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ABSTRACT

Monte Carlo (MC) methods are well-known computational techniques in different fields as signal processing, communications,
and machine learning. An important class of MC methods is composed of importance sampling (IS) and its adaptive extensions,
e.g., Adaptive Multiple IS (AMIS) and Population Monte Carlo (PMC). In this work, we introduce an adaptive and iterated
importance sampler using a population of proposal densities. The novel algorithm, called Adaptive Population Importance
Sampling (APIS), provides iteratively a global estimation of the variables of interest, using all the samples generated. APIS
mixes together different convenient features of the AMIS and PMC schemes. Furthermore, APIS uses simultaneously simple
and more sophisticated approaches (as the deterministic mixture) to build the IS estimators. The cloud of proposals is adapted
by learning from a subset of previously generated samples, in such a way that local features of the target density can be better
taken into account compared to single global adaptation procedures. Numerical results show the advantages of the proposed
sampling scheme in terms of mean square error. The resulting algorithm is also more robust in terms of sensitivity to the initial
choice of the parameters w.r.t. other techniques as AMIS and PMC.

Index Terms— Monte Carlo methods, adaptive importance sampling, population Monte Carlo, iterative estimation.

1. INTRODUCTION

Monte Carlo (MC) methods are widely used in signal processing and communications for statistical inference and stochastic
optimization[1, 2, 3, 4, 5, 6, 7]. Importance sampling (IS) [8, 9] is a well-known MC methodology to compute efficiently
integrals involving a complicated multidimensional target probability density function (pdf), π(x) with x ∈ Rn. Moreover,
it is often used in order to calculate the normalizing constant of π(x) (also called partition function) [9], useful in several
applications, like model selection [10, 11, 12].

The IS technique draws samples from a simple proposal pdf, q(x), assigning weights to them according to the ratio between
the target and the proposal, i.e., w(x) = π(x)

q(x) . However, although the validity of this approach is guaranteed under mild
assumptions, the variance of the estimator depends notably on the discrepancy between the shape of the proposal and the target.
The Markov Chain Monte Carlo (MCMC) algorithms [13, 8] are other well-known MC techniques which generates a Markov
chain converging to the target distribution. The MCMC techniques present often random walks around the regions of high
probability. Perhaps, for this more explorative behaviour, the MCMC methods are usually preferred for large dimensional
applications [14, 6, 15, 16]. Nevertheless, MCMC algorithms also present several issues: the diagnostic of the convergence is
often difficult, and it is not straightforward to estimate the partition function (i.e., the normalizing constant of the target) given
the generated samples.

In order to overcome these issues, several works are devoted to the design of adaptive IS schemes [9], where the proposal
density is updated by learning from all the previously generated samples. The Population Monte Carlo (PMC) [17] and the
Adaptive Multiple Importance Sampling (AMIS) [18] methods are two general schemes that combine the proposal adaptation
idea with the cooperative use of a cloud of proposal pdfs. In PMC, a population of proposals is updated using propagations
and resampling steps [9, Chapter 14]. The IS estimator is built the standard IS approach using different proposals. For its
simple applicability and its good performance, PMC schemes have been widely applied in signal processing [19, 20, 21]. In
[22, 23, 21] a mixture of different proposals is used and adapted within a PMC scheme. In AMIS, a single proposal is adapted
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as in a standard adaptive IS fashion, but the sequence of all the previous proposals are used to build the importance weights and
global estimator according to the so-called determinist mixture approach [24, 25]. This implies that all the previous proposals
must be evaluated at the new samples, and also the new proposal pdf must be evaluated at the previous samples, thus yielding
an increase in computational cost as the algorithm evolves in the time. This single proposal could also be a mixture of pdfs,
but the adaptation in this case involves more complicated methodologies (as clustering techniques), increasing even more the
computational cost. Recently, AMIS has been successfully applied to genetic inference problems [26]. In both methodologies,
AMIS and PMC, the update of the proposals can be also carried out by applying certain optimality criterion, such as the
minimization of the Kullback-Leibler divergence [22, 23].

In this work, we introduce a novel population scheme, adaptive population importance sampling (APIS).1 APIS draws
samples from different proposal densities at each iteration, weighting these samples according to the so-called deterministic
mixture approach proposed in [24, 25] for a fixed (i.e., non-adaptive) setting. At each iteration, the APIS algorithm computes
iteratively a global IS estimation, taking into account all the generated samples up to that point.

The main difference w.r.t. the existing AMIS and PMC schemes lies in the more streamlined adaptation procedure of APIS
and the procedure to build the estimators. APIS starts with a cloud ofN proposals initialized randomly or according to the prior
information available, with the location parameters spread in the state space. Each proposal can use a different scale parameter.
Since the adaptation of the scale parameters can be problematic for the performance of the sampler, we focus on the update of
the location parameters in order to ensure the robustness of the algorithm. The algorithm is then divided into groups (epochs)
of Ta iterations, where the proposals are kept fixed and Ta samples are drawn from each one. At the end of every epoch,
the Ta samples drawn from each proposal are used to update its parameters (using partial IS estimators). At each transition
between epochs, the location parameters are updated and the adaptation memory “refreshed”: this approach enables APIS to
take advantage of the variances of the partial IS estimator and, as a consequence, APIS is able to extract specific and localized
features of the target. Namely, one proposal can describe a specific region, while the remaining proposals explore different parts
of the state space. It is also important to remark that the APIS adaptation procedure does not require any additional computation
in terms of evaluation of the target and proposal pdfs.

The novel technique does not require resampling steps to prevent the degeneracy of the mixture, avoiding the loss of diversity
in the population. This is a common problem for sampling-importance resampling type algorithms: sometimes additional
MCMC moves are applied [28]. Moreover, in [29], the authors attempt to diminish this negative effect forcing “artificially” a
certain number of highest importance weights to be equal. Thus, their approach moderates the selective effect of the resampling.
Following the previous observations, we also propose a possible interaction among the proposal locations applying MCMC
moves, preserving more the diversity in the population than the use of resampling steps. We call the resulting technique Markov
APIS (MAPIS). MAPIS contains two sources of movement: the APIS movements with the additions of MCMC iterations.

In APIS, at each iteration, the cloud of proposals partake jointly in the construction of an IS estimator using the deterministic
mixture approach [24, 25], that introduces more stability in the estimation. This estimator is combined with the past estimators
using a simpler strategy (than in AMIS): a standard (simpler than the determinist mixture) IS estimator using multiple proposals
is built. Therefore, in this sense, APIS uses an approach “in-between” PMC and AMIS (for further clarifications see Appendix
A in this work). Numerical results show that APIS improves the performance of a standard non-adaptive multiple importance
sampler regardless of the initial conditions and parameters. We have also compared APIS performance with different AMIS and
PMC schemes. In general, APIS outperforms both approaches showing more robustness to the choice of the initial parameters.

The paper is organized as follows. The general problem statement is described in Section 2, and the novel algorithm is
introduced in Section 3. In Section 4, we discuss how to tune efficiently the parameters of the novel scheme and we suggest
a robust implementation. In Section 5, we introduce the MCMC adaptation. Section 6 is devoted to analyze differences and
similarities among APIS, AMIS, and PMC methods. Furthermore, an exhaustive numerical comparison is provided in Section
7 whereas, in Section 8, we consider the application of APIS in a localization inference problem [30, 31, 32]. Finally, we
conclude with a brief summary in Section 9.

2. PROBLEM STATEMENT AND AIM OF THE WORK

In many applications, we are interested in inferring a variable of interest given a set of observations or measurements. Let us
consider the variable of interest, x ∈ X ⊆ Rn, and let y ∈ Rd be the observed data. The posterior pdf is then

p(x|y) =
`(y|x)g(x)

Z(y)
∝ `(y|x)g(x), (1)

1A preliminary version of this work has been published in [27]. With respect to that paper, here we suggest a interacting adaptation using an MCMC
technique, discuss the construction and the consistency of the estimators, and add several different numerical applications, with different target pdfs and with
an application in sensor networks. Comparisons with different other sapling algorithms are also included.



where `(y|x) is the likelihood function, g(x) is the prior pdf and Z(y) is the model evidence or partition function (useful in
model selection). In general, Z(y) is unknown, so we consider the corresponding (usually unnormalized) target pdf,

π(x) = `(y|x)g(x). (2)

Our goal is computing efficiently the expected value of f(X) where X ∼ π(x)
Z , i.e., an integral measure w.r.t. the target pdf,

I = E[f(X)] =
1

Z

∫
X
f(x)π(x)dx, (3)

where Z =
∫
X π(x)dx. Our goal is to design a sampling algorithm able to estimate jointly I and Z. We desire a sampler as

efficient and as robust as possible, so that the interested user can apply it easily to different problems.

3. THE APIS ALGORITHM

The adaptive population importance sampling (APIS) algorithm estimates jointlyZ and I by drawing samples from a population
of adaptive proposals. For the sake of simplicity, here we only consider a population of Gaussian proposal pdfs. However, the
underlying idea is more general: many kinds of proposals could be used, including mixtures of different types of proposals.

The covariance matrices of the proposals are kept fixed, whereas the adaptation of APIS is only focused on the location
parameters (the mean of the Gaussians). We prefer not to adapt higher order parameters (unlike in [16, 33]), in order to
reinforce the robustness of the sampler: the adaptation of higher order parameters is more delicate and it can be crucial for the
performance of the sampler. However, in APIS we can set different parameter values for each proposal pdf so the dependence
of the initial condition is strongly reduced (without affecting the perfomance). In order to avoid a loss of diversity in the
population, resampling steps are not used. The APIS algorithm is summarized in Table 1.

3.1. Remarks and observations

In this section, we provide some important remarks on several aspects of the APIS algorithm. First of all, let us observe that the
algorithm works on two different time scales:

• At each iteration (t = 1, . . . , T = MTa), APIS computes the “current” estimate of the desired integral, Ĵt, and updates
recursively the global estimates of the desired integral and the normalizing constant, Ît and Ẑt respectively.

• At the end of each epoch, the parameters of the N proposals, µ(m)
i for 1 ≤ i ≤ N , are updated.

Moreover, note that:

1. All the different proposal pdfs must be normalized.

2. We can equivalently state that, in APIS, we draw from a mixture of N pdfs, with equal weights

q∗(x) =
1

N

N∑
j=1

q
(m)
j (zi), (12)

as shown in the denominator in Eq. (4). The way to draw form this mixture is called “deterministic” [24, 25] since we
draw always one sample form each pdf in the mixture. For further details, see Appendix A.2. APIS provides a procedure
to update the location parameters µi, i = 1, . . . , N , in the mixture.

3. The update of the location parameters µ(m)
i is done only using the last Ta samples drawn from the i-th proposal, and

building partial IS estimators of the expected value of the target. APIS is driven by the “IS estimation errors”: APIS takes
advantage of the variances of each partial IS estimators. The memoryless feature of APIS facilitates that each proposal
pdf could describe local features of the target. Typically, the proposals remain stuck in some regions or a random walk is
generated around areas of high probabilities, in the state space X ⊂ Rn.

4. Steps 4 and 5 of APIS do not require additional evaluations of the target and the proposal pdfs since they are already
evaluated at zi, i = 1, . . . , N , in step 2.



Table 1. APIS algorithm.

1. Initialization: Set t = 1, m = 0, Î0 = 0 and L0 = 0. Choose N normalized Gaussian proposal pdfs,

q
(0)
i (x) = N (x;µ

(0)
i ,Ci), i = 1, . . . , N,

with mean vectors µ(0)
i and covariance matrices Ci (i = 1, . . . , N ). Select the number of iterations per epoch, Ta ≥ 2, and the total number

of iterations, T = MTa, with M ≤ T
2
∈ Z+ denoting the number of epochs. Set also ηi = 0 and Wi = 0 for i = 1, . . . , N .

2. IS steps:

(a) Draw zi ∼ q
(m)
i (x) for i = 1, . . . , N .

(b) Compute the importance weights,

wi =
π(zi)

1
N

∑N
j=1 q

(m)
j (zi)

, i = 1, . . . , N, (4)

and normalize them, w̄i = wi
S

, where S =
∑N

j=1 wj .

3. Iterative IS estimation: Calculate the “current” estimate of I = E[f(X)],

Ĵt =
N∑
i=1

w̄if(zi) ≈ I, (5)

and the global estimate, using the recursive formula

Ît =
1

Lt−1 + S

(
Lt−1Ît−1 + SĴt

)
≈ I, (6)

where Lt = Lt−1 + S. Note that Ẑt = 1
Nt
Lt.

4. Learning:

(a) Compute

ρi =
π(zi)

q
(m)
i (zi)

, i = 1, . . . , N. (7)

(b) Calculate the partial estimations of the mean of the target,

ηi =
1

Wi + ρi
(Wiηi + ρizi) ≈ E[X], (8)

and set Wi = Wi + ρi for i = 1, . . . , N .

5. Proposal adaptation: If t = kTa (k = 1, 2, . . . ,M ):

(a) Change the location parameters µ(m)
i according to their partial estimations of the mean of the target, i.e., set

µ
(m+1)
i = ηi, i = 1, . . . , N, (9)

and q(m+1)
i = N (x;µ

(m+1)
i ,Ci).

(b) “Refresh memory” by setting ηi = 0 and Wi = 0 for i = 1, . . . , N . Set also m = m+ 1.

6. Stopping rule: The simplest possibility is: If t < T , set t = t+ 1 and repeat from step 2. Otherwise, end.

7. Outputs: Return the estimate of the desired integral,

ÎT ≈ I =
1

Z

∫
X
f(x)π(x)dx, (10)

as well as the normalizing constant of the target pdf,

ẐT ≈ Z =

∫
X
π(x)dx. (11)

5. The global estimators, ÎT and ẐT , are iteratively obtained by an importance sampling approach usingNT samples drawn
fromNM different proposals: N initial proposals chosen by the user, andN(M−1) proposals adapted by the algorithm.

6. Different stopping rules can be applied to ensure that the global estimators produce the desired degree of accuracy, in
terms of Monte Carlo variability. For instance, one possibility is taking into account the variation of the estimate over
time. In this case, the algorithm could be stopped at any iteration t∗ < T , since an IS approach does not have the
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Fig. 1. Contour plot of the target π(x) in Section 7.1, the initial means µ
(0)
i (squares) and the final means µ

(T )
i (circles)

locations of the means of the proposals for a single run of APIS (σ = 5, N = 100, M = 40, T = 2000, Ta = T
M = 50).

The trajectories of two means in the sample population are depicted in dashed line. (a) “Bad” initialization denoted as In1,
µ

(0)
i ∼ U([−4, 4]× [−4, 4]). (b) A better initialization denoted as In2, µ(0)

i ∼ U([−20, 20]× [−20, 20]).

convergence issues (“burn-in” period) appearing in MCMC methods.

7. PIS scheme (static APIS): A degenerate static algorithm appears if Ta = T (i.e., M = 1): indeed, in this case, the
adaptation is not applied. In this static scenario an iterated multiple IS algorithm is performed, denoted as PIS or static
APIS. PIS combines the deterministic mixture idea and the standard IS approach to build the global estimators and, for
this reason, is different from a standard multiple IS scheme. For more details, see Appendix A.

Finally, consider only the transitions (i.e., t = mTa), In APIS, we draw Ta ≥ 2 samples from each proposal, providing a single
global estimation. Thus, in the previous description the index t could be removed. Indeed, within an epoch the proposals do
not change, so we could draw Ta i.i.d. samples directly from each proposal and then adapt the proposals using these samples.
However, we prefer to maintain the previous description to emphasize the fact that the accuracy of the estimator can be tested
at each iteration t, and that the algorithm could be stopped at any time.

3.1.1. Blind adaptation

APIS considers a completely blind strategy to change the values of µi. This is an important feature in order to design a robust
and light algorithm, i.e., (a) less dependent on the choice of the parameters, (b) less costly, and easier to be implemented.
In this approach, the algorithm attempts to improve the positions µi only using the evaluations of the target achieved online.
Indeed, we are not considering any discrepancy function between the target and the proposals or any other optimal criteria for
decreasing the variance of the IS estimator. Using this blind approach, a good final configuration of the location parameters
is to be around all the modes of the target. Thus, in this case, an ideal configuration is that µi be exactly distributed as the
target π. This behaviour can be also found in the standard PMC schemes where the location parameters are adapted using
resampling steps unlike in APIS, e.g., discarding means µi far away from the modes of π and replacing the well-located means
µi (according to the importance weights). Namely, we can state that the APIS adaptation yields similar effects to the use of
resampling but reducing the loss of diversity in the population.

Fig. 1 shows a contour plot of a multimodal target π(x) and the evolution of the location parameters µi, after a run of
T = 2000 iterations of APIS with M = 40, Ta = T

M = 50 (using Gaussian proposals with Ci = σ2I2, σ = 5). In Fig. 1(b),
the initialization (µ(0)

i , shown with squares) is obviously better then in Fig. 1(a), covering the areas of high probability. Fig.
1 also depicts the final locations of the means, µ(T )

i (circles), after T iterations of APIS. Furthemore, the trajectories of two
means in the population are depicted in dashed line. Note that, in some cases, a random walk among different modes is induced
whereas, in other cases, the corresponding mean remains stuck in a local mode, after some iterations. For further considerations,
analysis and details, see Section 5.



4. CHOICE OF THE PARAMETERS AND ROBUST IMPLEMENTATION

As in any other Monte Carlo technique, the performance of APIS depends on the initialization and choice of the parameters,
although this sensitivity is reduced w.r.t. a standard IS approach, as illustrated in the simulations. Hence, if some prior informa-
tion about the target is available, it should be used to choose the initial parameters. However, if no prior information is available,
a black-box and robust implementation is desired by the user. In the following, we discuss how changes in the parameters affect
the performance and, at the same time, provide some suggestions to design an APIS algorithm as robust as possible.

1. Class of proposal pdfs: The class of the proposal densities, i.e., their parametric form, can be different for each proposal.
In this work, for the sake of simplicity, we focus our attention on the use of Gaussian proposal pdfs. Obviously, we
can use different type of proposal densities, or also a mixture of different kinds of pdfs. For the black-box and robust
implementation point of view, a better choice is the use of heavy-tailed distributions as t-Students pdfs, for instance. This
is also the idea in the so-called defensive sampling strategy in [34], [9, Chapter 3].

2. Initial location parameters µ(0)
i : If no information of the target is provided, then the values of µ(0)

i , i = 1, . . . , N , must
be chosen in order to cover as much as possible of the target’s domain, X ⊆ Rn, as using a improer uniform prior.

3. Scale parameters Ci: The adaptation of moments of higher order is, in general, more challenging and crucial for perfor-
mance. For instance, an inadequate adjust of the scale parameters, at some iteration t, can easily jeopardize the capability
of the sampler for the next iterations. As a consequence, in general, the adaptation of the scale parameters needs an ac-
curate theoretical study and a thorough tuning of the initial value of parameters by the user, before applying the sampler.
For this reason, in this work, we prefer to adapt only the location parameters of proposals since APIS allows the joint use
of several variances. The simplest possibility is to choose randomly within a range the scale parameters of each proposal.
Other possibility is to associate more than one variances to each proposal pdf. Indeed, considerNµ initial location param-
eters µ(0)

i ∈ X ⊆ Rn. For each µ
(0)
i , choose Nσ different scale parameters, implying that the total number of different

proposals is N = NµNσ . Another possible idea is to divide the proposal pdfs in two groups: “sedentary” proposals for
local search (small variances) and “nomad” proposals with explorative behaviour (bigger variances).

4. Choice of T = M
Ta

: The parameter Ta is the number of iterations in each epoch, i.e., the number of iterations with
the same location parameters µi. As a consequence, Ta is also the number of samples used to choose the new location
parameters, at the end of the epoch. As Ta grows, each partial IS estimator ηi (used to adapt the the proposals) would
provide a better estimation, closer to the expect value of the target π(x), and also closer to each others, i = 1, . . . , N .
Although it is clearly a good scenario, paradoxically in APIS, it is not the best situation. Indeed, the proposals tend to
cover the same region of the target domain, losing diversity in the population. When Ta becomes smaller, the proposal
pdfs tend to be spread out around the regions of high probability, that could be better configuration for the performance
of the global estimator. If Ta is too small, large and almost random movements of the proposals are facilitated so that
some proposal could yield an explorative random walk in the state space2. However, even with a bad choice of the
parameters, APIS remains in any case a valid technique: even in the worst cases, APIS provides similar behaviours and
better performance than an adaptive IS scheme (using a single proposal) and a static multiple IS scheme with a random
choice of the parameters.

The numerical results in Section 7 also suggest the existence of an optimal value T ∗a which depends of the scale parameters
of the proposals. In general, the use of small variances prefers a use of smaller valuse of Ta, whereas big variances prefer
greater values of Ta. Different values of T (i)

a , one for proposal, could be applied according to the scale parameter of the
i-th proposal. Furthermore, the values T (i)

a can be also change with the time step: smaller values for a more explorative
behaviour at the beginning, and greater values to reduce the “entropy” of the clouds.

4.1. Sequential approach

In order to increase the robustness of the performance of APIS, a sequential approach can be used. Indeed, as the dimension
n of the space X ∈ Rn increases, the inference problems are intensified, since the relative volume of x where π(x) is high
becomes extremely small. Consider to split the data y into R different disjoint sets, i.e., y = ∪Rr=1y

(r) and y(j) ∩ y(k) = ∅ for

2A physical analogy could help the reader in the understudying: defining an energy variable E = 1
Ta

, increasing Ta means to cool down the cloud (less
energy E) whereas decreasing Ta means to heat up the system, i.e., rise the energy E in the cloud of particles, increasing the total entropy.



all j, k ∈ {1, . . . , R}. Then, we apply APIS starting with the initial cloud {µ(0)
i,1 }Ni=1, and considering the partial (unnormalized)

target pdf
π1(x) = `(y(1)|x)g(x),

for T iterations and M = T
Ta

epochs (T can be relatively small). Thus we obtain a final configuration of the cloud {µ(M)
i,1 }Ni=1.

Then, we apply again APIS starting with {µ(0)
i,2 }Ni=1 = {µ(M)

i,1 }Ni=1 and considering the partial (unnormalized) target pdf

π2(x) = `(y(1),y(2)|x)g(x) = `(y(1:2)|x)g(x),

and so on. At the r-th step, we start with {µ(0)
i,r }Ni=1 = {µ(M)

i,r−1}Ni=1 and handle the target πr(x) = `(y(1:r)|x)g(x). Note
that πR(x) = π(x). This strategy helps the convergence of the estimators, yielding more robust performance. There is a clear
connection between this approach and the tempering of the target idea suggested in different works [35], where a sequence of
different target is used. However, we consider this strategy more natural since appears as an automatic “tempering”, instead that
changing the scale of target artificially. This sequential approach is also more informative since at each sub-step, APIS provide
also an estimator Î(r)T related to the amounts of interest.

5. MCMC INTERACTION: MARKOV APIS

In APIS the adaptation of the location parameter of a proposal is done independently from the rest of the population. Here, we
propose a possible interaction procedure among the location parameters of the proposal pdfs (the means of the Gaussians). The
easiest way could be to use a kind of resampling step: draw N samples from a multinomial probability mass function (pmt)
using probabilities proportionally to π(µ

(m)
i ). However, this procedure can yield a loss of diversity in the population. For this

reason, we apply other approach described below.
We propose to share information applying an MCMC technique over the cloud of means µi, at each transition iterations

between two epochs (t = mTa with m = 1, . . . ,M ), or only in few of them. A possible adequate technique is the Sample
Metropolis-Hastings algorithm [13, Chapter 5]: the underlying idea is to improve the positions of the means µi and, as a
consequence, to help the adaptation in the APIS algorithm. We will call the APIS algorithm using also SMH as Markov APIS
(MAPIS).

These MCMC iterations are applied after the step 5 of APIS. Thus, MAPIS contains both sources of movement: step 5
of APIS, with the additions of SMH iterations. Observe that, unlike the steps 4-5 of APIS, these SMH steps need also new
evaluations of the target pdf. In the following, for the sake of simplicity, we remove the super-index in µi denoting the current
epoch.

5.1. Sample Metropolis-Hastings (SMH) algorithm

Consider the extended target pdf

πg(µ1, . . . ,µN ) ∝
N∏
i=1

π(µi),

where each marginal π(µi), i = 1, ..., N , coincides with the true target pdf (µi ∈ X ⊆ Rn). Let us denote τ = 1, . . . ,Υ the
SMH iteration index. At the τ -iteration, we consider the population of samples

Pτ = {µ1,τ , ...,µN,τ}.

At each iteration, the underlying idea of SMH is to replace one “bad” sample in the population with a better one, according
to certain suitable probabilities. The algorithm is designed so that, after a burn-in period τb, the elements in Pτ ′ (τ ′ > τb) are
distributed according to πg(µ1,τ ′ , . . . ,µN,τ ′), i.e., µi,τ ′ are i.i.d. samples from π(x). For τ = 1, ...,Υ, the SMH algorithm
consists of the following steps:

1. Draw µ0,τ ∼ ϕ(µ), where ϕ is another proposal density, chosen by the user, which could indeed be selected or adapted
using the information obtained in the previous steps of APIS.

2. Choose a “bad” sample µk,τ from the population (i.e., k ∈ {1, ..., N}), according to a probability proportional to ϕ(µk,τ )
π(µk,τ )

,
which corresponds to the inverse of importance sampling weights.



3. Accept the new population

Pτ+1 = {µ1,τ+1 = µ1,τ , ...,µk,τ+1 = µ0,τ , ....,µN,τ+1 = µN,τ},

with probability

α(µ1,τ , ...,µN,τ ,µ0,τ ) =

∑N
i=1

ϕ(µi,τ )
π(µi,τ )∑N

i=0
ϕ(µi,τ )
π(µi,τ )

− min
0≤i≤N

ϕ(µi,τ )
π(µi,τ )

. (13)

Otherwise, set Pτ+1 = Pτ .

4. If τ < Υ, set τ = τ + 1 and repeat from step 1.

Observe that the difference between Pτ and Pτ+1 is at most one sample. The ergodicity can be proved using the detailed
balance condition [13] and considering the extended target pdf πg(µ1, . . . ,µN ). Furthermore, for N = 1 it is possible to show
that SMH becomes the standard MH method with an independent proposal pdf.

5.2. Benefit of the interaction via MCMC

The use of the MCMC step facilitates the movements of the means toward the region of high probabilities of the target, inde-
pendently of the choice of the initial parameters. Namely, it can help to reallocate “lost” means in a better position. This step
could stop a explorative random walk behaviour of some proposal and reallocate it around a mode. It could be also applied to
improve the initial positions of the means.

An important feature is that the impoverishment of the diversity in the population is less than in a standard resampling
procedure [8, 9]. Moreover, the positions of the Gaussians will hardly ever change when the parameter of the SMH proposal ϕ
are not properly chosen, since the new points will never be accepted. Thus, in the worst case, we simply waste computational
power by performing the MCMC operations. Another interesting point is that only one new importance weight needs to be
evaluated at each iteration, since the rest of weights have already been computed in the previous steps (with the exception of
the initial iteration, where all the weights need to be computed).

Finally, note that the parameters of the proposal ϕ(µ) for the SMH algorithm could be also adapted using different strategies
already proposed in literature [16, 33]. Moreover, in our framework, the adaptation can be improved by using the built estima-
tors Ît in APIS to update the parameters of the proposal (not only considering the samples generated on-line by the MCMC
technique).

6. RELATIONSHIP WITH AMIS AND PMC AND CONSISTENCY OF THE ESTIMATORS

6.1. Estimators in PMC and AMIS: relationship with APIS

To clarify the different estimators used in PMC, AMIS and APIS, we distinguish two different phases of the sharing of the
statistical information among the proposal pdfs:

• In the space (x ∈ X ): creating an estimator sharing information among different proposal pdfs (forming a population) at
the same time step.

• In the time (t ∈ N): combining estimators or information obtained in different iterations (creating a global estimator).

The PMC schemes use a cloud of proposal pdfs in each iterations (spread in the space of the variable of interest) and, in general,
they use the standard IS approach to provide the estimation (see Appendix A.1). The temporal combination of the information,
i.e., the global estimator, can be built in different way, but the importance weights are in general based on the standard IS
approach. In the numerical simulations, we also consider a modified version of PMC (M-PMC) where the spatial sharing of
the information is done via deterministic mixture (see Appendix A.2): this idea can be founded, jointly with the possibility of
adapting a mixture, in the Rao-Blackwellised version of the D-kernel PMC algorithm [22, 23]. The way to update the mixture
of proposals is much more complicated than in APIS, using the Kullback-Liebler divergence to tune the parameters.

The AMIS algorithm, at least in its basic formulation, uses and adapts only one proposal pdf at each iteration (N samples are
drawn each step but from the same proposal). However, all the previous adapted proposal pdfs are considered to build a global
estimator, following the determinist mixture approach. This is clearly the most stable way to construct the global estimator but
quite costly since, each iteration, all the past proposal pdfs need to be evaluated.



APIS, in this sense, is “in between” PMC and AMIS: we use the deterministic mixture idea in the space at each iteration,
as shown in Eqs. (4)-(5), whereas we use the standard IS approach to build the global estimator (in time), as shown in Eq. (6).
Then, APIS is less costly than AMIS since APIS does not need the evaluation of the past proposal pdfs.

Table 2. Comparison among the AIS, PMC, AMIS and APIS algorithms.
Algorithm Approaches in the estimation Adaptation

Space Time type of IS weights Memory Equilibrium
Standard none Standard IS Standard IS Long Static

Adaptive IS (single proposal)
(Basic) Short

Generic PMC [9, 17] Standard IS Standard IS Standard IS (Resampling done Dynamic
(Resampling) on the current cloud)

Modified Short
PMC Deterministic Standard IS Standard IS (Resampling done Dynamic

(similarly in [22, 23]) mixture (Resampling) on the current cloud)
AMIS [18] none Deterministic Deterministic Long Static

(single proposal) mixture mixture
Both Dynamic/

Modified AMIS [36] none Deterministic Standard IS Short Pseudo-static
(single proposal) mixture (like epochs in APIS) (with N fixed)

APIS Deterministic Standard IS Standard IS Short Both Dynamic/
mixture (epochs) Pseudo-static

Markov APIS Deterministic Standard IS Standard IS Short Dynamic
mixture (+ MCMC) (epochs)

6.1.1. Consistency of the estimators

In all these schemes, PMC, AMIS and APIS, the consistency of the global estimator must be ensured when N (number of
samples at each step) and t (iteration of the algorithm) grow to infinity. For N → ∞, at a fixed iteration t, it is apparent using
the standard IS arguments [9]. For t → ∞ and N finite, the situation is more complex, even if the standard IS approach (the
simplest one) is used. Indeed, in this case (looking Eq. (6) and (18)), we have a convex combination of different independent3

IS estimators that are all consistent, with N → ∞, but biased [9]. Indeed. it is well-known that this bias is created by indirect
estimation of the normalizing constant of π, i.e., Z, that we replace and estimate using with the sum of the weights. For
t → ∞, the variance of the global estimator vanishes to zero (since we are incorporating always new statistical information,
provided by new independent samples) but the bias could be non-null. However, the estimation of the normalizing constant
of π converges quickly to the true value for t → ∞, so that “unbiasedness property is still approximately hold”, as stated and
discussed in [9, Chapter 14]), for PMC schemes. Namely, the bias vanishes to zero when t grows, i.e., the unbiasedness property
“is approximately recovered” [9, Chapter 14]). This scenario is the case of APIS as well, since APIS uses also the standard IS
approach for building the global estimator. From another point of view, we can observe that Eq. (6) builds a greater and greater
(with t) valid standard IS estimator, as explained in Appendix A.1 (considering the complete proposal in Eq. (12) at each time
t).

In AMIS, the analysis for t → ∞ is more complicated [36]. Indeed, the AMIS algorithm introduces a long memory
dependence between the samples, due to the use of the deterministic mixture in time. Moreover, in AMIS, the IS weights (built
using the deterministic mixture) are also used to adapt the proposal pdf, so that the long memory dependence yields a bias that
can not be easily controlled by theoretical results. A similar and well-known problem appears with adaptive MCMC techniques:
even if the kernel of the algorithm is valid at each step, a wrong adaptation (change of the kernel), using the all past generated
samples, can jeopardize the convergence of the chain. Thus, to prove the consistency of AMIS, the authors in [36] suggests a

3The positions of the proposals depend on the previous configuration of the cloud but, the samples generated at each iteration are drawn independently from
the previous ones and independent to each other, producing different independent IS estimators.



modification in the adaptive structure of AMIS. In this modificated technique, the adaptation is given only considering the last
generated samples (in the “APIS slang”: in one epoch) and only standard IS weights, whereas the global estimation still uses
the determinist mixture approach. Note that this resembles the adaptive structure of APIS. This reinforces the idea of APIS as
robust technique, due to its memoryless feature in the adaptation. Table 2 summarizes the different features of PMC, AMIS and
APIS schemes.

6.1.2. Proposals evolution

In AMIS, the parameters of the proposal are updated and they converge to fixed values after a certain adequate number of
iterations (as in a standard adaptive IS). Thus, the differences between two proposals at different time steps diminishes when
t→∞. In the basic PMC schemes, the location parameters of the cloud of proposals are updated via resampling. In this case,
the positions of the proposals change in each iteration, moving around the modes of the target (as a “dynamic equilibrium”). In
APIS, similar situations can occur as shown in Fig. 1. Indeed, random walks around high probability regions can be generated
but, unlike in PMC, in this case due to partial memoryless IS estimations or MCMC iterations (instead of the resampling
procedure). Nevertheless, some proposal could also reach a pseudo-static equilibrium as in AMIS, for instance becoming
trapped in a local mode. Both behaviours present certain advantages: APIS benefits of both features, aiming for a trade off
between explorative search and stability in the estimation.

7. TOY EXAMPLE: NUMERICAL COMPARISON

7.1. Target distribution

In order to test and compare APIS with different other algorithms, we first consider a bivariate multimodal target pdf, which is
itself a mixture of 5 Gaussians, i.e.,

π(x) =
1

5

5∑
i=1

N (x; νi,Σi), x ∈ R2, (14)

with means ν1 = [−10,−10]>, ν2 = [0, 16]>, ν3 = [13, 8]>, ν4 = [−9, 7]>, ν5 = [14,−14]>, and covariance matrices
Σ1 = [2, 0.6; 0.6, 1], Σ2 = [2, −0.4;−0.4, 2], Σ3 = [2, 0.8; 0.8, 2], Σ4 = [3, 0; 0, 0.5] and Σ5 = [2, −0.1;−0.1, 2]. Fig.
1 shows a contour plot of π(x). Clearly, we can compute analytically moments of the target in Eq. (14), so that we can easily
check the performance of the different techniques.

7.2. Goal, comparisons and initialization

We consider the problem of compute

1. the mean of the target, i.e., E[X] = [1.6, 1.4]> where X ∼ 1
Zπ(x),

2. and the normalizing constant Z = 1,

using Monte Carlo techniques. We compare the performance in term of mean square error (MSE) in the estimation using
different sampling methodologies: (1) standard, non-adaptive, Multiple IS (MIS) approach; (2) PIS (or static APIS) scheme;
(3-4) APIS and MAPIS (APIS with the MCMC interaction) methods; (5) the AMIS technique [18]; (6) and a PMC acheme
[17]. Moreover, we consider for all the previous techniques the two different initializations:

In1: First, we choose deliberately a “bad” initialization of the initial means to test the robustness of the algorithms and their
ability to improve the corresponding static approaches. Specifically, the initial location parameters are selected uniformly
within a square,

µ
(0)
i ∼ U([−4, 4]× [−4, 4]),

for i = 1, . . . , N . A single realization of µ(0)
i is depicted by the squares in Fig. 1(a) (jointly with the final locations µ(T )

i ,
in one specific run).

In2: We also consider a better initialization. Specifically, the initial means are selected uniformly within a square,

µ
(0)
i ∼ U([−20, 20]× [−20, 20]),

for i = 1, . . . , N . A single realization of µ(0)
i is depicted by the squares in Fig. 1(b) (jointly with the final locations µ(T )

i ,
in one specific run).



Below we provide more details of each applied scheme (providing the used parameters).

7.3. Techniques

We apply the following techniques proposed in this paper:

• APIS: we apply APIS with N = 100 Gaussian proposals

q
(m)
i (x) = N (x;µ

(m)
i ,Ci), i = 1, . . . , N.

The initial configurations of the means µ(0)
i are described above. First, we use the same isotropic covariance matrix, Ci =

σ2I2, for every proposal. We test different values of σ ∈ {0.5, 1, 2, 3, 5, 7, 10, 20, 70}, to gauge the performance of APIS.
Then, we also try different non-isotropic diagonal covariance matrices, Ci = diag(σ2

i,1, σ
2
i,2), where σi,j ∼ U([1, 10])

for j ∈ {1, 2} and i = 1, . . . N , i.e., different for each proposal. We set T = 2000 and Ta ∈ {2, 5, 20, 50, 100}, i.e.,
M = T

Ta
∈ {20, 40, 100, 400, T2 = 1000}. We test the performance of APIS with the two inizializatons described above

In1 and In2.

• PIS (static APIS): we also consider the caseM = 1, which corresponds to a static APIS technique with multiple proposals
and no adaptation. PIS combines the deterministic mixture idea and the standard IS approach to build the global estimators
(see Appendix A). For this reason, is different from a standard multiple IS scheme, see below.

• MAPIS: for the MCMC interaction, we consider again a Gaussian proposal for the SMH method, i.e., ϕ(µ) =
N (x;µ, λ2I2), with λ = 10. To maintain a constant computational cost in each simulation, we fix Υ = Ta = T

M
(the number of iterations of SMH, at the end of each epoch), i.e., the total number of iterations of SMH in the entire
MAPIS method is alway MΥ = T .

Moreover, we compare these techniques with the following benchmark schemes:

• Non-adaptive Multiple IS (MIS): Given the initial µ(0)
i , this positions never change as in PIS. We set N = 100. Thus,

T = 2000 samples are drawn from each proposal in order to a fair comparison with APIS (since in APIS we use
NT = 20000 samples). The IS weights are built using the standard IS approach described in Appendix A.1.

• AMIS scheme: AMIS uses only one proposal pdf in the space fixing the temporal iteration index m, i.e.,

hm(x) = N (x;µm,Φm), m = 0, . . . ,M − 1,

Both parameters µm and Φm are updated each iteration. Note that we have used M as the number of adaptive iterations
in AMIS since it is equivalent to the number of epochs M used in APIS. The initial mean µ0 is chosen according In1
and In2, whereas Φ0 = σ2I2 with σ ∈ {0.5, 1, 2, 3, 5, 7, 10, 20, 70}. At each iteration m, K samples are drawn from
hm(x). Then, IS weights are associated to these samples using the deterministic mixture idea, taking in account all
the previous proposals h0(x), h1(x),. . . , hm−1(x). Therefore, the weights associated to previous samples need to be
updated as well. For these reasons, AMIS is more costly than APIS, in general. Then, the parameters are updated µm
and Φm according to the IS estimation of the mean and variances of the target. We have consider a pairs of K and M
such that KM = NT = 20000, for a fair comparison with APIS. Specifically, we have run different simulations using
K = {500, 1000, 2000, 5000} and, as a consequence, M = {40, 20, 10, 4}. Obviously, AMIS becomes more costly
when M increases. However, depending on the stating value σ, the best results of AMIS in this scenario are usually
provided by M = 4, 10 (i.e., K = 5000 and K = 2000). This is due to better estimations of the mean and covariance of
the target is achieved, so that the adaptation is also improved.

• PMC schemes: we also apply the mixture PMC scheme [17]. More precisely, we consider a population of samples

{x(t)
1 , . . . ,x

(t)
N },

at the t-th iteration, and propagate them with random walks

x
(t+1)
i = x

(t)
i + εt, i = 1, . . . , N,



where εt ∼ N (x; [0, 0]>,Φ), with Φ = σ2I2 and σ ∈ {0.5, 1, 2, 5, 10, 20, 70}. At each iteration, the resampling step
is performed according to the normalized importance weights. The initial cloud {x(1)i }Ni=1 is chosen according with the
same initialization procedure described above In1 and In2. The cumulative mean of the cloud {x(t)i }

N,T
i=1,t=1, as well

as the cumulative estimate of the normalizing constant, are computed until T = 2000. We have not been able to apply
the adaptive strategy suggested in [17] in order to select suitable scale parameters, within a population of pre-chosen
values, since it has been difficult to select these values adequately. More specifically, we have not been able to find a
set of parameters for this approach that provides reasonable results in this scenario. We have set N = 100 for a fair
comparison with APIS, using the same total number of samples NT . Moreover, we have also run other simulations
with N = 500, 2000 in order to see the computational cost needed to reach the APIS performance. Finally, we have
also considered a Modified PMC (M-PMC) that, similarly in [22, 23], uses the deterministic mixture for the spatial
construction of the global estimator as in APIS. The results are shown in Tables 3-4.

7.4. Results

All the results are averaged over 2000 independent experiments. Tables 3 and 4 show the Mean Square Error (MSE) in es-
timation of the mean (first component), with the initialization In1 and In2, for the different algorithms. In AMIS, for sake
of simplicity, we directly show the worst and best results among the several simulations made with different parameters (see
a detailed description above). The results of MAPIS and PMC with N = 500, 2000 are included in two different subtables
since their application entails more computational effort. In each subtables, the best results in each column are highlighted in
bold-face. Tables containing MSE of the estimation of the normalizing constant Z are presented in Appendix B, jointly with
supplementary materials.

We can observe that APIS outperforms the other techniques, except for a few values of σ, where APIS has a negligibly
larger error. Only with σ = 70, AMIS has an MSE sensibly smaller than APIS in its best case. However, this result depends
strictly on the choice of the parameter: the MSE of AMIS in its worst case is the highest whereas APIS provides always small
MSE independently from the choice of Ta. Moreover, for high values of σ ∈ {10, 20, 70}, the APIS results could be easily
improved using a higher value of Ta (for instance, Ta = 500). Observe also that the robust implementation, choosing randomly
the scale parameters σi,j ∼ U([1, 10]), provide the best results (with the exception of PMC with N = 2000 which provides
negligibly smaller MSE, with much higher computational cost). Moreover, MAPIS in general improves the results and the
robustness of APIS, but being more costly due to the additional MCMC steps. Figures 2 depict the MSE in log-scale of the
estimation of mean of π versus the choice of the scale parameters σi,j , comparing the different techniques.

8. LOCALIZATION PROBLEM IN A WIRELESS SENSOR NETWORK

We consider the problem of positioning a target in a 2-dimensional space using range measurements. This is a problem that
appears frequently in localization applications in wireless sensor networks [30, 31, 32]. Namely, we consider a random vector
X = [X1, X2]> to denote the target position in the plane R2. The position of the target is then a specific realization X = x.
The range measurements are obtained from 3 sensors located at h1 = [−10, 2]>, h2 = [8, 8]> and h3 = [−20,−18]>. The
observation equations are given by

Yj = a log

(
||x− hj ||

0.3

)
+ Θj , j = 1, . . . , 3, (15)

where Θj are independent Gaussian variables with identical pdfs,N (ϑj ; 0, ω2), j = 1, 2. We also consider a prior density over
ω, i.e., Ω ∼ p(ω) = N (ω; 0, 25)I(ω > 0), where I(ω > 0) is 1 if ω > 0 and 0 otherwise. The parameter A = a is also
unknown and we again consider a Gaussian prior A ∼ p(a) = N (a; 0, 25). Moreover, we also apply Gaussian priors over X,
i.e., p(xi) = N (xi; 0, 25) with i = 1, 2. Thus, the posterior pdf is

π(x1, x2, a, ω) = p(x1, x2, a, ω|y) ∝ p(y|x1, x2, a, ω)p(x1)p(x2)p(a)p(ω),

where y ∈ Rd is the vector of received measurements. We simulate d = 30 observation from the model (d/3 = 10 from each of
the three sensors) fixing x1 = 3, x2 = 3, a = −20 and ω = 5. With d = 30, the expected value of the target (E[X1] ≈ 2.8749,
E[X2] ≈ 3.0266, E[A] ≈ 5.2344, E[Ω] ≈ 20.1582)4 is quite close to the true values.

Our goal is computing the expected value of (X1, X2, A,Ω) ∼ π(x1, x2, a, ω) via Monte Carlo, in order to provide an
estimation of the position of the target, the parameter a and the standard deviation ω of the noise in the system. We apply APIS

4These values have been obtained with a deterministic, expensive and exhaustive numerical integration method, using a thin grid.



Table 3.1
HHHHAlg.

Std
σ = 0.5 σ = 1 σ = 2 σ = 3 σ = 5 σ = 7 σ = 10 σ = 20 σ = 70 σi,j ∼ U([1, 10])

MIS 29.56 41.95 64.51 42.84 2.17 0.0454 0.0147 0.0187 0.1914 4.55

PIS (Ta = T ) 29.28 47.74 75.22 17.61 0.2424 0.0280 0.0124 0.0176 0.1789 0.0651

APIS

Ta = 100 22.86 13.70 6.2606 2.47 0.0438 0.0131 0.0129 0.0212 0.1821 0.0110
Ta = 50 17.62 12.14 5.42 1.99 0.0501 0.0118 0.0138 0.0209 0.1750 0.0077
Ta = 20 14.75 11.33 4.77 1.66 0.0361 0.0108 0.0146 0.0208 0.1873 0.0056
Ta = 5 13.01 8.50 2.30 0.2831 0.0074 0.0114 0.0149 0.0251 0.2027 0.0045
Ta = 2 9.46 2.45 0.0225 0.0170 0.0103 0.0139 0.0185 0.0354 0.2007 0.0077

AMIS (best) 124.22 121.21 100.23 54.67 0.8640 0.0124 0.0121 0.0126 0.0136 −−−−−
(worst) 125.43 123.38 114.82 89.09 16.92 0.3626 0.0128 0.0131 18.66 −−−−−

PMC N = 100 112.99 114.11 47.97 26.32 2.34 0.5217 0.0559 0.4331 2.41 0.3017

M-PMC N = 100 111.92 107.58 26.86 6.03 0.6731 0.1154 0.0744 0.4142 2.42 0.07
Table 3.2

Ta = 100 0.7134 0.0933 0.3213 0.1611 0.0167 0.0101 0.0147 0.0023 0.1765 0.0070
Ta = 50 0.7058 0.1287 0.1136 0.1097 0.0114 0.0094 0.0139 0.0020 0.1831 0.0051

MAPIS Ta = 20 0.6950 0.1319 0.0464 0.1040 0.0081 0.0098 0.0152 0.0021 0.1943 0.0041
(N = 100) Ta = 5 0.2729 0.0665 0.0319 0.0154 0.0082 0.0123 0.0151 0.0019 0.1946 0.0046

Ta = 2 0.1708 0.0148 0.0116 0.0138 0.0105 0.0130 0.0165 0.0027 0.1918 0.0075

PMC N = 500 112.18 113.10 36.63 18.59 2.20 0.4011 0.0134 0.0259 0.8891 0.2964
N = 2000 112.09 112.45 27.91 13.63 2.01 0.1899 0.0057 0.0028 0.1120 0.2802

Table 3. MSE of the estimation of the mean of the target (first component) with the initialization In1, using MIS, PIS, APIS,
MAPIS, AMIS and PMC. In Table 3.1, we set N = 100 (T = 2000; the total number of samples is NT = 20000) for MIS,
PIS, APIS and PMC. Recall that, with AMIS, we have one proposal each iteration. Moreover, for AMIS, we show directly the
best results, obtained varying K and M such that KM = NT = 20000 (as detailed in the text). In Table 3.2, the MSE of
MAPIS and PMC with N = 500, 2000, is given. We have stressed the best results in each sub-table with bold-faces.

and PMC schemes both using N Gaussian proposals as in the previous example. For both algorithm, we initialize the cloud of
particles spread out in the space of the variables of interest, i.e.,

µ
(0)
i ∼ N (µ; 0, 302I4), i = 1, ..., N,

and the scale parameters Ci = σ2
i,jI4 with j = 1, . . . , 4 and i = 1, . . . , N . The values of the standard deviations σi,j are

chosen randomly for each Gaussian pdf. Specifically, σi,j ∼ U([1, Q]), where we have considered three possible values for Q,
i.e., Q ∈ {5, 10, 30}.

The MSE of the estimation (averaged over 3000 independent runs) are provided in Table 5 and 6 for different values of
N ∈ {50, 100, 200}, T ∈ {1000, 2000, 4000} and Ta ∈ {20, 100}. More specifically in Table 5, we maintain fixed T = 2000
whereas, in Table 6 we keep fixed the total number of generated samples NT = 2 105. APIS outperforms always PMC when
σi,j ∼ U([1, 5]) and σi,j ∼ U([1, 10]) whereas PMC provides better results for σi,j ∼ U([1, 30]) (with the exception of the
case N = 200 and T = 2000 in Table 5). This is owing to APIS, in this case with bigger variances, needs the use of a greater
value of Ta. Therefore, the results show jointly the robustness and flexibility of the APIS technique.

9. CONCLUSIONS

In this work, we have introduced the adaptive population importance sampling (APIS) algorithm. APIS is an iterative impor-
tance sampling (IS) technique which uses multiple adaptive proposal pdfs. As its name suggested, APIS can be considered as a
hybrid technique obtained sharing different features of the adaptive multiple importance sampling (AMIS) and the population
Monte Carlo (PMC) schemes. Namely, APIS can be seen a technique “in-between” AMIS and PMC taking advantage of the
relevant properties of each one. For instance, APIS uses the deterministic mixture IS approach as AMIS but in a less costly way
(since it is applied only in space and not in in time, see Section 6 for further details). Moreover as in PMC and unlike AMIS,
APIS uses of a cloud of proposals in each iteration. Finally, APIS updates the proposal pdfs in an adaptive IS fashion, without
using resampling, unlike PMC. Numerical results confirm that APIS outperforms both techniques AMIS and PMC, in terms of
performance and robustness w.r.t. the choice of the initial parameters.



Table 4.1
HHHHAlg.

Std
σ = 0.5 σ = 1 σ = 2 σ = 3 σ = 5 σ = 7 σ = 10 σ = 20 σ = 70 σi,j ∼ U([1, 10])

MIS 12.00 9.40 10.26 10.64 7.67 4.40 0.5443 0.0321 0.1764 4.37

PIS (Ta = T ) 10.14 0.9469 0.0139 0.0085 0.0100 0.0115 0.0146 0.0237 0.1756 0.0106

APIS

Ta = 100 0.7741 0.0318 0.0011 0.0017 0.0054 0.0118 0.0129 0.0211 0.1794 0.0032
Ta = 50 0.5792 0.0144 0.0007 0.0015 0.0051 0.0112 0.0131 0.0221 0.1772 0.0029
Ta = 20 0.4831 0.0401 0.0006 0.0014 0.0047 0.0095 0.0136 0.0245 0.1732 0.0029
Ta = 5 0.2552 0.0008 0.0005 0.0022 0.0064 0.0111 0.0149 0.0270 0.2076 0.0039
Ta = 2 0.0547 0.0017 0.0116 0.0051 0.0103 0.0142 0.0182 0.0387 0.1844 0.0080

AMIS (best) 113.97 112.70 107.85 91.56 44.93 12.75 0.7404 0.0121 0.0141 −−−−−
(worst) 116.66 115.62 111.83 104.44 70.62 35.66 9.43 0.0871 18.62 −−−−−

PMC N = 100 111.54 110.78 90.21 46.84 2.29 0.5023 0.0631 0.4273 2.42 0.3082

M-PMC N = 100 23.16 7.43 7.56 3.11 0.6420 0.1173 0.0720 0.4194 2.37 0.0695
Table 4.2

Ta = 100 0.4753 0.0334 0.0027 0.0017 0.0059 0.0092 0.0135 0.0217 0.1762 0.0034
Ta = 50 0.4677 0.0287 0.0007 0.0015 0.0059 0.0091 0.0133 0.0222 0.1901 0.0031

MAPIS Ta = 20 0.3110 0.0092 0.0006 0.0014 0.0061 0.0091 0.0141 0.0233 0.1805 0.0030
(N = 100) Ta = 5 0.3497 0.0015 0.0007 0.0041 0.0079 0.0122 0.0155 0.0249 0.1933 0.0039

Ta = 2 0.0870 0.0101 0.0028 0.0060 0.0098 0.0126 0.0154 0.0333 0.2026 0.0078

PMC N = 500 110.58 109.69 64.81 15.99 2.09 0.4841 0.0144 0.0267 0.8924 0.2900
N = 2000 108.22 107.10 27.93 13.21 1.84 0.1912 0.0054 0.0027 0.0988 0.2805

Table 4. MSE of the estimation of the mean of the target (first component) with the initialization In2, using MIS, PIS, APIS,
MAPIS, AMIS and PMC. In Table 4.1, we set N = 100 (T = 2000; the total number of samples is NT = 20000) for MIS,
PIS, APIS and PMC. Recall that, with AMIS, we have one proposal each iteration. Moreover, for AMIS, we show directly the
best results, obtained varying K and M such that KM = NT = 20000 (as detailed in the text). In Table 4.2, the MSE of
MAPIS and PMC with N = 500, 2000, is given. We have stressed the best results in each sub-table with bold-faces.

10. REFERENCES
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[2] P. M. Djurić, J. Zhang, T. Ghirmai, Y. Huang, and J. H. Kotecha, “Applications of particle filtering to communications: A
review,” in Proceedings of the XI EUSIPCO. EURASIP, September 2002.
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A. IS APPROACHES USING WITH MULTIPLE PROPOSAL DENSITIES

Recall that our goal is computing efficiently some moment of x, i.e., an integral measure w.r.t. the target pdf 1
Zπ(x), namely,

I = 1
Z

∫
X f(x)π(x)dx. If we consider to draw N1 samples from one proposal pdf, i.e. x

(1)
1 , . . . ,x

(1)
N1
∼ q1(x), and other N2

from the other one, x
(2)
1 , . . . ,x

(2)
N2
∼ q2(x) (q1 and q2 both normalized), there are at least two procedures to build a joint IS

estimator, as shown in the following.

A.1. Standard IS approach

The simplest approach [9, Chapter 14] is to compute the classical corresponding importance weights

w
(1)
i =

π(x
(1)
i )

q1(x
(1)
i )

, i = 1, . . . , N1, w
(2)
j =

π(x
(2)
j )

q2(x
(2)
j )

, j = 1, . . . , N2,

The IS estimator Î is built normalizing them jointly, i.e., computing Stot =
∑N1

i=1 w
(1)
i +

∑N2

j=1 w
(2)
j so that we can write

Î =
1

Stot

 N1∑
i=1

w
(1)
i f(x

(1)
i ) +

N2∑
j=1

w
(2)
j f(x

(2)
j )

 . (16)

Note that, defining the partial sums S1 =
∑N1

i=1 w
(1)
i and S2 =

∑N2

j=1 w
(2)
j so that Stot = S1 + S2 and considering the

normalized weights,

w̄
(1)
i =

w
(1)
i

S1
, w̄

(2)
j =

w
(2)
j

S2
,

Eq. (16) can be expressed as

Î =
1

S1 + S2

S1
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i=1

w̄
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i f(x

(1)
i ) + S2
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S1Î1 + S2Î2

)
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S1

S1 + S2
Î1 +

S2

S1 + S2
Î2,

(17)



where Î1, Î2 are the partial IS estimators considering only one proposal pdf. Clearly, this procedure can be extended for K > 2
different proposal pdfs, k = 1, . . . ,K, obtaining the complete estimator

Î =

∑K
k=1 Sk Îk∑N
k=1 Sk

, (18)

as convex combination of the partial estimators Îk considering only the k-th proposal pdf.

A.2. Deterministic mixture

Another approach is the so-called determinist mixture [24, 25]. Setting

z1:N1+N2 =
[
x
(1)
1:N1

,x
(2)
1:N2

]
,

the weights are defined as

wi =
π(zi)

q∗(zi)
=

π(zi)
N1

N1+N2
q1(zi) + N2

N1+N2
q2(zi)

, i = 1, . . . , N1 +N2.

In this case, the complete proposal q∗ is considered to be a mixture of q1 and q2 weighted according to the number of each
corresponding samples. Here, we draw N1 samples from q1 and N2 samples from q2; these number are fixed and deterministic,
unlike in the standard procedure of sampling from a mixture, where a pdf is randomly chosen according to its weight. However,
the sample z′drawn in this deterministic way, is exactly distributed as the mixture q∗(z′) = N1

N1+N2
q1(z′) + N2

N1+N2
q2(z′). The

IS estimator is then simply

Î =
1∑N1+N2

i=1 wi

N1+N2∑
i=1

wif(zi),

and for K > 2 proposal pdfs

wi =
π(zi)∑K

k=1

(
Nk∑K
k=1Nk

)
qk(zk)

, Î =
1∑N1+...+NK

i=1 wi

N1+...+NK∑
i=1

wif(zi),

In general, this IS estimator is more stable and provides better performance than the previous one [24]. On the other hand, it
needs to evaluate each proposal in more points (all the generated samples, also drawn from the other proposals), and therefore
it is more costly.

B. SUPPLEMENTARY MATERIAL

Below, we provide supplementary materials related to the numerical simulation in Section 7. Tables 7 and 8 show the MSE of
the estimation of the normalizing constant of the target in Section 7. Table 7 is referred to the the initialization In1 whereas
Table 8 corresponds to the initialization In2. Figures 3 (a) and (b) depict the evolution of the Mean Absolute Error (MAE) of
APIS as function of the number of epochs M , with the first initialization In1, σ = 2 and σ = 5. The case M = 1 corresponds
the the PIS method: we can observe the improvement in the results yields for the proposed adaptation. Figures 3 (c) and (d)
show the evolution of the estimate of the first component of the mean as a function of the iterations t with σ = 3 and In1 using
APIS with M = 400 and PIS (M = 1).



Table 5.1
HHHHAlg.

Std
σ = 0.5 σ = 1 σ = 2 σ = 3 σ = 5 σ = 7 σ = 10 σ = 20 σ = 70 σi,j ∼ U([1, 10])

MIS 3.94 ·104 7.12 ·107 1.07 ·103 3.43 0.01 0.0003 0.0001 0.0001 0.0016 0.2190

PIS (Ta = T ) 9.51·1012 4.60·105 15.34 0.2523 0.0016 0.0002 0.0001 0.0002 0.0016 0.0005

APIS

Ta = 100 3.28 0.6252 0.0681 0.0179 0.0003 0.0001 0.0001 0.0002 0.0016 0.0001
Ta = 50 1.37 0.4438 0.0489 0.0142 0.0004 0.0001 0.0001 0.0002 0.0017 0.0001
Ta = 20 0.7717 0.3372 0.0375 0.0109 0.0002 0.0001 0.0001 0.0002 0.0017 0.0000
Ta = 5 0.4996 0.1616 0.0154 0.0019 0.0001 0.0001 0.0001 0.0002 0.0018 0.0000
Ta = 2 0.2127 0.0173 0.0002 0.0001 0.0001 0.0001 0.0001 0.0003 0.0018 0.0001

AMIS (best) 15.92 15.66 12.81 4.49 0.0069 0.0001 0.0001 0.0001 0.0001 −−−−−
(worst) 15.97 15.92 14.87 10.70 0.4559 0.0024 0.0001 0.0001 1.62 −−−−−

PMC N = 100 33.53 17.10 14.42 5.06 0.4249 0.0553 0.0015 0.0003 0.0016 0.3542

M-PMC N = 100 15.85 14.31 1.81 0.6546 0.0402 0.0021 0.0002 0.0002 0.0016 0.0004
Table 5.2

MAPIS

Ta = 100 0.7048 0.0933 0.3213 0.1611 0.0167 0.0101 0.0147 0.0226 0.1765 0.0070
Ta = 50 0.7058 0.1295 0.1135 0.1097 0.0114 0.0094 0.0139 0.0217 0.1831 0.0051
Ta = 20 0.6950 0.1250 0.0464 0.1040 0.0081 0.0098 0.0152 0.0259 0.1943 0.0041
Ta = 5 0.2729 0.0665 0.0319 0.0154 0.0082 0.0123 0.0151 0.0246 0.1946 0.0046
Ta = 2 0.1708 0.0148 0.0116 0.0138 0.0105 0.0130 0.0165 0.0341 0.1918 0.0075

PMC N = 500 30.89 16.89 13.21 2.51 0.2466 0.0215 0.0003 0.0001 0.0003 0.2565
N = 2000 28.99 16.69 11.67 1.53 0.1815 0.0073 0.0001 0.0000 0.0001 0.2062

Table 7. MSE of the estimation of the normalizing constant of the target with the initialization In1, using MIS, PIS, APIS,
MAPIS, AMIS and PMC. In Table 5.1, we set N = 100 (T = 2000; the total number of samples is NT = 20000) for MIS,
PIS, APIS and PMC. Recall that, with AMIS, we have one proposal each iteration. Moreover, for AMIS, we show directly the
best results, obtained varying M and K such that MK = NT = 20000 (as detailed in the text). In Table 5.2, the MSE of
MAPIS and PMC with N = 500, 2000, is given. In bold faces we have stressed the best results in each sub-table.

Table 6.1
HHHHAlg.

Std
σ = 0.5 σ = 1 σ = 2 σ = 3 σ = 5 σ = 7 σ = 10 σ = 20 σ = 70 σi,j ∼ U([1, 10])

MIS 2.15·104 524.3044 29.6219 6.1750 0.5084 0.0644 0.0043 0.0002 0.0016 0.6935

PIS (Ta = T ) 0.5402 0.0096 0.0001 0.0001 0.0001 0.0001 0.0001 0.0004 0.0016 0.0001

APIS

Ta = 100 0.0100 0.0003 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0017 0.0000
Ta = 50 0.0068 0.0002 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0017 0.0000
Ta = 20 0.0055 0.0004 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0016 0.0000
Ta = 5 0.0023 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0017 0.0000
Ta = 2 0.0008 0.0000 0.0001 0.0000 0.0001 0.0001 0.0002 0.0003 0.0017 0.0001

AMIS (best) 15.92 15.66 13.92 9.80 3.06 0.4207 0.0053 0.0001 0.0001 −−−−−
(worst) 15.95 15.93 15.18 12.51 5.92 1.93 0.4155 0.0006 1.53 −−−−−

PMC N = 100 35.09 17.04 15.20 6.85 0.4115 0.0586 0.0015 0.0002 0.0016 0.3457
M-PMC N = 100 1.13 0.1906 0.1103 0.2959 0.0383 0.0022 0.0003 0.0002 0.0017 0.0004

Table 6.2

MAPIS

Ta = 100 0.0055 0.0003 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0017 0.0000
Ta = 50 0.0046 0.0002 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0015 0.0000
Ta = 20 0.0035 0.0001 0.0000 0.0000 0.0001 0.0001 0.0001 0.0017 0.0017 0.0000
Ta = 5 0.0028 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0019 0.0000
Ta = 2 0.0007 0.0001 0.0000 0.0000 0.0001 0.0001 0.0001 0.0003 0.0018 0.0001

PMC N = 500 30.85 16.67 14.30 2.41 0.2571 0.0218 0.0003 0.0001 0.0003 0.2491
N = 2000 26.91 16.48 11.92 1.63 0.2087 0.0059 0.0001 0.0000 0.0001 0.2039

Table 8. MSE of the estimation of the normalizing constant of the target with the initialization In2, using MIS, PIS, APIS,
MAPIS, AMIS and PMC. In Table 6.1, we set N = 100 (T = 2000; the total number of samples is NT = 20000) for MIS,
PIS, APIS and PMC. Recall that, with AMIS, we have one proposal each iteration. Moreover, for AMIS, we show directly the
best results, obtained varying M and K such that MK = NT = 20000 (as detailed in the text). In Table 6.2, the MSE of
MAPIS and PMC with N = 500, 2000, is given. In bold faces we have stressed the best results in each sub-table.
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Fig. 3. (a)-(b): Mean Absolute Error (MAE) in the estimation of the mean and normalizing constant of π(x) in Section 7,
averaged over 2000 runs as function of M (number of epochs) with In1, for (a) σ = 2 and (b) σ = 5. Note that the case
M = 1 corresponds to the PIS method. (c)-(d): Estimate of the first component of the mean as a function of the iterations t
for σ = 3, with In1, (c) APIS with M = 400 and (d) without adaptation, i.e., the PIS method (M = 1). The solid lines depict
the true mean value (1.6), and the darker and lighter areas show the range of 90% and 100% of the empirical probability mass,
respectively.


