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Abstract. 
The mathematical formalism of quantum resonance combined with tensor product decomposability of 
unitary evolutions is mapped onto a class of NP-complete combinatorial problems.  It has been 
demonstrated that nature has polynomial resources for solving NP-complete problems and that may help to 
develop a new strategy for artificial intelligence, as well as to re-evaluate the role of natural selection in 
biological evolution. 
 
1.Introduction. 
 In this work an attempt is made to simulate combinatorial optimization that is the main obstacle to 
artificial intelligence. It is a well-established fact that nature exploits combinatorial optimization for natural 
selection. It is also known that even ants collectively solve combinatorial problems (such as the shortest 
path to food in a labyrinth) more efficiently than man-made artificial devices. That is why combinatorial 
problems are not only an obstacle, but is the greatest challenge to artificial intelligence. In this work, a new 
approach to simulation of NP-complete problems is introduced: combinatorial properties of tensor product 
decomposability of unitary evolution of many-particle quantum systems are mapped to solutions of NP-
complete problems, while the reinforcement and selection of a desired solution is executed by quantum 
resonance.  
2. Quantum Resonance. 
      Consider a quantum system characterized by a discrete spectrum of energy eigenstates subject to a 
small perturbing interaction, and let the perturbation be switched on at zero time.  The Hamiltonian of the 
system can be presented as a sum of the time-independent and oscillating components  
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where 0H and 1H are constant Hermitian  matrices, ω is the frequency of perturbations, and  )(ωξ  is the 
spectral density. 
The probability of  transition from state k to q in the first approximation is proportional to the product, [1]
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Here iϕ  are the eigenstates of 0H : 
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where iE   are the energy eigenvalues,   
nqkEEa qkkq ,...2,1,, =−=       (4) 

 
and   is the Planck constant. 

The resonance, i.e., a time-proportional growth of the transition probability Pkq   occurs when  :qka=ω  
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3. Combinatorial problems.  
      Combinatorial problems are among the hardest in the theory of computations.  They include a special 
class of so called NP-complete problems which are considered to be intractable by most theoretical 
computer scientists.  A typical representative of this class is a famous traveling-salesman problem (TSP) of 
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determining the shortest closed tour that connects a given set of n points on the plane.  As for any of NP-
complete problem, here the algorithm for solution is very simple:  enumerate all the tours, compute their 
lengths, and select the shortest one.  However, the number of tours is proportional to n!  and that leads to 
exponential growth of computational time as a function of the dimensionality n of the problem, and 
therefore, to computational intractability. 
 It should be noticed that, in contradistinction to continuous optimization problems where the 
knowledge about the length of a trajectory is transferred to the neighboring trajectories through the 
gradient, here the gradient does not exist, and there is no alternative to a simple enumeration of tours. 
 The class of NP-complete problems has a very interesting property:  if any single problem 
(including its worse case) can be solved in polynomial time, then every NP-complete problem can be 
solved in polynomial time as well.  But despite that, there is no progress so far in removing a curse of 
combinatorial explosion:  it turns out that if one manages to achieve a polynomial time of computation, 
then the space or energy grow exponentially, i.e., the effect of combinatorial explosion stubbornly 
reappears.  That is why the intractability of NP-complete problems is being observed as a fundamental 
principle of theory of computations which plays the same role as the second law of thermodynamics in 
physics. 
 At the same time, one has to recognize that the theory of computational complexity is an attribute 
of a digital approach to computations, which means that the monster of NP-completeness is a creature of 
the Turing machine.  As an alternative, one can turn to an analog device which replaces digital 
computations by physical simulations.  Indeed, assume that one found such a physical phenomenon whose 
mathematical description is equivalent to that of a particular NP-complete problem.  Then, incorporating 
this phenomenon into an appropriate analog device one can simulate the corresponding NP-complete 
problem.  In this connection it is interesting to note that, at first sight, NP-complete problems are 
fundamentally different from natural phenomena:  they look like man-made puzzles and their formal 
mathematical framework is mapped into decision problems with yes/no solutions.  However, one should 
recall that physical laws can also be stated in a “man-made” form:  The least time (Fermat), the least action 
(in modifications of Hamilton, Lagrange, or Jacobi), and the least constraints (Gauss). 
 In this work we will describe how to map a combinatorial decision problem into the physical 
phenomenon of quantum resonance on a conceptual level, and propose a possible circuit implementation. 
 Let us turn to the property (5) that can be mapped into several computational problems, and, for 
the purpose of illustration, choose the following one:  given m different items to be distributed over n 
places; the cost of a βth item put in a  γth place is  λβ(γ);  in general, the costs (the number of which is nm) can 
be positive or negative (but not zero), and there are no restrictions to how many different items can be put 
at the same place.  Find yes/no answer to the following question:  is there at least one total cost whose 
absolute value falls into an arbitrarily given interval. 
 This problem is typical for optimal design.  Since the cost of a particular distribution is expressed 
by the sum  
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classically one has to compute all the mn  sums (1) in order to find is there at least one Eq such that 
   ,;|| 1221 aaaEa q >≤≤    (7) (I.3.3.2) 
where a1 and a2  are arbitrarily prescribed positive numbers. 
Since costs βγ

βλ can be positive or negative, the absolute value in Eq. (7) represents a global constraint, 
and therefore our problem belongs to the class of so called constraint satisfaction problems that are the 
hardest among other optimization problems.  The constraint (7) prevents one from decomposing the 
solution into smaller-size sub-problems.  It can be shown that this problem is mapped into the partition 
problem, [2] , and therefore, it is NP-complete. 
     Now we will demonstrate how this problem can be solved by the quantum device described above in 
one computational step. 
First, let us represent the unitary matrix U0 corresponding to the time-independent Hamiltonian 
   tiHeU 0

0 =      (8) (I.3.3.3) 
as a tensor product of n diagonal unitary matrices of the size mm×  
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This corresponds to the direct sum decomposition of H0 
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where m1  is an mm× unit matrix. 
Here 
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Then the unitary matrix U0  in (9) will be also diagonal 
 and  
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while Ej is expressed by Eq. (6). 
 Hence, if one select  )(γ

βλ  in (8) as the costs of an thβ  item put in a thγ  place, then the 
eigenstates  Ej of the Hamiltonian H0 represent costs of all N=nn possible distributions (8). 
 Without loss of generality, one can assume that m=2 since computation of 2n different sums has 
also an exponential computational complexity.  At the same time, this assumption will simplify the 
implementation of the simulation device. 
 Now we have to choose the perturbation of the Hamiltonian, (see Eq. (1)). For that purpose 
assume that initially the quantum device is in a certain base state k, whose energy Ek does not belong to the 
interval (7), i.e.,  
    ,||,|| 21 aEoraE kk >< (13)            (I.3.3.8) 
and select )(ωξ  as follows:          
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The only constraint imposed upon the Hamiltonian H1 is that all its out-of-diagonal components are non-
zeros.    Indeed, in this case each element of the matrix (5) will have the form:  
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and no possible resonance transitions will be missed. 
Here, for the sake of concreteness, the initial state Ek was selected such that: 
    |||| 21 aEaE kk −>−   (16)     (I.3.3.11) 
 Turning to Eq. (1) and taking into account Eqs. (4) and (7), one concludes that Hamiltonian of the 
system is decomposable only at t=0.  For t>0, the quantum system becomes correlated due to the 
perturbations. 
 Suppose that the given interval a1,a2  contains at least one total cost |Eq| from the set (6), i.e., |Eq|  
satisfies the inequality (7).  Then, according to Eqs. (5) and (14), the resonance transition from the initial 
state Ek  to the state Eq (or other states satisfying (7)) will occur with the probability one.  Indeed, in the 
presence of a resonance, the probability for non-resonance transitions is vanishingly small if 10 <<ε  (see 
Eq. (1)). 
 However, if the given interval a1,a2  does not contain any costs |Eq|  from the set (6), then 
according to Eqs. (5) and (14), there will be no resonance transitions at all, and therefore, with the 
probability one the quantum device will stay in the initial state. 
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          A mapping of the combinatorial problems onto tensor decomposability of the Schrödinger equation is 
illustrated in Fig. 1 

   
                Figure 1. Mapping combinatorial optimization to quantum mechanics. 
  

  
   
5. Summary.     
   Thus, it has been demonstrated how a “man-made” problems of exponential computational complexity 
which is hard to handle by algorithmic methods are solved by exploiting a strongly pronounced physical 
phenomena: quantum resonance. 
 The main advantage of the presented approach is in exponential speedup of solutions to NP-
complete combinatorial problems.  Three fundamental physical phenomena contribute to it:  quantum 
resonance, entanglement, and tensor-product decomposability of the underlying unitary matrix. 
 Quantum resonance allows one to represent all the possible solutions to the problem as a set of 
competing dynamical processes:  energy exchanges between pairs of quantum eigenstates.  The 
mathematical formalism of quantum resonance provides storage for these processes:  the transition matrix 

Pkq (see Eq. (2)) where each process is labeled through the corresponding transition probability. Quantum 
entanglement implement the global constraint (7) and 
tensor-product decomposability is a fundamental property of the Schrodinger equation for multi-particle 
systems.  Due to its effect, the number of stored solutions, i.e., the number of transitions Pkq is 
exponentially larger than the number of the input parameters (see Eq. (6)) and that is what directly 
contributes into exponential speedup and capacity. 
 In order to make these three physical phenomena work together, one has to choose the 
Hamiltonian of the quantum system such that the optimal solution is the winner in the competition with 
other solutions, i.e., that its transition probability is the largest.  This is achieved by selecting the oscillating 
part of the Hamiltonian in the form of (14). 
Possible implementation of the presented algorithm by a circuit of a polynomial complexityis proposed in 
[3].  
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 It should be emphasized that the solution of one NP-complete problem opens up a way to solve every NP-
complete problem in polynomial time. 
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