact of a duration between successive events depends upon the number of intervening
events. Let x; =t; — t;_1 be the interval between consecutive arrival times; then z; is a sequence
of durations or “waiting times”. The conditional density of x; given its past is then given directly by

E(zi|vi-1,...,21) = Yi(wi—1, ..., 01;0) = 5 (15)
Then the ACD models are those that consist of the assumption
€T, = ’lbi Ei (16)

where ¢; is independently and identically distributed with density p(e; ¢) where 6 and ¢ are
variation free. ACD processes are limited to the univariate setting but later we will see that this
model can be combined with a Hawkes process in a multivariate framework. [5] The conditional
intensity of an ACD model can be expressed in general as

1
VN, 41

—t
ANy, by, t,) = Ao( Nt) (17)

VN, 41
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where Ag(¢) is a deterministic baseline hazard, so that the past history influences the conditional
intensity by both a multiplicative effect and a shift in the baseline hazard. This is called an
accelerated failure time model since past information influences the rate at which time passes.
The simplest model is the exponential ACD which assumes that the durations are conditionally
exponential so that the baseline hazard Ag(¢) =1 and the conditional intensity is

1
YN, +1

Mt|zn,, ..., z1) (18)

The compensator for consecutive events of the ACD model in the case of constant baseline intensity
Ao(t) =1 is simply
& =AF(t;_1,t;)

ti
:/ )\(t|1'1,,1'1>dt
ti—1
ti
= 1 dt
ti_1 "/)NtJrl

toq (19)

_tic1—t
(8

_Ti

s

where x;=t; —t;_1. A general model without limited memory is referred to as ACD(m, q) where
m and g refer to the order of the lags so that there are (m + ¢+ 1) parameters.

m q
vi=w+ Y ami i+ Y Bt (20)
j=1 j=1
where w>0,0;2>0, 5; >0 and ; :ﬁ for i =1...max(m, q) so the conditional intensity is
j=q 77

then written
_ 1
w+23n:1 O‘ijt-H—j"‘Z?:l BN, 41—

Atz s 1) (21)

The log-likelihood for the ACD(m,q) model is then written in terms of the durations x; =t; —t;_1

lnﬁ({xi}izlﬁ_wn) :<Z ln)\(ti|i—1,t0,...,ti1)—5}-)
i=1
-y M)
i=1 ln( Vi

e & (22)
(2

An ACD process is stationary if



in which case the unconditional mean exists and is given by

w

e ) SIS SLIh

1.3. The Hawkes Process.

1.3.1. Linear Self-Exciting Processes.
A (univariate) linear self-exciting (counting) process N; is one that can be expressed as [11][6]

A(t) =Xo(t)k + /t v(t — s)dN,
=Xo(t m+z v(t —t;)

ti<t

(25)

where A\g(t) is a deterministic base intensity, see (72), v:Ry— R4 expresses the positive influence
of past events t; on the current value of the intensity process, and k takes the place of the Ay
constant in the referenced papers. The Hawkes process of order P is a linear self-exciting process
defined by the exponential kernel

P
:Z O(jeiﬁjt (26)
7j=1

so that the intensity is written as

t P
A(t) :)\O(t)n-i—/ Z aje Pilt=s)dN,

:)\O(t)nJrZ ozjz e Pilt—te)
j=1 =0
P

=Xo()r+ Y a; Bj(Ny)
j=1

where B,(4) is given recursively by

i—1
) :Z e Bilt—tx)
] (28)
(14 Bj(i— 1)

A univariate Hawkes process is stationary if

> g 2

If a Hawkes process is stationary then the unconditional mean is

p=BEDO) ==y o
0
A
1o fo p 01 aje Pitdt (30)

TehE
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For consecutive events, we have the compensator (7)

ti
A1 ts) = / A(t)de
ti—1

ti P
:/t Xo(t)+ ) oy Bi(Ny) |dt
i—1 j:l
) (31)
t; i—1 P )
[ da)ds + 3 3T G ettt - et
tiz1 k=0 j=1 "7
ti P i
:/ )\O(s)ds—i—z &(1—eiﬁf(t“t”l))Aj(i—l)
ti_q =1 5]’
where there is the recursion
Aj(i) _ Z e~ Bilti—tx)
(32)

tr<t;

1—1
:Z e~ Bilti—tk)
k=0

=1+e Fillizti-DA (G — 1)

with A;(0) =0. If X\o(¢) = Ao then (31) simplifies to

P
Z ﬁ(efﬁj(ti—rtk) _ e*ﬁj(tﬁtk))
(33)

k=0 j=1 "7

P
:(tz 7ti,1)A0+ Z %(1 — e_ﬂj(ti_tifl))Aj(’L' — 1)
j=1 "7

1—1
Ati—1,ts) =(ti—ti—1)Xo+ Z

Similiarly, another parameterization is given by

ti P .
A(ti_l,ti) :/ /i)\o(s)ds-i- Z &(1 —e_Bj(ti_tifl))Aj(’L' — 1)
ti_1 =1 Bj
(34)

P
ds+ Y SL(1—ePiltimti-) 4,3 —1)

ts
:m/til Aols) ; 7
(1—e Piltimtiz) A (i — 1)

J
P
:HAo(tifl, tz) + Z %

j=1

<

where & scales the predetermined baseline intensity Ag(s). In this parameterization the intensity
(35)

" o(s)ds.

ti_1

is also scaled by x
P
At) =rAo(t)+ Y a; B;(IV)
j=1

this allows to precompute the deterministic part of the compensator Ag(t;—1,t;) = [

1.3.2. The Hawkes(1) Model.

At)=Xo+ Z ae B t—t)

ti<t

The simplest case occurs when the baseline intensity A\g(t) is constant and P =1 where we have
(36)

(37)

which has the unconditional mean
EA@)]=



1.3.3. Maximum Likelihood Estimation.

The log-likelihood of a simple point process is written as

InL(N(t)ieo, 1) :/0 (1 —)\(s))ds—i—/o InA(s)dN,

T T (38)
=T f/ A(s)ds +/ InA(s)dN,
0 0
which in the case of the Hawkes model of order P can be explicitly written [10] as
InL({t:}iz1.m) =T —=A0,T)+ > InA(t;)
1=1
—T+Z ln)\ ti— 1, )
=T — A(0,T) +Z InA(t
P -1
=T —A(0,T) +Z In{ kAot +Z Z aje_Bf(ti_t’“)
J=1 k=1 (39)
p
=T — AOT—i—Zln KAo(t; ZaRz
j=1
:Tf/ Ro(s)ds =3 3 (1 - e it
0 i=1 j=1 "7
+Z In| rkXo(t;) + Z a; R
where T'=t,, and we have the recursion|[9]
i1
_Z —Bj(ti—tk)
= e
— (40)
—e Filti—ti=D(1 4 R;(i — 1))
If we have constant baseline intensity Ag(¢) =1 then the log-likelihood can be written
n P
InL({ti}iz=1..n) =T — KT — Z & 1— e Piltn=t)
i=1 j=1 J
(41)

+i In )\0+Z o R;(1
i=1 =1

Note that it was necessary to shift each ¢; by ¢; so that t1 =0 and ¢, =T. Also note that T is just
an additive constant which does not vary with the parameters so for the purposes of estimation
can be removed from the equation.

1.3.4. The Hawkes Process in Quantum Theory.

The Hawkes process arises in quantum theory by considering feedback via continuous measure-
ments where the quantum analog of a self-exciting point process is a source of irreversibility whose
strength is controlled by the rate of detections from that source. [12].

1.4. Combining the ACD and Hawkes Models.
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The ACD and Hawkes models can be combined to provide a model for intraday volatility. [2] Let

1

A(t) =Xo(t) + o

+ /O "t — 5)dN, (42)

where Ag(t) is the determinstic baseline intensity(72) and where the ACD(20) part is
m q
z/Ji:w—i—Z Oéjxifj‘f'z ijifj (43)
j=1 j=1

and the Hawkes part has the exponential kernel(26)

,
v(t) =" et (44

so that

P
— Z »yje—sﬂj(t—tk) (45)

where we have replaced a = and = ¢ in the Hawkes part so that the parameter names do not
conflict with the ACD part where « and ( are also used as parameter names. The Hawkes part of
the intensity has a recursive structure similiar to that of the compensator. Let

1—1
B;(i) = e~ Pilt—tk)
0 =2 ()
=1+ B;(i —1))e~ ¥t =4

where B;(0)=0. Then we have

P
1

—Xolt) + - +3 B,(N 47

o WYL TN =+ D] BN $BAN 7

j=1

A(t)

The log-likelihood for this hybrid model can be written as

lnﬁ({ﬁi}i:17,,7n) :zn: <1n)\(ti)_/ti )\(t)dt>

i=1 ti-1

i (111 )\(tz) — A(tifl, tz)) (48)
:Z (ln )\(ti) - gz)



By direct calculation, combining (19) and (31), and letting z; =t; — ;1 we have the compensator

E =A(ti—1,t;)
¢

=/t7 A(t)dt
Z/t;il (Ao(t)wLlet+1 +/Ot Z/(t—s)st>dt
:wﬁ/.ﬂ <)\o(t)+/0t V(t—s)st)dt (49)

:/t1 )\O(t)dt+1'z+z Z ’YJ —<P/(t —1—tk) _ _(P_y(ti—tk))
tia

k:O]l

t;
:/ Ao(t)dt + =% +Z% —emPIT) A (i — 1)

ti—1

where 1); is defined by (43) and
A](l):1+67(’0311A](Z*1> (50)
is given by (32) so that (48) can be wriitten as

In L({t:}i=o0,..,n) :Z (In A(t ;

i=1

)
—i In A\(¢ ( i (1—e %) A;(i—1)
2

1 P
— i (ti—tx) i Yi(]—e=%iT)A .(§—1
P
ij(i)> - <z+ 3 %’_(1 —emPIT) A (i — 1))
j=1

(51)

.
|

S5 m(
*Z 1“(%

1.5. Multivariate Hawkes Models.

'Mw HM

Let M € N* and {(¢{")}m=1,..,m be an M-dimensional point process. The associated counting
process will be denoted N;= (N}, ..., NM). A multivariate Hawkes process[6][4][7] is defined with
intensities A"™(t),m=1...M given by

M t P m,n
AT(E) =N R+ / S agre S TIaNy
n=170 j=1
v op’ .
:/\gl(t)l-@anZ Z Z oz;”’"e_ﬂj =t

n=1 j=1 tp<t

M P o
=T (6™ + Z Z ozgn’"z e Bt

n=1 j=1 tp<t (52)
=AG ()™ + Z Z az»n’"z e~ PIT )
n= 1 j—l tp <t
N —1 e
=M (¢ :‘i-f—zzamnz@ g w
n= 1 j—l

AP Y Y B

n=1 j=1
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where in this parameterization k is a vector which scales the baseline intensity, in this case, specified

by piecewise polynomial splines (72). We can write B;n”(z) recursively

1

-
|

. B (et
BY"(i) =

B
Il

0
(1+B"(i — 1))t

In the simplest version with P=1 and A§'(¢) =1 constant we have

M

A™(t) zfim—l—Z/ ammem ATt N
1 Jo
e Np—1

:Hm+z Z am,nefﬁm'"(tft};)

n=1 k=0

M NP—1
:,‘{m—f— Z on Z e_ﬂm’n(t_t;el)
n=1 k=0
M
=K™ 4" a™" BIW(N})

n=1

Rewriting (54) in vectorial notion, we have

t
At)=rk+ / G(t — s)d Ny
0
where

G(t> = (am,n e_ﬂm,n(t_s))m,nzl...M

Assuming stationarity gives F[\(t)] = u a constant vector and thus

K
- [ G(u)du
K

Iﬁ(am,n
K
I1-T

(54)

(57)

A sufficient condition for a multivariate Hawkes process to be stationary is that the spectral radius

of the branching matrix

m,n

j— > _a
I‘—/O G(s)ds-Bmyn

be strictly less than 1. The spectral radius of the matrix G is defined as

G) =
p(G) alergaé)lal

where S(G) denotes the set of eigenvalues of G.

1.5.1. The Compensator.

The compensator of the m-th coordinate of a multivariate Hawkes process between two con-



secutive events ¢ | and t;" of type m is given by

7
A ) = [ ans
tm
M ' am,n
j By =BTt —tE)
+y A ) (60)
n=1 j=1 tp<t? Bi
M P am7n m,nam n
Yy L[l e )
n=1 j=1 t7  <tp<t? Bi

To save a considerable amount of computational complexity, note that we have the recursion

A;”’"(i) _ Z e B )

<t
—e B (tI"—tI'il)A;mn(Z-i 1)+ Z e B =)

tit St <t

(61)

and rewrite (60) as

o M o "
A™(T ) —nm/ G (s ds+/ Z Z am L R
1—1 n=1

- J=11tp<s
L
—1

+Z Z ﬁm n|:(1 5]’,”«"(151"—151’11)) % AT’n(Zfl)+ Z (16—[3]’"‘"(152"—15?)):| (62)

n= 1] 1 St <t

:nm/ Aot (s)ds
tit

m,n

_,_f: ZP: ;j{(l _e AT "uz“—c:u)) X( Z PR G —cz>) + Z (1- es;’“"u:"tz))}

<, <<

where we have the initial conditions A’""(0) = 0.

1.5.2. Log-Likelihood.

The log-likelihood of the multivariate Hawkes process can be computed as the sum of the log-
likelihoods for each coordinate. Let

I L({ti}im1.ng) = Y L™ ({t:}) (63)

where each term is defined by

T T
lnﬁm({ti}):/o (1—)\m(s))ds+/0 InA™(s)dN" (64)

which in this case can be written as

Nr M P o
InL™({t:}) =T —A™0,T)+ > z"In| AP(E)e™+ Y > e A )
i=1 n=1 j=1 tp<t;
. ; § (65)
T
=T —A™(0,7)+ > In| AP+ Y e A )

i=1 n=1 j=1 tp<t™
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where again ty, =T and

m_ ) 1 eventi;oftypem
% { 0 otherwise (66)
and
A™ O,T)z/ A" (t)dt = A (1, ) (67)
0.10)= [ z 1

where A™ (¢ 1,t7") is given by (62). Similiar to to the one-dimensional case, we have the recursion

RT’”(Z) _ Z e—ﬂ;"""(t?—t?i)

tR<th

e PITTISEED pIan G 1) 5

LSt <t

o B7 T =t ) (1+R""(i—1)) ifm=n

e~ BTt ifm#n (68)

so that (65) can be rewritten as

T
In £ ({t:}) :T—w/ NP(E)dE— ...
0

=Yy e 6" Tl —emmrrer—ay AT =D Y (et Ty
i=1 n=1 j=1 . LSt <t (69)

M P
+Zln A (MK ZZ Q™ RN (j)

with initial conditions R}""(0) = 0 and A7""(0) = 0 where T' = tx where N is the number of
observations, M is the number of dimensions, and P is the order of the model. Again, T can be
dropped from the equation for the purposes of optimization.

2. NUMERICAL METHODS

2.1. The Nelder-Mead Algorithm.

The Nelder-Mead simplex algorithm|[3] was used to optimize the likelihood expressions given
above.

2.1.1. Starting Points for Optimizing the Hawkes Process of Order P.

A starting point for the optimization of a Hawkes process of order P with an “exact” uncondi-
tional intensity was chosen as the most reasonable starting point, but it is by no means claimed to
be the best. Let x;=1¢; —t;_1 be the mterval between consecutive arrival times as in the ACD model
(16). Then set the initial value of Ag to = E[ T Q1P :1% and (1. p=2. This gives an unconditional

mean of E[xz;] for these parameters used as a starting point for the Nelder-Mead algorithm.

3. EXAMPLES

3.1. Millisecond Resolution Trade Sequences.

The source data has resolution of milliseconds but the data is transformed prior to estimation
by dividing each time by 1000 so that the unit of time is seconds. Also, trades occuring at the same
price within 10ms are dropped from the analysis. Further work will be done to find the optimal
level of time aggregation, ideally the data would be timestamped with nanosecond resolution and
this will be done in the future.



3.1.1. Adjusting for the Deterministic Daily Intensity Variation.

It is a well known fact that arrival rates(and the closely related volatility) have daily “seasonal”
or “diurnal” patterns where trading activity peaks after open and before close and has a low around
the middle of the day known as the “lunchtime effect”. In order to account for this we will fit a
cubic spline with 14 knot points spaced every 30 minutes, including the opening and closing times
of t=0 and £ =6.5 x 60 x 60 = 23400 respectively since ¢ has units of seconds. Let the adjusted
durations be defined

T = ¢(ti)w; (70)

where x; =t; — t;_1 is the unadjusted duration and ¢(t;) is a (piecewise polynomial) cubic spline
with knot points at t(zj) with values given by P;

1 Nizj)+w

1
P;= E —for j=0...13 (71)
! (Nt(zj)+w—Nt(zj)—w) T

7;:]\/vt(zj)fw

where z =60 x 30 =1800 is the number of seconds in a half-hour and j=0...(6.5 x2). The first and
last knots have a “window” of 30-minutes whereas the interior knot points have a window of 1 hour
looking forward and backward in time 30-minutes, the first knot point only looks forward and the
last knot point only looks backward. This gives us the “deterministic baseline intensity” which is a
piecewise polynomial cubic spline function whose exact form is not mentioned here since it is not
the focus of the paper/

)\O(t):f(t,PO,...,Pj) (72)

The following figure shows the “deterministic part” of the intensity estimated for SPY on 2012-11-
30 for INET, BATS, and ARCA.

o)

INET
BATS i
ARCA

18

161 b

14 i

0.6 b

04 1 1 1 1 1 1

Figure 1. Interpolatingspline ¢(t) for SPY on 2012-11-30
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The data presented below was estimated without diurnal adjustments so they will need to be
updated in a future version of this paper.

3.1.2. Univarate Hawkes model fit to SPY (SPDR S&P 500 ETF Trust).

Consider these parameter estimates for the (univariate) Hawkes model of various orders fitted
to data generated by trades of the symbol SPY traded on the NASDAQ on Oct 22nd, 2012.
The unconditional sample mean intensity for this symbol on this day on this exchange was
0.7655998283415355 trades per second where the number of samples is n = 17916. No deason-
alization was attempted, which would surely benefit the results; this will be reserved for future
work. As can be seen, P = 6 provides the best likelihood but a more rigorous method to choose
P would be to use some information criterion like Bayes or Akaike to decide the order P. Esti-
mation for P = 7 and greater was attempted but the optimizer kept settling on prior solutions
by taking some « parameters to 0 thus essentially reducing the order of the model. Standard
deviations are not provided, but presumably they could be estimated with derivative information.

P Ao Qi p Bi.p InL({t;}iz1..n) —tn E[X(®)]

1 10.4888895840 |5.4436229616 |15.0588031220 | —14606.0079680 0.76567384816
7.2188754084 | 25.399826568

2 10.13718922357 0.0782472258 | 0.1454607237 —12733.4619196 0.77131730144
0.0000000003 | 28.852294270

3 [0.13163151059 | 7.5467174975 | 23.166515568 | —12506.0576338 0.917666203197
0.0677609554 | 0.1276584845
0.0723686778 | 0.1349722452
1.8881451880 | 16.637110622

4 10.13296929140 51594817028 | 30.626390900 —12716.5362393 0.769984967876
0.2982510629 | 32.490874482
0.0000055317 | 0.5138236561
7.6260052075 | 29.316263593

5*10.06084821553 | 0.1866285010 | 0.7694261263 | —12505.9421508 0.802736706908
0.0000939392 | 0.0693359346
0.0101541140 | 0.0241678794
7.6812049064 | 30.467204143
0.0000040868 | 7.5984574690

N 0.0282570213 | 0.1178289377

6*10.04014430354 0.1970449132 | 1.2119099089 —12478.0771035 0.847703217380
0.0314334590 | 4.7015553402
0.0027981168 | 0.0096010396

*=The exp/In transform was used to ensure positivity of parameters of the estimate whereas absolute value was

used for the others, this resulted in the search point getting over local minima to achieve better likelihood.
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Figure 2. Price history for SPY traded on INET on Oct 22nd, 2012
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Figure 3. z;=t; —t;_1 in blue and {A(¢;_1,t;): P =1} in green
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Figure 4. z;=1t; —t;_1 in blue and {A(t;—1,t;): P=6} in green
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Figure 5. Zoomed in view of x;=t; —t;_1 in blue and {A(t;_1,t;): P=06} in green

3.1.3. Multivariate SPY Data for 2012-08-14.

Consider a 5-dimensional multivariate Hawkes model of order P =1 fit to data for SPY from 3
exchanges, INET, BATS, and ARCA on 2012-08-14. Both INET and BATS distinguish buys from
sells whereas ARCA does not, hence 5 dimensional, 2 dimensions each for INET and BATS and
1 dimension for ARCA which will naturally have twice as high a rate as that for buys and sells
considered seperately. The 5 dimensions are organized as follows:

| BATS Buys | BATS Sells | INET Buys | INET Sells | ARCA Trades | (73)
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SPY Trades on 2012-08-14
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Figure 6.

We say trades for ARCA because the type sent from the data broker is Unknown, indiciating
that it is unknown whether it is a buyer or seller initiated trade. We have the following parameter
estimates where “large” values of « (>0.1) are highlighted in bold.

0.25380789517348
0.269289236349466

A= 0.221292886522613 (74)
0.158954542395839
0.371572853723448
4.3514x 10~°  0.011879 0.2648 1.917x 1078 0.10771
0.021881  2.6164x 1078 2.5725x 108 0.024946 0.25138
o= 0.29092 0.51715  1.1254 x 10~%  0.0029919 0.004607 (75)
0.0041449 0.52852 0.018077  3.2535x 10~°  0.0237
0.021501 0.71358 1.0954 0.15264  4.1222 x 10°

1.0954 10.803 16.665 20.188 9.6059
5.6238 11.558 16.721 18.304 7.9016
B=| 7.8125 15.299 16.431 14.702 6.6458 (76)
8.3083 15.758 17.749 12.953 3.1621
9.4264 16.369 19.303 11.071 2.8302

with a log-likelihood score of 39714.1497.

3.1.4. Multivariate SPY Data for 2012-11-19.
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Consider the same symbol, SPY, as a 5-dimensional Hawkes process as in 3.1.3, for a different
day, on 2012-11-19, estimated with order P = 2 for a total of 105 parameters. «; coefficients
that are >0.1 are highlighted in bold. The parameters listed below resulted in a log-likelihood
value of 36543.8529. An interesting pattern emerges in the [ coefficients where it takes on some
approximate stair-step pattern ranging from 2 to 22. This might be indicitative of some fixed-
frequency algorithms operating across the different exchanges at approximate 1-second intervals.

(

0.113371928486215301
0.116069526955243113
0.120010488406567112
0.140864383337674315
0.236370243964866722

A (77)

0.000000400520039
0.000836306407254
0.000007657273830
0.000000051209296
0.000343063367497

0.000743243048280
0.000048087752871
0.008293393618634
0.044218944305554
0.019728025120072

0.0730760324025721
0.0009983197029208
0.0000346485386433
0.0165858723488658
0.22664219457110

0.0235425002925593
0.36091325418001
0.55279157046563
0.0002898699267899
0.20883023885464

0.14994903109
0.0303494022034
0.0303324666473
0.12041188377
0.0002187148763

0.0247169438667
0.10369500283
0.0619247685514
0.0073308612563
0.37860663035

0.045938324942878493
0.000000961851428240
0.005680420895898976
0.3760898786954499
0.8648532461379836

0.52035195378729
0.0058603752158104
0.0000041940337011
0.0078995090167169
0.0096939577784123

0.0015976654768
0.17159388407
0.0009132788022
0.0000971358022
0.23909856627

0.0219865625857849
0.0001956826269151
0.0161550464515489
0.0022020712790430
0.0000001318796171

Br=

B2=

(1]

[2]
(3]

[4]
(51
6]

(7]
(8]

[o]
[10]
[11]

[12]

2.02691486662775
2.30228990848878
2.71360844613891
3.18861359927744
3.95262799649030

19.6811983441165
20.2253306600591
20.2208259457254
19.7356631996375
20.2972304557004

4.58853278669795
5.70815142794409
6.97390906252072
6.93702281997507
7.76155541730819

20.56326127197891
21.39051471260508
22.20704300748698
21.67330389603866
19.06667927692781

9.21516653991608
9.75920981324501
10.9112224210093
12.0261860231254
13.5039942724633

14.2039223554899
15.0047495693597
16.3935104902520
17.5228876305459
17.3549525971848

17.7230908440328108
17.1640776964259771
17.3801721025480269
17.8876296984556440
18.0730780733303966

18.53440853276660
16.97184115533537
17.88989095276187
15.76838788843381
13.19618799557176

11.10183435325997
9.548598696946248
8.724870367131993
7.534795006501931
6.812943703872132

5.955287687038747
5.459761230875715
4.215302773261564
3.517163899772246
2.825437512911523

(80)

(81)

BIBLIOGRAPHY

C.G. Bowsher. Modelling security market events in continuous time: intensity based, multivariate point process
models. Journal of Econometrics, 141(2):876-912, 2007.

Y. Cai, B. Kim, M. Leduc, K. Szczegot, Y. Yixiao and M. Zamfir. A model for intraday volatility. , , 2007.

JE Dennis and D.J. Woods. Optimization on microcomputers: the nelder-mead simplex algorithm. New Com-
puting Environments: Microcomputers in Large-Scale Computing, :116—122, 1987.

P. Embrechts, T. Liniger and L. Lin. Multivariate hawkes processes: an application to financial data. Journal
of Applied Probability, 48:367-378, 2011.

R.F. Engle and J.R. Russell. Autoregressive conditional duration: a new model for irregularly spaced trans-
action data. Econometrica, :1127-1162, 1998.

A.G. Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58(1):83-90,
1971.

T.J. Liniger. Multivariate Hawkes Processes. PhD thesis, Swiss Federal Institute Of Technology Zurich, 2009.

Y. Ogata. The asymptotic behaviour of maximum likelihood estimators for stationary point processes. Annals
of the Institute of Statistical Mathematics, 30(1):243-261, 1978.

Y. Ogata. On lewis’ simulation method for point processes. Information Theory, IEEE Transactions on,
27(1):23-31, 1981.

T. Ozaki. Maximum likelihood estimation of hawkes’ self-exciting point processes. Annals of the Institute of
Statistical Mathematics, 31(1):145-155, 1979.

TIoane Muni Toke. An introduction to hawkes processes with applications to finance. ,
http://fiquant.mas.ecp.fr/ioane _files/HawkesCourseSlides.pdf.

HM Wiseman. Quantum theory of continuous feedback. Physical Review A, 49(3):2133, 1994.



