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Abstract

Gibbs sampling is a well-known Markov Chain Monte Carlo
(MCMC) technique, widely applied to draw samples from multivariate
target distributions which appear often in many different fields
(machine learning, finance, signal processing, etc.). The application
of the Gibbs sampler requires being able to draw efficiently from
the univariate full-conditional distributions. In this work, we present
a simple, self-tuned and extremely efficient MCMC algorithm that
produces virtually independent samples from the target. The proposal
density used is self-tuned to the specific target but it is not adaptive.
Instead, the proposal is adjusted during the initialization stage
following a simple procedure. As a consequence, there is no “fuss”
about convergence or tuning, and the execution of the algorithm
is remarkably speed up. Although it can be used as a stand-
alone algorithm to sample from a generic univariate distribution,
the proposed approach is particularly suited for its use within a
Gibbs sampler, especially when sampling from spiky multi-modal
distributions. Hence, we call it FUSS (Fast Universal Self-tuned
Sampler). Numerical experiments on several synthetic and real data
sets show its good performance in terms of speed and estimation
accuracy.

Keyword: Markov Chain Monte Carlo; Gibbs sampling; adaptive
Metropolis rejection sampling; Bayesian inference.
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1 Introduction

Bayesian methods and their implementations by means of sophisticated
Monte Carlo techniques [12, 19] have become very popular over the last
years. Indeed, many practical problems demand procedures for sampling
from probability distributions with non-standard forms, such as Markov
chain Monte Carlo (MCMC) methods [4] and particle filters [2]. MCMC
techniques generate samples from a target probability density function (pdf)
by drawing from a simpler proposal pdf [11, 12]. The two best known
MCMC approaches are the Metropolis-Hastings (MH) algorithm and the
Gibbs sampler [19]. The Gibbs sampling technique is extensively used in
Bayesian inference [19], e.g., in signal processing [20] and machine learning
[17], to generate samples from multi-dimensional target densities, drawing
each component of the generated samples from the corresponding univariate
full-conditional density.

The key point for its successful application is being able to draw
efficiently from these univariate pdfs. The best scenario for Gibbs
sampling occurs when exact samplers for each full-conditional are available.
Otherwise, sampling techniques like rejection sampling (RS) or MH-type
algorithms are used within the Gibbs sampler to draw from complicated
full-conditionals. In the first case, samples generated from the RS algorithm
are independent, but the acceptance rate can be very low. In the second case,
we have an MCMC-inside-another-MCMC approach. Therefore, the typical
problems of the external-MCMC (long “burn-in” period, large correlation,
etc.) could raise dramatically if the internal-MCMC is not extremely
efficient. Although the Gibbs sampler needs only one sample from each
full-conditional, in this case several iterations are necessary to avoid the
“burn-in” period of the internal-MCMC. The length of the “burn-in” period
is strictly related to the correlation among the samples (higher correlation
corresponds to slower convergence of the chain).

Thus, several automatic and self-tuning samplers, such as adaptive
rejection sampling (ARS) [5, 8], Adaptive Rejection Metropolis Sampling
(ARMS) [6, 7], Independent Doubly Adaptive Rejection Metropolis Sampling
(IA2RMS) [16], and Adaptive Sticky Metropolis [14] have been proposed.
All of these methods build an adaptive sequence of proposal pdfs via some
interpolation procedure given a set of support points. The proposal is
updated when a new support point is incorporated (according to some
statistical criterion). Although their performance can be extremely good,
the results show a dependence from the initial set of support points.
Moreover, depending on the complexity of the target, these algorithms can
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appear too slow. Another drawback is the need of take care of the ergodicity
especially in the applications within Gibbs sampling [7, 19].

In this work, we present a novel algorithm that uses a different strategy:
start with a huge number of support points and then remove some of them,
according to certain conditions. The resulting method is extremely fast
(particularly with a MATLAB implementation) and extremely efficient (it
yields almost independent samples), as shown in the numerical results, even
with high multimodal and complicated targets. The dependence on the
initial set of points is drastically reduced, since the user must provide only a
large interval where he considers that the algorithm should concentrate the
main computational effort. Moreover, the proposal is self-tuned, during the
initialization stage, but non-adaptive afterwards. Hence, ergodicity is not
an issue and the convergence of the chain to the target distribution is always
guaranteed. For these reasons, we call the new method as FUSS algorithm
(“Fast Universal Self-tuned Sampler”) since, with this sampler, there is no
“fuss” about convergence or tuning.

The FUSS algorithm is particularly advisable for multimodal and spiky
target densities, i.e., densities with several sharp modes, where virtually all
of the existent MCMC techniques often fail.

2 Problem statement

Bayesian inference often requires drawing samples from complicated
multivariate posterior pdfs, π(x|y) with x ∈ XD ⊆ RD. A common
approach, when direct sampling from π(x|y) is unfeasible, is using a Gibbs
sampler [19]. At the i-th iteration, a Gibbs sampler obtains the d-th
component (d = 1, . . . , D) of x, xd, drawing from the full conditional pdfs
of xd given all the previous generated components [19, 3, 10], i.e.,

x
(i)
d ∼ π̄(xd|x(i)

1:d−1,x
(i−1)
d:D ) = π̄(xd) ∝ π(xd), xd ∈ X , (1)

with the initial vector drawn from the prior, i.e., x(0) ∼ π̄0(x). However,
even sampling from the univariate pdf in Eq. (1) can often be complicated.
In these cases, a common approach is using another Monte Carlo technique
(e.g., rejection sampling (RS) or the Metropolis-Hastings (MH) algorithms)
within the Gibbs sampler, drawing candidates from a simpler proposal,

p̄(x) ∝ p(x) = eW (x), x ∈ R.

The best case is when an RS technique can be applied since it yields
independent and identically distributed (i.i.d.) samples. However, the
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RS technique requires that p(x) ≥ π(x) for all x ∈ X . In general, it is
not straightforward to satisfies this inequality for: instance, the adaptive
rejection sampling (ARS) technique can be applied only for log-concave
target pdfs. Thus, in general, the use of another MCMC method becomes
mandatory. In this case, the performance of this approach depends strictly
on the choice of p̄(x). For sake of simplicity, in the sequel we denote the
univariate target pdf (i.e., the full-conditional proposal in Eq. (1)) as π̄(x).

Our aim is designing an efficient fast sampler to draw from the univariate
target pdf,

π̄(x) ∝ π(x) = eV (x), x ∈ X ⊆ R, (2)

where π(x) is unnormalized and V (x) = log[π(x)].

3 Structure of the algorithm

The FUSS algorithm is an MCMC based on an independent proposal pdf
built via a simple interpolation procedure (as we show in the next section).
The general structure is given in table 1. We consider here two possible
techniques for the step 4 of FUSS:

• The Metropolis-Hastings (MH) algorithm [19]: it is shown in Table 2.
In this case, we denote the whole method as FUSS-MH.

• The Rejection chain algorithm [21, 22]: it is shown in Table 3. In
this case, firstly a rejection sampling (RS) test is performed; whether
a sample is accepted then a MH step is applied to ensure to drawing
from the target pdf. We denote the whole method as FUSS-RC.

FUSS-RC is slower than FUSS-MH since when a sample is rejected in the
RS test the chain is not moved forward. On the other hand, FUSS-RC yields
samples with less correlation due to application of the RS test. We will test
and compare the performance in the numerical simulations. The notation
a ∧ b denotes the minimum between two real values, i.e., min [a, b].

3.1 Important remarks

It important to stand out the following considerations:

• If p(x|Sm) ≥ π(x) for all x ∈ X then the FUSS-RC algorithm becomes
a rejection sampler, providing i.i.d. samples from π̄(x). Note that, in
this scenario, the probability αRC of accepting the movement is always
1.
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Table 1: General Structure of the FUSS algorithm.

1. Initialization: Choose a set of support points SM = {s1, . . . , sM}, sorted in
ascending order s1 < s2 < . . . < sM , and the total number of desired sample
K.

2. Pruning: Remove certain support points according to some criterion,
providing a new set Sm with m < M .

3. Construction: Build adequately a proposal function p(x|Sm) given Sm, using
a suitable procedure.

4. MCMC algorithm: apply K steps of an MCMC method using p(x|Sm) as
proposal pdf and yielding a set of samples {x1, . . . , xK}.

Table 2: Possible step 4 of FUSS: the Metropolis-Hastings method

3.1 Set k = 0 and choose x0.

3.2 Draw x′ ∼ p̄(x) ∝ p(x|Sm) and u′ ∼ U([0, 1]).

3.4 Set xk+1 = x′ with probability

αMH = 1 ∧ π(x′)p(xk|Sm)

π(xk)p(x′|Sm)
, (3)

otherwise, with probability 1− α set xk+1 = xk.

3.5 If k ≤ K, set k = k + 1 and repeat from step 3.2. Otherwise, stop.

• If FUSS-RC, after the rejection step, the “true” proposal pdf is

q̄(x) ∝ q(x) = π(x) ∧ p(x|Sm).

Thus, q(x) is used as proposal in the acceptance function αRC . Note
also that q(x) is closer to π(x) than p(x|Sm): this is the reason why
FUSS-RC produces samples with less correlation than FUSS-MH.

• All the operations in both algorithms, FUSS-MH and FUSS-RC, can
be easily implemented in log-domain evaluating only the functions
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Table 3: Possible step 4 of FUSS: the rejection chain method

3.1 Set k = 0 and choose x0.

3.2 Draw x′ ∼ p̄(x) ∝ p(x|Sm) and u′ ∼ U([0, 1]).

3.3 If u′ ≥ π(x′)
p(x′|Sm)

repeat from step 3.2.

3.4 If u′ ≤ π(x′)
p(x′|Sm)

, with probability

αRC = 1 ∧ π(x′) [π(xk) ∧ p(xk|Sm)]

π(xk) [π(x′) ∧ p(x′|Sm)]
, (4)

set xk+1 = x′, otherwise, with probability 1− α set xk+1 = xk.

3.5 If k ≤ K, set k = k + 1 and repeat from step 3.2. Otherwise, stop.

V (x) = log[π(x)] and W (x) = log[p(x|Sm)]. In FUSS-MH, the
acceptance probability can be expressed as

αMH = exp
(
V (x′) +W (xk)− V (xk)−W (x′)

)
.

the ratio in the RS test becomes eW (x′)−V (x′) and the probability of
accepting a new state can be expressed as

αRC = exp
(
V (x′) + V (xk) ∧W (xk)− V (xk)− V (x′) ∧W (x′)

)
.

• Steps from 1 to 3 of the general FUSS algorithm in Table 1 are
performed only once. The success of the FUSS algorithms lies on the
speed in performing these steps and the quality of the final proposal
density. If the final built proposal pdf has a shape close to π(x) the
generated samples will be virtually independent.

• The initial support points in SM plays the role of parameters of the
FUSS algorithms. After the pruning, the proposal p(x|Sm) is built
according to the new set Sm. After that, the proposal p is kept
fixed. Thus, the FUSS techniques are standard non-adaptive MCMC,
avoiding any issue about the ergodicity.
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4 Initialization and general FUSS strategy

The initial set SM should be cover the regions of high probabilities described
by the target π(x). In general, if no prior information is available we suggest
the following FUSS approach:

• Choose a huge, thin, initial (uniform) grid of support points, si+1 =
si + ε, i.e.,

SM = s1, s2 = s1 + ε, s3 = s1 + 2ε, . . . , sM ,

in order to capture all the main features of the target.

• Reduce the number of support points according to a certain criterion
(see Section 6 for some examples).

• Build a stepwise approximation of the target pdf given the pruned
support points (see Section 5).

The resulting proposal pdf is a self-tuned but non-adaptive, since it does
not vary during the run of the chain (it is adapted offline).

5 Construction of the proposal density

In several applications, it is useful to evaluate the target pdf in the log-
domain so that, here, we consider the construction of the proposal function
in the log-domain as well. Let us consider a set of support points (after the
pruning step),

Sm = {s1, s2, . . . , sm} ⊂ X ,
where s1 < . . . < sm, and the intervals I0 = (−∞, s1], Ij = (sj , sj+1] for
j = 1, ...,mt − 1 and Im = (sm,+∞). Then, let us consider

p̄(x) ∝ p(x|Sm) = eW (x),

where W (x) is built as in Eq. (5) using a piecewise constant approximation,
with the exception of the first and last intervals corresponding to the tails.
Mathematically,

W (x) = wi = max [V (si), V (si+1)] IIi(x), 1 ≤ i ≤ mt − 1, (5)

where

IIi(x) =

{
1, x ∈ Ii = (si, si+1],
0, x 6= Ii = (si, si+1].

(6)
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In the first and last interval, I0 and Im, we have

W (x) = wj(x), j = {0,m}, x ∈ Ij ,

where wj(x) represents a log-tail. For instance, choosing light tails, wj(x),
j = {0,m}, are linear functions. For further details, see Appendix A and
Figures 1-2.

The choice of taking the maximum is to satisfy, in more regions as
possible, the inequality W (x) ≥ V (x). If this inequality is verified for all
x ∈ X then also p(x|Sm) ≥ π(x), ∀x ∈ X , so that the proposed algorithm
becomes a standard rejection sampler, providing independent samples.
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�
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�
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Figure 1: Example of proposal construction. (a) Construction procedure
with m = 9 support points, in the log-domain. The log-tails are in this
case light tails (two straight lines). (b) The corresponding unnormalized
densities p(x) = eW (x) and π(x) = eV (x). (c) The corresponding normalized
densities p̄(x) ∝ p(x) and π̄(x) ∝ π(x). (d) Construction of p(x) and π(x)
with a thin grid of support points.
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5.1 Variate generation from p̄(x)

Finally, the proposal p̄(x) ∝ p(x|Sm) is composed, in general, by m + 1
pieces (including the two tails). It can be seen as a finite mixture Note that
p̄(x) can be seen as a finite mixture

p̄(x) ∝ p(x|Sm) =
m∑

i=0

ηiφi(x),

where
∑m

i=0 ηi = 1 and

φi(x) ∝ exp (wi) , x ∈ Ii.

Therefore, in order to draw adequately from p̄(x), it is necessary:

1. Compute the area Ai below each pieces, i = 0, . . . ,m. It can be
done analytically easily for the rectangular pieces, and for the tails
(exponential or Pareto) as well. Moreover, normalize them

ηi =
Ai∑m
j=1Aj

, for i = 0, . . . ,m.

2. Choose a piece j∗ ∈ {0, . . . ,m} according to the normalized weights
ηi, i = 0, . . . ,m.

3. Draw x′ ∼ φj∗(x) ∝ exp (wj∗(x)).

It is important to remark that the process of calculate the areas Ai and
then the weights ηi is done once, before running the Markov chain. The
calculation of the areas Ai of the rectangular regions is straightforward and
fast (as also the tails).

6 Pruning algorithms

The computational cost of drawing from p̄(x) and, as a consequence, the
speed of the algorithm depend on the number of support points. The
application of the pruning step has two advantages: it speeds up the
algorithm, and allows the use of a greater number of initial support points
(capturing all the features of the target). In the sequel, we present some
possible pruning criteria, sorted for increasing level of complexity. For
the sake of simplicity, we assume a bounded target π(x). The first two
procedures P1 and P2 are shown in Tables 4 and 5. They are based on the
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Table 4: Pruning algorithm P1

1. Given SM = {s1, . . . , sM}, decide the desired number m of final support points
(or a rate of reduction m

M
).

2. Sort π(si), i = 1, . . . ,M , in decreasing order

π(sr1) = max
1≤i≥N

π(si) ≥ π(sr2) ≥ .... ≥ π(srM ) = min
1≤i≥N

π(si).

3. Return Sm = {sr1 , sr2 , . . . , srm}.

Table 5: Pruning algorithm P2

1. Given SM = {s1, . . . , sM}, choose a value δ ∈ (0, 1).

2. Find all the support points skj ∈ SM such that

π(skj ) ≤ δ max
1≤i≤M

π(si). (7)

3. Return Sm = SM \ {sk1 , . . . , skG}, where G is the number of points satisfying
the inequality (7).

simple idea of pruning all the points sr with “small” value π(sr) (smaller
than the others). They are the simplest and fastest ones but they must use
more carefully than the rest. Moreover, they are not advisable for heavy
tailed distributions. Another drawback of the procedures P1 and P2 is that
the performance are quite sensitive to the dispersion of the target.

A more refined pruning technique P3 in Table 6 can be easily provided.
The underlying idea is that we can remove the support points between which
the target is “almost” flat, i.e., |π(si+1) − π(si)| ≈ 0. Moreover, note that
at the first iteration, if a uniform grid is used, i.e., si+1 − si = ε, the ratio
π(si+1)−π(si)

ε is an estimation of the first derivative, hence a condition over
|π(si+1) − π(si)| can be consider a condition over the first derivative of π.
Clearly, this procedure could be repeated until achieving the desired rate of
reduction or simply iterated N times. In Table 6, the procedure is iterated
until the pruning condition is no longer verified.
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Table 6: Pruning algorithm P3

1. Given SM = {s1, . . . , sM}, choose a value δ ∈ (0, 1). Set S(0) = SM , r = 1 and

L = max
1≤i≤M

|π(si+1)− π(si)| .

2. While G 6= 0:

(a) Find all the support points skj ∈ S
(n) such that˛̨

π(skj+1)− π(skj )
˛̨
≤ δL, (8)

(b) S(r) = S(r−1) \ {sk1 , . . . , skG} where G = |{sk1 , . . . , skG}|.
(c) Set r = r + 1.

3. Return Sm = S(n) \ {s1}.

6.1 Optimal pruning strategy

The performance of a rejection sampler or an independent Metropolis
algorithm is related to the L1 distance between the target and the proposal
[19],

Dp|π(R) =
∫ ∞

−∞
|p(x)− π(x)|dx. (9)

With the proposal procedure considered here, we can write

Dp|π(R) =
m∑

j=0

Dp|π(Ij),

where Dp|π(Ij) denotes the local distance within the i-th interval (0 ≤ j ≤
m),

Dp|π(Ij) =
∫

Ij
|p(x)− π(x)|dx =

∫ sj+1

sj

|p(x)− π(x)|dx, (10)

where for simplicity we define s0 = −∞ and sm+1 = +∞, i.e., I0 = (−∞, s1]
and Im = [sm,∞). Recall that s1 < s2 < . . . < sm. The essential
consideration is the following: when a support point is removed, the distance
between the target and the proposal generally will tend to increase, thus
leading to a worse performance of the algorithm.Hence, an optimal criterion
for pruning support points is discarding those that lead to an increase, as
small as possible, in the L1 distance between p(x) and π(x).
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Table 7: Pruning algorithm P4

1. Choose a value δ ∈ (0, 1). Given SM = {s1, ..., sM}, set S(0) = SM , m = M ,
n = 0 and

L = max
1≤j≤bm−1

2 c
(s2j+1 − s2j−1)|π(s2j+1)− π(s2j−1)|.

2. For r = 1, . . . , R =
¨
m−1

2

˝
:

(a) Compute br = (s2r+1 − s2r−1)|π(s2r+1)− π(s2r−1)|.
(b) If br ≤ δL, set S(r) = S(r−1) \ {s2r} and n = n+ 1.

(c) Otherwise, if br > δ, set S(r) = S(r−1).

3. If n > 0 set n = 0, S(0) = S(R), m = |S(R)| and repeat from step 2.

4. Otherwise, if n = 0, return Sm = S(R).

Since, in this work, the proposal p(x) is a piecewise constant function
(with the exception of the tails) where each constant piece is exp(wi) =
exp(max [V (si), V (si+1)]), and considering a continuous target pdf, it is
apparent that

Dp|π(Ij) ≤ Bj,j+1 = (sj+1 − sj)|π(sj+1)− π(sj)|.

i.e., Bj,j+1 is an upper bound for the L1 distance Dp|π(Ij). If the number
m of used support points grows, then clearly Bj,j+1 → Dp|π(Ij). Thus, the
value Bj,j+1 can be considered as a rough approximation of Dp|π(Ij). This
observation is the theoretical base of the pruning strategy detalied in Table
7: consider a generic interval [sj , sj+2]. Depending on the approximation
Bj,j+2 we decide if pruning sj+1 or not. Clearly, at each iteration at most
R =

⌊
M−1

2

⌋
points can be removed. The procedure is iterated until no more

points are pruned, i.e., when all the bounds br are greater than the threshold
δ. Clearly, the algorithm could be stopped before.
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7 Simulations

7.1 Unimodal pdf: Nakami target

First of all we consider a Nakagami target distribution, i.e.,

π̄(x) ∝ π(x) = x2β−1 exp
(
−β

Ω
x2

)
, x > 0, β ≥ 0.5, Ω > 0. (11)

The Nakagami distribution is widely used for the simulation of fading
channels in wireless communications [1, 13, 18]. When β is an integer or
half-integer (i.e., β = n

2 with n ∈ N), independent samples can be directly
generated through the square root of a sum of squares of n zero-mean i.i.d.
Gaussian random variables. However, for generic values of β there is not
direct method to sample from it.

Here, we consider the goal of estimating the expected value of X ∼ π̄(x),

µ = E[X] = Γ(β+ 1
2

)

Γ(β)

√
Ω
β , and the variance, σ2 = Ω

(
1− 1

β

(
Γ(β+ 1

2
)

Γ(β)

)2
)

, with

Ω = 1 and β = 4.6.
We performs the FUSS methods using different pruning procedures P2,

P3, P4 with different values of the threshold parameter δ. We use an
initial set SM = {0.01, 0.02, 0.03, . . . , 103} with M = 105 points. We
also test a standard MH technique [12, 19] with a random walk proposal
p̄(xk|xk−1) ∝ exp{−(xk−xk−1)2

2σ2
p

} with different values of σp. Finally, we
consider another well-known methodology the slice sampling technique [19,
Chapter 8]. For as fair as possible comparison of the wasted time, we
have used for both the corresponding Matlab functions directly provided
by MathWorks (mhsample.m and slicesample.m).

For all these techniques, we choose x0 ∈ U [0, 10], set K = 5000 and
consider all the generated samples without removing any burn-in period.
We have performed 3 · 104 independent runs and the results are shown in
Tables 8-9. These tables provides the Mean Square Errors (MSE) in the
estimation of µ and σ2, the acceptance rate (0 ≤AR≤ 1) in the rejection
sampling (RS) step, the number of points m after the pruning and the
wasted time. The time values are normalized w.r.t. the time wasted in the
MH method. Due to only FUSS-RC has an RS step, in the other cases, AR
is considered 1 since no sample is discarded. This means, the total number of
iterations if FUSS-RC are greater K = 5000 (depending on the acceptance
rate), whereas for the other methods are exactly K = 5000.

We can see that both FUSS algorithms always outperform the standard
MH and slice techniques and they are also faster. Both FUSS algorithms
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FUSS-MH FUSS-RC

Pruning δ= 0.9 δ= 0.5 δ= 0.3 δ= 0.01 δ= 0.9 δ= 0.5 δ= 0.3 δ= 0.01

P2

MSE(µ) 1.1466 0.4067 0.0501 1.09 10−5 1.1621 0.4444 0.0513 1.05 10−5

MSE(σ2) 0.8679 0.1692 0.0171 1.05 10−6 0.8692 0.1835 0.0172 1.09 10−6

ρ(1) 0.9315 0.6880 0.1720 0.0046 0.8791 0.6837 0.1406 -3.08 10−4

AR 1 1 1 1 0.5211 0.8912 0.9516 0.9829
m 22 55 72 138 22 55 72 138

Time 0.6683 0.6742 0.6781 0.6875 1.2776 0.7947 0.7527 0.7328

P3

MSE(µ) 0.0026 1.66 10−4 1.21 10−4 1.06 10−5 0.0019 3.00 10−4 8.23 10−4 1.05 10−5

MSE(σ2) 6.51 10−4 5.94 10−5 6.11 10−5 1.13 10−6 3.02 10−5 1.09 10−6 8.56 10−5 1.10 10−6

ρ(1) 0.0317 0.0141 0.0089 0.0053 0.0091 2.95 10−4 4.42 10−4 -2.14 10−4

AR 1 1 1 1 0.9570 0.9730 0.9787 0.9830
m 50 88 106 166 50 88 106 166

Time 0.6712 0.6816 0.6859 0.7019 0.7676 0.7408 0.7424 0.7426

P4

MSE(µ) 1.10 10−5 1.09 10−5 1.06 10−5 1.06 10−5 1.10 10−5 1.09 10−5 1.05 10−5 1.05 10−5

MSE(σ2) 1.19 10−6 1.14 10−6 1.12 10−6 1.10 10−6 1.13 10−6 1.10 10−6 1.09 10−6 1.08 10−6

ρ(1) 0.0133 0.0096 0.0078 0.0053 1.27 10−4 -6.41 10−4 -2.45 10−4 -2.62 10−4

AR 1 1 1 1 0.9666 0.9769 0.9800 0.9832
m 71 109 121 177 71 109 121 177

Time 0.6849 0.6937 0.6957 0.7105 0.7339 0.7397 0.7380 0.7502

Table 8: Results of FUSS methods with different pruning procedures,
K = 5000 and the Nakagami target with β = 4.6 and Ω = 1.

σp= 0.2 σp= 0.5 σp= 0.8 σp= 1 σp= 2 σp= 3 σp= 4

MH

MSE(µ) 0.0021 3.95 10−4 1.98 10−4 1.52 10−4 1.43 10−4 1.90 10−4 2.52 10−4

MSE(σ2) 0.0513 0.0091 0.0039 0.0027 9.20 10−4 6.18 10−4 5.69 10−4

ρ(1) 0.8935 0.7495 0.7433 0.7611 0.8389 0.8808 0.9043
AR 1 1 1 1 1 1 1

Time 1 1 1 1 1 1 1

Slice sampling

MSE(µ)= 1.24 10−5 MSE(σ2)= 2.27 10−5 ρ(1)= 0.0229 AR=1 Time= 2.5037

Table 9: Results of the standard MH and slice sampling methods, K = 5000
and the Nakagami target with β = 4.6 and Ω = 1.

virtually reaches the performance of an exact sampler in the estimation of
µ using independent samples, that is

MSE(µ) ≥ MSEind(µ) =
σ2

K
= 1.0560 10−5,

FUSS-MH clearly is always faster than FUSS-RC since the lack of rejection
sampling test. On the other hand, for the same reason FUSS-RC provides
better results (with some exceptions with the pruning P2)1. Note that,

1FUSS-RC always has less correlations among samples than FUSS-MH and, as a
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in spite of the greater number of iterations owing to the rejected samples,
FUSS-RC is faster than the standard MH and the slice sampling. The time
spent in FUSS-MH always increases (almost linearly) with m, whereas in
FUSS-RC the computational cost can also decrease when m grows due to
an improvement in the acceptance rate. where σ2 is the variance of the
target in Eq. (11). The pruning procedures P3 and P4 performs clearly
better than P2. The best one, in terms of pruning performance, is P4, as
expected. Indeed, P4 chooses the final support points in a better way: it can
be seen comparing the time values, i.e., FUSS-RC-P4 is always faster than
FUSS-RC-P3, even if more points are used. The reason is that the points are
better located so that the L1 distance between target and proposal is smaller
and the acceptance rate greater. It can be noted observing also that FUSS-
RC-P4 with δ = 0.9 uses only m = 71 points and obtained AR= 0.9668,
whereas FUSS-RC-P3 with δ = 0.5 uses m = 88 achieving AR= 0.9577 and
FUSS-RC-P3 with δ = 0.3 uses m = 106 obtaining AR= 0.9635. Namely,
FUSS-RC-P3 even with more points can have an AR smaller than FUSS-
RC-P4. Thus, FUSS-RC-P4 results be faster than FUSS-RC-P3. On the
other hand, FUSS-MH-P3 works lightly faster than FUSS-MH-P4, providing
similar performance.

References

[1] N. C. Beaulieu and C. Cheng. Efficient Nakagami-m fading channel
simulation. IEEE Transactions on Vehicular Technology, 54(2):413–
424, 2005.
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A Tails

The choice of the tails is important for two reasons: (a) to accelerate the
convergence of the chain to the target (in the case, for instance, of heavy-
tailed target distributions) and (b) to increase the robustness of the method
avoiding “to cut-off” some modes, which are not contained in the thin grid
SM , for instance.

In general, the construction of tails with a great area below them, reduces
the dependence on a specific choice of the initial support points. When it is
impossible, a good choice is to build tails such that p(x) ≥ π(x) for x ∈ I0

and x ∈ Im. This is always possible when the target pdf has light tails (i.e.,
convex tails in the log-domain).

A.0.1 Light Tails

In this case, we use two exponential pieces

p(x|Sm) = eh0x+b0 , ∀x ∈ I0; p(x|Sm) = ehmx+bm , ∀x ∈ Im.

The linear function, w0(x) = h0x + b0 is the straight line passing through
the points (s1, V (s1)) and (s2, V (s2)), whereas the second linear function
wm(x) = hmx+bm is the straight line passing through (sm−1, V (sm−1)) and
(sm, V (sm)).
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Note that we can easily compute analytically the area below each piece,
and we can also easily draw from each exponential tail by inversion method
[19].

A.1 Heavy Tails

For heavy tails, we propose to use Pareto pieces with the analytic form

p(x|Sm) = eρ0
1

|x− µ0|γ0
, ∀x ∈ I0; p(x|Sm) = eρm

1
|x− µm|γm

, ∀x ∈ Im,

directly in the pdf domain with γj > 1, j ∈ {0,m}. In the log-domain, this
is equivalent to

w0(x) = ρ0 − γ0 log(|x− µ0|), for x ∈ I0,

wm(x) = ρm − γm log(|x− µm|), for x ∈ Im,

Fixed the parameters µj , j ∈ {0,m}, the remaining ρj and γj are set in
order to satisfying the passing conditions through the points (s1, V (s1)),
(s2, V (s2)), and through (sm−1, V (sm−1)), (sm, V (sm)), respectively. The
parameters µj can be arbitrarily chosen by the user, fulfilling the inequalities

µ0 > s2, µm < sm−1.

Values of µj such that µ0 ≈ s2 and µm ≈ sm−1 yields small values of γj
(close to 1) and, as a consequence, fatter tails. Greater differences |µ0 − s2|
and |µm − sm−1| yields γj → +∞, i.e., lighter tails. In the limit case,
they coincide with the exponential construction presented above. Different
examples of construction are illustrated in Figure 2.

As in the previous case, we can compute analytically the integral of
p(x|Sm) in I0 and Im. We can also easily draw from each Pareto tail by
inversion method [19].
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Figure 2: Example of construction of heavy tails in the log-domain of
the pdf. (a) Example with a specific choice of the parameters µ0 > s2

and µm−1 < sm−1 (m = 10 in figure). (b)-(c) Alternative right log-tail
constructions, decreasing the parameter µm−1. For µm−1 → −∞, the log-tail
tends to be a straight line passing through (sm−1, V (sm−1)), (sm, V (sm)).
(d) Construction of the right log-tail with µm−1 ≈ sm−1. In this case,
µm−1 → sm−1, it tends to be a constant line.
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