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ABSTRACT: We study a given exponential potential bxae  on the Real half-line which is possible 
related to the imaginary part of the Riemann zeros. We study also how we could use the WKB 
method to recover the potential from the Eigenvalue Staircase for the Riemann zeros

       In this paper and for simplicity we use units so 2 1m = = h
• Keywords: =  Riemann Hypothesis, WKB semiclassical approximation, exponential 

potential.

1. Exponential potential and Riemann zeros:

For  1T >>  , the number of Riemann zeros with imaginary part on the interval 
[0, ]T  is given by [3]

7 1 1 1
( ) ln arg

2 2 8 2

T T
N T O iT

e T
ζ

π π π
     = + + + +          

          (1)

Here  
( ) 1

1
1

11
( )

1 2

n

s s
n

s
n

ζ
+∞

−
=

−
=

− ∑  Re( ) 0s >  is the Riemann zeta function [2] .

The Hilbert-Polya version for Riemann Hypothesis  is the following ,can we find 
a Hamiltonian operador with positive and Real (since is a self-adjoint operador) 

so their Energies satisfy  2
n nE γ=  with  

1

2n niρ γ= +  a non-trivial zero of the 

Riemann zeta function?.

For this Hamiltonian on the Real half-line  [0, )∞  in the form  2 ( )H p f x= +  ,the 

potential should be positive ( ) 0V x ≥  , so the energies would be also positive

| | | | | 0n n n n n n nE H p p V= Ψ Ψ = Ψ Ψ + Ψ Ψ ≥     (2)

In order to obtain a Hamiltonian we will use the Bohr-Sommerfeld quantization 
conditions [5] in the form

1



( ) 11
12

0 0

2 ( ) 2 ( ) 2 2 ( )
a a E E

n n x

df
N E E V x dx E x D f x

dx
π π

= − − −= − = − =∫ ∫   (3)

Here ‘a’ inside ( )V a E=  is a turning point of the classical Hamiltonian 
2 ( )H p f x= +  , inside (3) we have used the definition of the half-derivative and 

the half-integral [7]
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Also for our Hamiltonian we have imposed boundary conditions on the half line 
[0, )∞  so the Eigenfunctions ( ) ( )n nHy x E y x=  satisfy the boundary conditions 

(0) 0 ( )n ny y= = ∞ .

From (3) we obtain that the inverse of the potencial can be described implicitly 
in terms of the half-derivative of the Eigenvalue staircase (the smooth par) 
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 the Heaviside’s step 

function  
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To compute the half-derivative we use the representation for the logarithm 

1
ln( )   0

x
x

ε

ε
ε
−≈ → ,  

0

1

!n

e
n

∞

=

= ∑  in this case we get

( ) / 22 2 / 2

1
4 ( )

( )smooth

e A x B
f x

ε επ ε

πε

−

−
−

≈       

2

2 2( ) 4
( )smooth

x B
f x e

A

εε ππ
ε

 +≈    
       (5)

The constants are 
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  and we have used 

the property of the half-derivative of powers of ‘x’  
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The last expression inside (5) is equal to  
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    .So our toy  model or approximate model for the Riemann 

zeros is given bye the Hamiltonian on the half line
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   . the properties of (6) are

• The potential inside (6) tends to ∞  in the limit  x → ±∞  , so (6) has a 
discrete spectrum

• The potential inside (6) is always positive so the Energies will be always 

positive  0nH E= >
• The spectrum is approximately given by the imaginary part of the 

Riemann Zeros, Hamiltonian (6) reproduces approximately the imaginary 
part for the Riemann zeros

• The Bohr-sommerfeld conditions for the exponential potential inside (6) 
reproduces the smooth part of the spectral staircase for the square of the 

imaginary zeros   
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Equation (6) can be inmediatly solved [9] and [1] with a change of variable 
2ux e=  the ODE (6) becomes a differential equation that can be solved in terms 

of the Bessel functions  
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, the exact quantization 

condition (not the one coming from the Bohr-Sommerfeld rules) is then 
determined by the boundary condition on the half real line  [0, )∞  and it is 
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Unfortunately , there is no exact analytic method to solve the equation (8) to 
obtain the energies of the Hamiltonian  so we can only solve (8) by numerical 
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methods, an aproxímate method to obtain the Energies for big values of the 
Quantum number n is to use the semiclassical method 
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 , this equation can be inverted to get the 

energies in term of the Lambert W-function
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If we use the asymptotic property for the Lambert W-function  
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take the positive square root we find  
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π= ≈  , this is precisely the 

imaginary part of the Riemann zeros in the limit n → ∞
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