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Abstract

This paper derives the contour integral equation of the zeta function by the quaternionic analysis.

Many researchers have attempted proof of Riemann hypothesis, but have not been successful. The
proof of this Riemann hypothesis has been an important mathematical issue. In this paper, we
attempt to derive the contour integral equation from the quaternionic analysis as preparation
proving Riemann hypothesis.

We obtain a generating function of the inverse Mellin-transform. We obtain new generating
function by multiplying the generating function with exponents and reversing the sign. We derive
the contour integral equation from inverse Z-transform of the generating function.

We derive the summation equation, the asymptotic expansion, Faulhaber’s formula, and Norlund—
Rice integral from the contour integral equation.
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1 Introduction

1.1  Issue

Many researchers have attempted proof of Riemann hypothesis, but have not been successful. The
proof of this Riemann hypothesis has been an important mathematical issue. In this paper, we
attempt to derive the contour integral equation from the quaternionic analysis as preparation
proving Riemann hypothesis.

1.2 Importance of the issue
Proof of the Riemann hypothesis is one of the most important unsolved problems in mathematics.

For this reason, many mathematicians have tried the proof of Riemann hypothesis. However, those
trials were not successful. One of the methods proving Riemann hypothesis is interpreting the zeros
of the zeta function as the eigenvalues of a certain operator. However, the operator was not found
until now. The contour integral equation is considered to be one of the operators. For this reason,
derivation of the contour integral equation is an important issue.

1.3 Research trends so far

Leonhard Euler introduced the zeta function in 1737. Bernhard Riemann expanded the argument of
the function to the complex number in 1859.

David Hilbert and George Polya? suggested that the zeros of the function were probably eigenvalues
of a certain operator around 1914. This conjecture is called "Hilbert-Polya conjecture.

Zeev Rudnick and Peter Sarnak? are studying the distribution of zeros by random matrix theory in
1996. Shigenobu Kurokawa is studying the field with one element* around 1996. Alain Connes®
showed the relation between noncommutative geometry and the Riemann hypothesis in 1998.
Christopher Deninger® is studying the eigenvalue interpretation of the zeros in 1998.

1.4 New derivation method of this paper
We obtain a generating function of the inverse Mellin-transform. We obtain new generating
function by multiplying the generating function with exponents and reversing the sign. We derive
the contour integral equation from inverse Z-transform of the generating function.
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(Contour integral equation)

£(p) =25~ B~ p.a)(@ DEZ 11

We derive the summation equation, the asymptotic expansion, Faulhaber’s formula, and Norlund—
Rice integral from the contour integral equation.

(Summation equation)

n _1 )
;(p)=Z;B(p,q_l)(q_l)b 1-9) 12)
g=

2 Confirmations of known results
In this chapter, we confirm known results.

2.1 Complex number
Euler used the complex number in about 1748.

i2=-1 (2.1)

We express the complex number as follows.
s=t+ixeC (2.2)
t,x ER (2.3)

The complex conjugate is shown below.

S=t—ixeC (2.4)

The function is shown below.

f(s)ec (2.5)
The absolute square is shown below.

|s|? = s5 (2.6)
We have the following symbols.

Re(s) =t (2.7)

Im(s) = x (2.8)
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2.2 Complex analysis

Augustin-Louis Cauchy ’ introduced the following equation for complex analysis in 1814.
Riemann® used this equation for complex analysis in 1851.
(Cauchy - Riemann equation)

of . of
AT 2.9
ac Tz =0 (29)
Cauchy introduced the following formula.
(Cauchy's integral formula)
1
fla) == /() ds (2.10)

2ni J, s—a

C is the closed path.

2.3 Quaternion
William Rowan Hamilton® published the quaternion in 1843.

i2=j2=k?=ijk=-1 (2.11)

We express the quaternion as follows.
q=t+ix+jy+kzeH (2.12)
t,x,y,z€R (2.13)

Conjugation of quaternions is shown below.
q=t—ix—jy—kzeH (2.14)
The function is shown below.
f(@) eH (2.15)
The absolute square is shown below.
lq1? = qq (2.16)

In this paper, we have the following symbols.

Re(q) =t (2.17)

Im(q) = x (2.18)

2.4 Quaternionic analysis

Karl Rudolf Fueter 1 introduced the following equation as the analogue of Cauchy - Riemann
equation for quaternionic analysis in 1934.
(Cauchy - Riemann - Fueter equation)
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of .of of Of
E+La+]@+k£—0 (2.19)

Fueter introduced the following formula as the analogue of Cauchy's integral formula.
(Cauchy - Fueter's integral formula)

1 jg (q—q0)”"

f(q0) =53 E f(q@) Dq (2.20)

ADXS lqg — qo

oD xS is the bundle of the closed path oD. S is the two-dimensional closed surface.

The detail of the quaternionic analysis described in Sudbery’s paper!! in 1979.

2.5 Mellin transform
Hjalmar Mellin!? published Mellin transform in 1904.
(Mellin transform)

f(s) = M[F(x)] (2.21)

f(s) = j xS7LF (x)dx (2.22)
0

We can express the inverse Mellin transform by the following contour integration. The variable ck is
the isolated singularities.
(Inverse Mellin transform)

F(x)=M[f(q)] (2.23)
1 [ _ —  Dq

F(x)=——@¢x7f(q) 2.24
2% Jop xs = |q—ck|2 (224

oD xS is the bundle of the closed path oD. S is the two-dimensional closed surface. The closed
path oD circles around all poles of the integrand. For example, we suppose the closed path 6D
as follows. The white circles mean poles.
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Im(q)

oD

Re(q)

Figure 2.1: The closed path 6D

2.6  Hurewicz’s Z-transform

Witold Hurewicz '3 published Z-transform in 1947. When the function F (z) is holomorphic over the
domain D = {0 <|z|< R}, the function can be transformed to the series which converges uniformly in
wider sense over the domain.

(Z-transform)

F(2) = Z[f ()] (2.25)
F()= > 2" f(n) (2.26)
D={0<|z/]<R} (2.27)

The inverse Z-transform of quaternion is shown below. The variable bj is the isolated singularities.
(Inverse Z-transform)
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f(n)=Z"[F(q)] (2.28)

_‘2 (2.29)

The closed path oD is shown below.

Im(q)

v

Re(q)

Figure 2.2: The closed path oD

2.7 Cauchy’s residue theorem of quaternion
We introduced the Residue theorem of quaternion as follows.

We suppose that the function F (z) has the isolated singularities c in the bundle of the closed path

CxS and is holomorphic except for the isolated singularities. Then, we have the following formula.
(Residue theorem of quaternion)
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1 Dqg
— ¢ F(q) = ResF(q) 2.30
27 Jeus |q—c|2 g=c (2.30)

We suppose that the function F (z) has isolated singularities cx in the bundle of the closed path CxS
and is holomorphic except for the isolated singularities. Then, we have the following formula.
(Residue theorem of quaternion)

1 4r@) 24~ Res F(q) (231)

27 Jous =g —c|” “=dgq=c

2.8 Euler's gamma function

Leonhard Euler** introduced the gamma function as a generalization of the factorial in 1729.
The gamma function is defined by the following equation.
(Definitional integral formula of the gamma function)

I(s) = j x5 Lo ™ dx (2.32)
0

We introduced the integral representation of quaternion of gamma function.
(Contour integration of gamma function)

= el ——
ra-p) 277 § ? (2:33)

¥ xo |q

y X ¢ is the bundle of the closed path y. ¢ is the two-dimensional closed surface.
The closed path y is shown in the following figure. The white circles mean poles.
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Tim@)

A

Figure 2.3: The closed path y

The gamma function has the following formula.
(Euler’s reflection formula)

T 1

T =G T

The gamma function satisfies the following equations.
n=Tr(n+1)

I'(s+1) =sI'(s)

The gamma function has the following equation.

F(S) — J‘O;s—le—qxdx
S
q 0

2.9 Euler's beta function

Re(q)

(2.34)

(2.35)

(2.36)

(2.37)

Leonhard Euler introduced the beta function in 1768 in his book®. We can express the Beta

function by using the gamma functions.
(Definitional formula of the beta function)
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L(s)r'()

BED=T6rn

(2.38)

We can obtain the following reflection formula of Beta function from reflection formula of the

gamma function.

(Reflection formula of Beta function)

zsin(z(s+t-1) 1
sin(zs)sin(zt) B(s,t—-1)(t-1)

Bl—s1-t)= (2.39)

2.10 Riemann zeta function

Bernhard Riemann?® expanded the argument of the zeta function to the complex number in 1859.
The definitional series of the function is shown below.
(The definitional series)

1 1 1 1
4(5)=1—5+2—S+3—S+"'= k_s (2.40)
k=1
The function is also defined by the following formula.
(Definitional integral formula)

1 * s—1 _e_x
S)=—— X7 ———dXx 2.41
£(s) F(S)L R (2.41)

We can interpret the above formula as the following Mellin transform.
(Mellin transform)

g(s) = M[G(2)] (2.42)
g(s) = J. x* G (x)dx (2.43)
0
_ e_Z

G(2) = (2.44)

et -1
g(s) =<(s)r(s) (2.45)

The inverse Mellin transform of the function is shown below. The variable ck is the isolated

singularities.
(Inverse Mellin transform)
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G(z) =M [g(a)]

G(z)—— z79g(q)
27 Je s Zq ck|

o P

el -1

g(a) =< ()T (a)

The contour integration of the zeta function is shown below.
(The contour integration)

gp) _ 1 § p—l_eq Dq
F-p) 2722J, ef-1gf

We can interpret the above formula as the following the inverse Z-transform.
(Inverse Z-transform)

h(p) =Z[H(q)]

1 _ D
()= "5 a° tH(@)

el

_gd
H@ ="

£(p)
)= Ty

The closed path y is shown in the following figure. The white circles mean poles.
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(2.48)

(2.49)
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(2.51)

(2.52)
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(2.54)



glm(q)
67i

Azi O

27 C

oo Y ’f"

= ,\Oc

—27riC

—~

~47i O

—bri O

Figure 2.4: The closed path y

The Z-transform of the function as follows.
(Z-transform)

H(2) = Z[h(s)]

H(z) = Zz—Sh(s)

S=—00

_ez

H(z) =
el -1

£(s)
I'd-s)

h(s) =

Re(q)

(2.55)

(2.56)

(2.57)

(2.58)

The generating functions of Mellin transform and Z-transform have the following relations.
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H(z) = -e’G(z2) (2.59)

H(z) =G(-2) (2.60)

Riemann showed the following formula.
(Riemann’s reflection formula)

2 V4
gl-s)= @F(S) COS(E Sjé(s) (2.61)

Riemann proposed the following conjecture.
(Riemann hypothesis)
Nontrivial zeros all have real part 1/2.

We express the examples of nontrivial zeros p1 and p2 in the following figure and equation. The
black circles are zeros and the white circle means a pole.

A

Im(s)

..
@

PN L O >

5 ol 7 Re(s)

Figure 2.5: Nontrivial zeros of zeta function
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1 .
ol =E+|(14.13--~) (2.62)

1 .

Since the proof of the Riemann hypothesis has not been successful, it has been an important
mathematical issue.

2.11 Bernoulli polynomials

Jakob Bernoulli introduced Bernoulli numbers in 1713 in his book!’. Seki Takakazu also introduced
Bernoulli numbers in 1712 in his book'® independently. Bernoulli numbers are defined by Bernoulli
polynomials. The definition of Bernoulli polynomials is shown below.

(Bernoulli polynomials)
xe ™ z :B q

eX_1 n!
n=0

The above series are called “formal power series” because it does not converge over the whole
domain. The convergent radius is 2z because the minimum distance between origin and poles is 21
for the generating function.

14/ 44



Im(2)
67l

47O

v

Re(z)

A47iO

-67i O

Figure 2.6: The convergent radius of Bernoulli polynomials

2.12 Bernoulli numbers

We suppose that Bn(q) is Bernoulli polynomials. There are the following two kinds of definitions of
Bernoulli numbers Bn.

Bn =B (0) (2.65)

By =Bn() (2.66)

In this paper, in order to unite with the definition of Bernoulli function explained later, the latter
definition is adopted. At the former and the latter, there is the following difference by n = 1.

B,(0)=-1/2 (2.67)
By(D) =1/2 (2.68)
Bernoulli polynomials Bn(1) equals to Bn(0) except n = 1. The definition of Bernoulli numbers is

shown below.
(Definitional series of Bernoulli numbers)
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xe* By .
1 = o (2.69)
n=0

Bernoulli numbers has the following formula for even positive integer n.
(Reflection formula of Bernoulli numbers)

(27r) 1

cry =22 y2"s, (2.70)

Bernoulli numbers has the following formula for natural number n.
(Formula of Bernoulli numbers)

g(-n)= Bna (2.71)

n+1

According to Vich’s book?®, we can express Bernoulli numbers by Z-transform as follows.

1/z
d/z)e”” _ Z[EJ (2.72)

In this paper, we express the Z-transform of Bernoulli numbers as shown below.

H(z) = Z[h(s)] (2.73)
H@ = > 27*h(s) (2.74)
H(z) = —% (2.75)
el 1
_ B B
h(s) = T—ls) (2.76)

3 Derivation of the contour integral equation

3.1 The framework of the method to derivation
The inverse Mellin transform of zeta function is shown below.
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G(z) =M g(a)] (3.1)

G(z2)=—5$z9(a) 3.2
27 Je s Z - ck| G2
G(z) = —2 (3.3)
et -1
9(q) =< (@)I(a) (3.4)
The inverse Z-transform of the function is shown below.
h(s)=Z'[H ()] (3.5)
1 s-1 Dq
h(s)=—-¢q” "H(q)— 3.6
272_2 <o |q|2 ( )
_al
H(q) = — (3.7)
e —
¢(s)
h =
) I'(l-5s) (38)

The generating functions of Mellin transform and Z-transform have the following relations.

H(z) =-e°G(2) (3.9)

H(z) =G(-2) (3.10)

The framework of the method to derivation is shown below.
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G(z) =M g(p)] h(p)=Z"[H(2)]

Figure 3.1: The framework of the method to derivation

We can obtain the contour integral equation by the anticlockwise path.
(Contour integral equation)

1

1
S =25 §-BL- P @ Y
C xS —

la—k?

. (3.11)

This paper explains this derivation method.

3.2 Derivation of the contour integral equation from the inverse Mellin transform
Inverse Mellin transform of the zeta function is shown below.

G(z) =M *[g(q)] (3.12)
1 [ > Dq
G(z)=—— ¢z 99(a) 3.13
272 Jo us = |q—ck|2 (3.13)
G(2) = __f_z (3.14)
el -1
9(@) = (@ (@) (3.15)

The bundle of the closed path CxS of the inverse Mellin transform needs to circle around all poles
of the integrand. Then we adopt the closed path C as follows. The white circles mean poles.
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Tim@)

@ Re(q) "
0

Figure 3.2: The closed path C

On the other hand, Inverse Z-transform of the function is shown below.
(Inverse Z-transform)

h(p)=Z"[H(2)] (3.16)
1 _ Dz
h(p)=——$z" H(2) —=
(p) P! yzw (Z)|Z|2 (3.17)
H(z) = _Zez (3.18)
e- -1
¢(p)
h(p) = 2~/
(p) - p) (3.19)

The closed path y is shown in the following figure. The white circles mean poles.
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glm(z)
67i

4ri O

2ni C

—oo Y ’/‘
| > OC
.

*ZEiC

Re(z) ”

—~)

~4ri O

—b7i O

Figure 3.3: The closed path y

We can deform the equation of the inverse Z-transform as follows.

h(p) = zp 1 o G(z)}| . (320)

We obtain the following equation by substituting the equation of the inverse Mellin transform.

~ 3.21
)= iw o ixsg(q)zm o (3:21)

In order to integrate the above equation for the variable z, we deform the above equation as follows.

h(p) = 12§— [ ! §zp—q—lez% @by (322)
e

222 Joss\ 222 dy e 2 oo

We apply the following formula to the above equation.
(Contour integral formula of the gamma function)

1 1 44 Dg
qp
ra-p) 272 § o (323)

The closed path vy is shown in the following figure.
20/ 44



1 Im(2)

Re(2) ”

Figure 3.4: The closed path y

Then we can get the following equation.

cp) _ 1 §_( 1 ]“’ r(@)¢(9)Dg
FA-p) 2z° Jo.s\I'l-p+0) Z g-c |’ 524

k=1

Here, we simplify the above equation by using the following the beta function.
_Tr(y)

B(x,y) = :
(xy) T(x+y) (3.25)
As the result, we can obtain the following equation.
(Contour integral equation)
1 O D
P =5 §-BL-p.a@ ) (326)
27 Jexs = |g—Cy |

The closed path C is shown in the following figure. The white circles mean poles.
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Tim@)

v

il (@)

@ Re(q)
0

Figure 3.5: The closed path C

We can express derive the following equation since singularities are 1, 0, -1, -3, -5, ... and the
function { ( q) is O for t=-2, -4, -6, ---.

(Contour integral equation)

> (3.27)

4 Derivation of summation equation
We derive the summation equation from the contour integral equation and residue theorem.

The contour integral equation is shown below.
(Contour integral equation)

1
c:(|o)=2i2 ~B(1- p,q)¢(q) DZZ @1

We replace the variable g to 1 - g in the above equation.
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C(p)——

77 CoxS

(4.2)
~|q- |

The closed path Co is shown in the following figure. The white circles mean poles.
A
Im(a)

(I

/ 2 4 6 Re(q)

Figure 4.1: The closed path Co

We can obtain the following reflection formula of Beta function from reflection formula of the
gamma function.
(Reflection formula of Beta function)

zsin(z(p+q-1)) 1
sin(z p)sin(zq) B(p,q-1)(q-1)

Bl-pl-q)= (4.3)

Therefore, we can deform the contour integral equation as follows.

_zsin(z(p+q-1))  {(l-q)
=2 s SiN(zp)sin(za) B(p,q-1)(q- 1)Z|q % (44)

We can calculate the above integration by residue theorem as follows.
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0

) rsin(r(p+q-1)  £0-q)
g(p)_;qu:egk sin(zp)sin(za) B(p.q-D(a-1 2

Here, ckis k-th pole. The singularities are 0, 1, 2, 4, 6, ...

We have the following equation for integer n.

S zsin(z(p+q-1) _ 1
g=n sin(zp)sin(zq)

(4.6)

We can express derive the following equation since all singularities are integer and the function {
(A-t)is 0 fort=3,5,7, -
(Summation equation)

n _1 )
:(p)=Z;B(p’q_1)(q_l)b 1-q) @
q:

We cannot calculate by the above equation because it is divergent. In order to solve the problem,
we derive asymptotic expansion of Hurwitz zeta function.

5 Confirmations of known results (Part 2)
In this chapter, we confirm known results.

5.1 Hurwitz zeta function

Adolf Hurwitz?® introduced the following generalized zeta function in 1882.
(Definitional series)

00

1 1 1 1
¢(s,q)= + + Hoe= 5.1
(q+0)° (q+1)° (q+2)° Z(q+k)s &b

k=0

The relation between Hurwitz and Riemann zeta function is shown below.

é’(s):{l+i+...+ 1 }4_{ 1 + 1 _|_} (52)
ro2° @-1°) ((@+0)° (q+D°
g-1 1
£(s) = Zk—s+ £(5,9) (53)
k=1

Hurwitz zeta function becomes Riemann zeta function when g = 1.
g(s)=g(s) (5.4)

Hurwitz zeta function is also defined by the following formula.
241 44



(Definitional integral formula)

1 * s—1 _e_qx
S, = —_ X —dX
£(s,0) F(s)_[) ——

We can interpret the above formula as the following Mellin transform.
(Mellin transform)

g(s,q) = M[G(z,q)]

g@n)=j§*%qumX
0

_e_qz

G(z,0)=—
e -1

9(s.q) = £(s,9)I'(s)

Hurwitz zeta function has the following integration.
(Contour integration)

{9 _ 1 E¥ZS_1_equ
F(-s) 27°),.0 e -1z

We can interpret the above formula as the following inverse Z-transform.
(Inverse Z-transform)

h(s,q)=Z"[H(z,q)]

1 _ Dz
h(s,q):—2 z° 1H(Z,Q)—2
2% dy o |z|
el
Hz,0) = =
e- -1

5= £

Bernoulli polynomials have the following formula for natural number n.
(Formula of Bernoulli polynomials)

25/ 44

(5.5)

(5.6)

(5.7)
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(5.9)

(5.10)
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¢(=n,q)=—

Bn1(a)
il (5.15)

+1

5.2 Euler—Maclaurin formula

Euler?* discovered the following formula in 1738. After that, Maclaurin?? also discovered the same
formula in 1742 independently.
(Euler—Maclaurin formula)

g
:jf(x)dx (5.16)
p
1 1
S=Ef(p)+f(p+1)+-~~+f(q—1)+§f(q) (5.17)
S—1= ﬂ(f *D(q) - f(k—l)(p))+R (5.18)

k!
k=2

In the above formula, R is an error term.

5.3 Asymptotic expansion

Euler?® calculated the value of the zeta function by Euler—Maclaurin formula in 1755.
(Asymptotic expansion)

g-1 r
~ 1 g+ By (s+k-2)!
((S)—Zk—s+—s_l+ ﬁ—(s—l)'qs”‘_l +R (5.19)
k=1 k=1 )

In the above formula, R is an error term. Detail method to derive the above formula is shown in the
book?* written by Edwards in 1974.
We can reform the above formula as follows.

q-1
Rl By I(s+k-1)
ag_kzllk_s Lk rett (520

Here we used the following equation.

1-s 0 _

B By I'(s+k-1) (5.21)
- ki s+k—1 '
= K T'(s)q
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5.4 Faulhaber's formula

Johann Faulhaber? published the formula of the sum of powers in 1631. We can express the
formula for natural number n as below.

(Faulhaber’s formula)
: 1 - n+1
+
E k”:—z —1)K B, (0)g"** 5.22
: 1 ()(kjk()q (5.22)
=1 0

k:

We can express the above formula by using Bernoulli polynomial Bk (1) as follows.
(Faulhaber’s formula)

g-1 n
1 n+1 _
kn:_z _1k B 1 n+1-k .
D= ( k j yar (529
k=1 k=0

In this paper, we express the above formula by Bernoulli number By as follows.
(Faulhaber’s formula)

g-1 n
1 n+1
kn - = _1k B n+1-k 24
> n+1§()(kjkq (5.24)
k=1 k=0

5.5 Ramanujan master theorem

Srinivasa Ramanujan obtained the following theorem?® about 1910.
(Ramanujan master theorem)

0

F= Y Sy (5.25)
n=0
g b [
f( S)_F(s)_[)x F(x)dx (5.26)

We have the above equations for the following the Bernoulli number and zeta function.

—X

F(x)=— (5.27)
e —

f(n)=B, (5.28)

f(=s) =s{(s+1) (5.29)

This theorem suggests that the following relation.
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¢g(1-s) =—% (5.30)

5.6 Woon's introduction of continuous Bernoulli numbers

S. C. Woon?' introduced continuous Bernoulli numbers in 1997.
Bernoulli numbers has the following formula for natural number n.
(Formula of Bernoulli numbers)

£(-n)= ”:i (5.31)

Woon extended these Bernoulli numbers to the continuous Bernoulli function, and showed the
following formula for the complex number s.
(Formula of Bernoulli function)

B(s)

Cl-s)=— (5.32)

In this paper, we use the following notation for Bernoulli function based on the notation for
Bernoulli numbers.
(Formula of Bernoulli function)

¢@-5s) =—% (5.33)

We can obtain the following equation by substituting the above formula to “Riemann’s reflection
formula”.

B, 2
s T 2y ( j (s) (5.34)

We can obtain the following equation by deforming the above formula.
(Reflection formula of Bernoulli function)

@r)° 1 1

S)=-— B 5.35
<) 2 T(s+1)cos(zs/2) ° (5:35)

The above formula becomes the following formula for even positive integer s.

27)° 1, o1
O ’Zz) ~(-D2 B (5.36)
s!
The above formula equals to the following formula for even positive integer n.
(Reflection formula of Bernoulli numbers)

=1 n2"s, (537)

The above result suggests that the validity of "Formula of Bernoulli function."
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5.7 Norlund-Rice integral

The analogue of Nérlund—Rice integral published Niels Erik Norlund?® in 1924 is shown below.
(Norlund—Rice integral)

n

Z( j( 1) f(k)—— B(n+1,
77 C xS

k=c

(5.38)

Here the closed path C circles around poles c, ..., n for positive integer c. B(x, y) is Euler’s Beta
function.

The analogue of Poisson—Mellin—-Newton cycle published by Philippe Flajolet?® in 1985 for
Norlund-Rice integral is shown below.
(Poisson—Mellin—Newton cycle)

1 n
F(x) = e—XZOanx (5.39)
f(s) = J xS F (x)dx (5.40)
0

D" [ nr-n) f@ N Dt
N on? Jos T Ty P 4D
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f(s)x=M[F(2)]

_(D" [ nre-n) f@© N Dt
27% Joxs T(t+D) (1) = ‘t—bj‘z

Figure 5.1: The analogue of Poisson—Mellin—Newton cycle

6 Derivation of asymptotic expansion

We cannot calculate by the summation equation of zeta function because it is divergent. In order to
solve the problem, we derive the asymptotic expansion from summation equation of Hurwitz zeta
function.

6.1 Relation between Riemann and Hurwitz zeta function
We show the relation between the Riemann and Hurwitz zeta function.

gq-1
§(s>=zkis+§<s,q) 6.1)
k=1

We derive the asymptotic expansion from the above relation.

6.2 Derivation of summation equation of Hurwitz zeta function

Hurwitz zeta function is defined by the following formula.
(Definitional integral formula)

1 * s_l_e_qx
S,()=—— —d 6.2
£(s.0) F(S)jo e (62)

The formula can be expressed by the generating function of Mellin transform.
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£(s.0) = % L 1600 a)dk 6.3)

We can obtain the following equation by deforming the above formula.

1 - -1 —gX

C(s,q)=—J.><s e 7H (x) fix (6.4)

F ) e HOoR

We can obtain the following equation by substituting the equation of Z-transform.
1 (%] o\ ¢A-1) ta

g”(s,q)z—J.xS —e™ X' bax (6.5
o)k () )
D={0<|x| <27} (6.6)

The Z-transform converges over the domain D. Therefore, we can commute the order of the
integration and the summation over the domain.

In order to integrate the above equation for the variable x, we deform the above equation as follows.

— 1 N _4(1_0 OOs+t—2 —gX
é(s,q)—r(s); X~ %e T dX (6.7)

r® J
We apply the following equation to the above equation.

lss) = st‘le‘qxdx (6.8)
q 0

As the result, we can obtain the following equation.

1 NO-CA-1)T(s+t-1)
¢(s,q)= ) ; (6.9)

F('[) q S+t-1

Here, we simplify the above equation by using the following the beta function.
1 T(x+y)
B(x,y) TO)I(y)

(6.10)

As the result, we can obtain the following equation.
(Summation equation)
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0

-1 cd-9

S, ()= A1
¢(5.0) B(s,t—1)(t-1) oL (611)
t=0
Therefore, we can express the summation equation Riemann zeta function as follows.
(Summation equation)
SRR 1 e
- -t
S)= — t 6.12
7 Lt st g (612
=1 t=0

The solution of the above equation reaches an infinite value because the convergent radius of
“definitional series of Bernoulli function” is 2.

However, the numerical calculation of the summation equation is possible if we choose appropriate

g and integration domain.

6.3 Derivation of asymptotic expansion
In this section, we derive the asymptotic expansion from the summation equation.

We can express the summation equation Riemann zeta function as follows.
(Summation equation)

q-1 ©
L -1 £(@-K)
kS + L B(s,k-1)(k-1) gsk* (6.13)

We can obtain the following equation by replacing beta function to gamma function.

-1 )
1 -I'(s+k-1) <(1-k)
S)= —+ 6.14
6 Z kS ZF(S)F(k -D(k-1) q5+"—1 619
k=1 k=0
We can deform the above equation by Formula of Bernoulli polynomials as follows.
1 N -T(s+k-1) —KB
((S)=Z—+Z “Tlswk—) — KB (6.15)
k® TSk -1)(k -1) g5t
k=1 k=0
We can deform the above equation as follows.
1 NOB, [(s+k-1)
k I'(s+k-—
)= ) —+ ) —-—— 1
C( ) Z kS ki F(S)qs+k_1 (6 6)
k=1 k=0

The solution of the above equation reaches an infinite value because the convergent radius of

“definitional series of Bernoulli function” is 27t. Therefore, we change the upper limit of summation

to a variable r that depends on the variable g.
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N1 \OBe Ts+k-1)
(0= T

The above equation equals to asymptotic expansion.

7 Derivation of Faulhaber's formula
In this section, we derive Faulhaber's formula from the summation equation.

We can express Riemann zeta function as follows for natural number n and integer k.

(Summation equation)
g-1 0

1 -1 -k
¢ = Zk_” B(nk-D(k-1) "

k=1

We can derive the following asymptotic expansion as shown in the previous section.
(Asymptotic expansion)

gq-1
1 N B In+k-1)
C(n) ;kn k| F(n)qn+k -1

We replace the variable n to —n in the above equation.

By I(-n+k-1) nu«
Z =< Z T
We can deform the above equation by Euler’s reflection formula as follows.
n+1-k
an ) Z sin(z(n+1)) T(n+1)q
k! sin(z(n—k+2)) T(n—k+2)

We have the following equation for natural number n and integer k.

sin(z(n+1))
sin(z(n—k +2)) -

Therefore, we can obtain the following equation.
B n+1-k
an é/( n)+z k ( )k r(n+1)q
k! I'(n-k+2)
We have the following equation for natural number n and integer k > n+2.
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1
r(n—k+2) (7.7)

Therefore, we can obtain the following equation.

By, k [(n+Dg™ ™ k
lZZ (-1) Th_k+2) =0 (7.8)

According to the above result, we can change the upper limit of summation to n+1 of the equation
(7.6).

: B ( Dn+2)g"
Zk - n)+ ey 79)

We can express the following equation by using the factorial.

g1 n+l n+l-k

k" =¢ (- n)+Z( nh l:,(Bk_qu)' (7.10)
k=1

We can express the following equation by using the binomial coefficient.

q-1 n+1 N+l
D k=gt n)+—Z< ) ( JBK ek (7.11)
k=1
We can deform the above equation by Formula of Bernoulli polynomials as follows.
q-1 1
n+
K" — n+1 Z B n+1-k 712
Z n +1 n+1 C ) 8 ( )
k=1
We have the following equation for natural number n and integer k = n+1.
Bn+1 n +1 n+1-k
— N
N+l n +l( D [ B (7.13)

Therefore, we can obtain the following equation.

n+1 n+ n+l-k _
T+l n+1z( D ( j =0 (7.14)

k=n+1

According to the above result, we can deform the equation as follows.
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g-1

n
1 n+1
kn — _1k B n+1-k .
E 1 kzo( ) [ " j kd (7.15)

k=1

The above equation equals to Faulhaber's formula.

8 Derivation of Norlund-Rice integral

8.1 Derivation of the contour integral formula
We suppose new function H (z) for arbitrary function G (z) as follows.

H(z) =-e’G(2) (8.1)

We obtain new function g(s) from Mellin transform of the function G (z).

g(s) =M[G(2)] (8.2)
The inverse Mellin transform is shown below.
G(2) =M [g(s)] (83)

We obtain new function h(s) from the inverse Z-transform of the function H (2).
h(s) = Z [H(2)] (8.4)

The relation of the above functions is shown below.

G(z)=M g(s)] h(s) =Z " [H(2)]

Figure 8.1: The inverse Mellin transform and the inverse Z-transform

The formula of the inverse Z-transform is shown below.
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h(s)=—5 ¢ z°'H

Yy Xo

We can deform the formula of the inverse Z-transform as follows.

h(s) = 27%2 zs‘l{—eZG(z)}Z Dbz_ :

}/XO' J:]- ‘Z_ J

We substitute the formula of the inverse Mellin transform into the above formula.

z
S, 25
2 ¥ Xo 2” C xS |t—Ck| ‘

Tl-b

We deform the above formula in order to integrate it by the variable z.

h(S) _ 1 _ 1 §ZS—I—1eZ Z dZ g(t)Dt
27% Jo us | 277 y .‘2 = |t—ck|2

We apply the following contour integration of gamma function to the above equation.

F(l s) 272 j: e ZZ

As the result, we can obtain the following equation.

oo f

h(s) = 1 § -1 g(t)Dt
C

2% Jo s T=s+t) &t —c, |2

We define new functions ¢ (s) and y (s) as follows.

g(s)
#(s) = )

#(8)=h(s)I' (1-s)

Then we can deform the above formula as follows.
1 I'aA-s)I'(t
2(5) = 2§— ( )()M)E
27% Joxs TA=s+1) - ft - ck|

We can express the above formula by Euler’s Beta function as follows.
(Contour integral formula)
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1 Dt
2(8) =~ 4~ BL-5,09(1) :
277 Jexs o=t — |

(8.14)

8.2 Derivation of the summation formula

We can obtain the summation formula by adopting residue theorem to the contour integral
(Summation formula)

m+1

-1
79=) sy (8.15)
t=c+1

Here the closed path C circles around poles c+1, ..., m+1 for positive integer d. B(X, y) is Euler’s
Beta function.

8.3 Derivation of Norlund-Rice integral

We can derive Norlund—Rice integral from the contour integral formula and the summation
formula.

The summation formula is shown below.
(Summation formula)

m+1

-1
x(8) = E B LD _1)¢(1—t) (8.16)
t=c+l

We replace the variable s to -n and the variable t to k +1 in the above equation.

()= Z—qﬁ( ) 8.17
LN K ©47
Then we introduce the following new function f (k).
f (k) = p(-k) (8.18)
We can express the formula by the function f (k).
C 1
-n) = = f(k
A=Y ' (819)
k=c
We deform the above equation by Euler’s gamma function.
I'(-n+k)
k
2(n) = Zr( Sreag'® (8.20)

We obtain the following formula by using Euler’s reflection formula.
37144



N = ~T(n+1) sin(z(n +1))
A n)_kZF(n—k+l)F(k+1) sine(n—k+3)

We have the following equation for natural number n and integer k.

sin(z(n+1)) -«
sin(ﬂ(n—k+l))_( )

We can obtain the following formula.

=y = (D gyt k)
k=c

T(n—k + )k +1)

We have the following equation for natural number n and integer &> n+1

I S
T(n—k+1)

Therefore, we can change the variable m to n.

N T+,
Z(_n)_kZF(n—k+l)F(k+l)( 7o

We can express the following equation by using the factorial.

=D (D T
k=c

We can express the following equation by using the binomial coefficient.

- 1) = Z(Ej(—l)k f®)
k=c

On the other hand, the contour integral formula is shown below.
(Contour integral formula)

1 - Dt
2(8)=— ¢ -B(-s,0)¢(1)
7 e ;\t—bi\z

We replace the variable s to -n and the variable t to -t in the above equation.
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—x(n) = % —-B(+n,
2r C xS

We use the following function.
f(t) =g(-1)
Then, we obtain the following equation.

- n)—2— B(n+1—t)f(t)z e

T C xS

Therefore, we can obtain the following equation.

- K Dt
Z( j( 1) f(k)_; CI3X(5n+1—t)f(t)Z

k=c

The above equation equals to the analogue of Norlund-Rice integral.

9 Conclusion

We obtained the following results in this paper.

- We derived contour integral equation.

- We derived summation equation.

- We derived asymptotic expansion.

- We derived Faulhaber’s formula.

- We derived the analogue of Norlund—Rice integral.

10 Future issues
The future issues are shown below.

- To study the relation between the generating function of Z-transform and zeros.

- To study the eigenvalues of integral equation.

11 Appendix

11.1 Table of Z-transform
Table of Z-transform is shown below.
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f(s) F(z) =Z[f(s)] Num.
g(s) —e?
f(s)=——— F(z) =
(s) F(_s) (2) - (11.1)
1(s) e?
f(s)= F 11.2
G =y @=e (112)
é/(s, q) —ed?
f(s,q) =22 F(z.q) = .
GD=Fo g @ay=—— (11.3)
7(s,q) ed?
= F(z,q) = 11.4
f(s,q)= T(_s) (za)=—— (11.4)
(D(W’ S,Q) —edz
f(s,qw)=——"+ ,g, W) = :
(.9, w) C_s) Fzaw=——"— (11.5)
_L(4,q,s) B ez
f(S,q,ﬂ)—m F(Z,q,/l)_exp(ZE'iﬂ)eZ 1 (11.6)
The definition of the functions is shown below.
(Definitional integral formula of Riemann zeta function)
@ A X
£(s) = iJ. A, ¥ (11.7)
I'(s) Jo e -1
(Definitional integral formula of Dirichlet® eta)
@ —-X
n(s) = ij 1&g« (11.8)
I'(s) Jo e ¥ +1
(Definitional integral formula of Hurwitz zeta function)
o0 _ _qx
;(s,q):ij 128 x (11.9)
I'(s) 0 e X -1
(Definitional integral formula of Hurwitz eta function)
n(s,q) = j ‘1e—dx (11.10)
I'(s) +1 '

(Definitional integral formula of Lerch transcendent®!)
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_1 -e
d(4,s,q) = e )J. —_1dx

(Definitional integral formula of Lerch zeta function)

1 > 5_1 _e_qx
L(ﬂ’! g, S) = X dx
I'(s) Jo exp(2zid)e ™ -1

The formulas of the polynomials are shown below.

ca-m=-"o8
n
.~ En@
n(=n) = 5
£A-nq)=—n@
n
n(_n’q) — En (q)
2
d(w,1-n,q) Pn (g,w)

The definitions of the polynomials are shown below.

(Bernoulli polynomials)
re® _isn @ n
et -1 n!

n=0

(Euler polynomials)

26 _ Z En(@) n
e +1 n!

n=0

(Apostol-Bernoulli polynomials ?)

xe & Zﬂn(q , W) N
we* -1
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(11.14)
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(11.16)
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11.2 Derivation of the contour integral equation from the contour integral formula

The contour integral formula is shown below.
(Contour integral formula)

x(s) = 27%2 - E(l_ s, H)g(t) " _[():t |2 (11.21)
8 k=1 k
We add the following condition.
H(z) =G(-2) (11.22)
Then we can obtain the following relation.
x(5) = ¢(s) (11.23)
In other words, the following two equations are equivalent.
H(z) =—e’H(-2) (11.24)
#©) == -BA-s D80 Y (11.25)
27" Jexs |t — |
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