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Abstract

Imaginary numbers were introduced into our number system without a mathema-
tical foundation. Because there was no explicit guide showing how to relate real
and imaginary numbers, arbitrary assumptions were made. While those assump-
tions allowed us to successfully work with imaginary numbers, some distortions in
our concepts occurred.

Spin is based on a new conception of imaginary numbers - and it has a solid
mathematical foundation. Spin equations look like waves when you plot them on a
Cartesian (x, y) style graph. When you plot them on the imaginary number circle,
they spin.

Much of the foundation for spin was already in our number system. The power
series (for ex, cosx, and sinx) and the Schrodinger equation are all spin equations.
Because the spin interpretation has gone unnoticed, this material opens up a new
�eld of mathematical physics.

This paper:

1. Introduces unitary circles - circles with the property of spin

2. Rede�nes the imaginary number system (based on unitary circles)

(a) Three imaginary functions

(b) New de�nition of i

3. Introduces spin (based on imaginary numbers)

(a) Euler's spin equations

(b) Euler's identity explained with spin terms

(c) Euler's formula completed

4. Using spin concepts to compute energy

(a) Basic energy equations

(b) The Schrodinger equation

(c) Another energy equation
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1 A New Concept of Imaginary Numbers

1.1 Background

Imaginary numbers were �rst introduced into our number system with only a
vague and ambiguous de�nition (i =

√
−1). But what are imaginary numbers ?

Real numbers represent real objects, but what do imaginary numbers represent ?
Imaginary numbers can not be found on the real number line, so where do they
�live� ? How do they interface with real numbers ?

Descartes was uncomfortable with the constant i (sometimes called j), because
there was no way to conceptualize what it meant to be the square root of -1, and
also because there were no practical applications (at that time) that used this
constant. In his book La Géométrie in 1637, he disparagingly coined the term
"imaginary numbers", suggesting they were not real numbers.

Ironically, the diagrams used today to represent imaginary numbers are based
on Descartes' Cartesian coordinate system. Argand diagrams use the x axis to
represent real numbers and the y axis to represent imaginary numbers. Since the
coordinate points on these diagrams have both a real component and an imaginary
component, these numbers are said to be complex. Similarly, the intersection of
the real and imaginary axes are sometimes referred to as the complex plane.

Figure 1: Argand Diagram
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1.2 Competing De�nitions of i

Early in the 20th century, it was discovered that i was a constant of nature - a
real application was found for imaginary numbers! However today, there are still
at least three di�erent competing de�nitions/conceptions of i:

1. One view says i is de�ned as a shorthand symbol for working with negative
square roots - and nothing more.

2. Another view (described above in the background) is that i is a constant of
nature, and that imaginary numbers form a linear dimension that intersects
the real number line.

3. A di�erent view is that i is a constant of nature, but it is limited to one of
four points on a circle.

If we want the consistency and certainty of our real number system to extend to
include imaginary numbers, then we need to know precisely and unambiguously
how imaginary numbers relate to real numbers. Imaginary numbers as they are
currently de�ned are invalid - they are vague and there is no mathematical bridge
explicitly linking real and imaginary terms.

We need to know conceptually and mathematically how imaginary and real num-
bers relate. Yet the constant i is not decipherable and there are no mathematical
operations or properties that allow us to relate imaginary numbers to real num-
bers. Without a way to relate real and imaginary numbers, terms such as 3i are
mathematically meaningless - and not valid numbers.

All we know is that an imaginary number squared (whatever that means) yields
−1.
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1.3 Bridging Real and Imaginary Numbers

This material shows that conceptually i is a quarter of a turn on a circle. This
concept is not new, but now it has evolved into the foundation for the property of
spin.

Spin equations are complex and they generate answers that contain a mixture
of real and imaginary terms. When a spin equation is �paired� with its complex
conjugate, the complex terms in the answer always appear with their conjugate
and cancel out. This means �pairing� a complex spin equation with its conjugate
yields an all real answer. This is the mathematical foundation linking imaginary
and real numbers.

Note that we still have no way to relate i with a real number. So every point on
the complex plane is still invalid. But we don't need to know how i directly relates
to real numbers, because we know how to combine two imaginary numbers to get
a real number.
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2 Imaginary Number System

2.1 Unitary Circles

Unitary circles model the property of spin. They start at the origin with a value of
1, and spin around (a full revolution) in one, two, or four steps. What makes them
all unitary circles is the characteristic that the step unit, raised to the number of
steps, equals one.

Figure 2: Unitary circles

The last circle, with a step unit of i, is called the imaginary number circle.
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2.2 Imaginary Number Circle

The imaginary number circle is a unitary circle. It has the property of spin, and i
is the step unit. It can be graphically represented with the expressions in and i−n.

Figure 3: The imaginary number circle

The expression in starts at the origin (with a step number of 0), and steps around
the circle in a counterclockwise direction. This endless looping process is spin.
Similarly, the expression i−n starts at the origin, but steps around the circle in a
clockwise direction.

2.3 Complex Conjugates

The expressions in and i−n generate both real and complex terms. It is therefore
problematic to use either one of these expressions in formulas, because real world
problems can not be solved with imaginary solutions (there is no way to interpret
the result).
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However in and i−n are complex conjugates. The real terms add together and the
complex terms cancel out. We can see in the table below that no matter what
value n has, in + i−n always yields a real value (either 2, 0, or -2).

Figure 4: Complex conjugates paired together
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2.4 Three Imaginary Spin Functions

All three imaginary functions describe a form of �spin� - they all start at the origin
and spin counterclockwise. One function takes only even numbered steps (cosx).
Another function takes only odd numbered steps (sinx). The third function (ex),
takes both even and odd numbered steps.

cosx =
∞∑
n=0

in + i−n

2
(1)

sinx =
∞∑
n=0

in + i−n

2i
(2)

ex = cos x+ sinx (3)

The cos and sin terms are one �step� apart - and i is the step unit - so the sin term
has an i in the denominator.

The table below illustrates how imaginary numbers relate to radians, and to the
cos(x) and sin(x) function. x is an element of imaginary numbers (x ∈ =) so x
increments in steps of τ/4.

n x in (in + i−n)/2 cos(x) sin(x) ex

0 0
4
τ 1 1 1 0 1

1 1
4
τ i 0 0 1 1

2 2
4
τ −1 −1 −1 0 -1

3 3
4
τ −i 0 0 -1 -1

4 4
4
τ 1 1 1 0 1

5 5
4
τ i 0 0 1 1
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2.5 Euler's Spin Equations

Leonard Euler wrote the power series not knowing that they were spin equations.

cosx =
x0

0!
− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− x10

10!
+ . . . (4)

sinx =
x1

1!
− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− x11

11!
+ . . . (5)

ex =
x0

0!
+
x1

1!
+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ . . . (6)

The exponential function (ex)

The most fundamental spin equation is ex.

ex =
∞∑
i=o

xn

n!
(7)

ex can be graphically represented by starting at the origin (n = 0) and stepping
counter clockwise around the circle (spinning). With each step, a new term in the
answer is created (see formula 8).

n xn/n!
0 x0/0!
1 x1/1!
2 x2/2!
3 x3/3!
4 x4/4!
5 x5/5!

ex =
x0

0!
+
x1

1!
+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ . . . (8)
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Cosine function

The cosine and sine functions are very similar to the function ex. They both (cosine
and sine) start at the origin and step counterclockwise around the circle. What
is di�erent is that they use a mask for interpreting each term in the ex series.
Whenever the mask value is 0, the term is �skipped�. When the mask value is −1,
the term is negative.

So the value for any term a in the cosx power series, is equal to the mask (which
is the cosx function) times the ex term:

Terma = (ia + i−a)/2× xa

a!
(9)

n x (in + i−n)/2 Mask xn/n!
0 0 1 1 x0/0!
1 1τ/4 0 0 x1/1!
2 2τ/4 −1 −1 x2/2!
3 3τ/4 0 0 x3/3!
4 4τ/4 1 1 x4/4!
5 5τ/4 0 0 x5/5!
6 6τ/4 −1 -1 x6/6!

cosx =
x0

0!
− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− x10

10!
+ . . . (10)
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Sine function

Similarly, determining each value of the sinx series also involves using the sinx as
the mask value. So the value for any term a in the sinx power series, is equal to
the mask times the ea term:

Terma = (ia + i−a)/2i× xa

a!
(11)

n x (in + i−n)/2i Mask xn/n!
0 0 0 0 x0/0!
1 1τ/4 1 1 x1/1!
2 2τ/4 0 0 x2/2!
3 3τ/4 −1 -1 x3/3!
4 4τ/4 0 0 x4/4!
5 5τ/4 1 1 x5/5!
6 6τ/4 0 0 x6/6!

sinx =
x1

1!
− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− x11

11!
+ . . . (12)
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2.6 Derivatives

All three spin functions (ex, cos, sin) evolve with steps that are derivatives. The
derivative of the ex function is calculated by taking the derivative of each of the
terms in the series. Note that the derivative of ex is simply ex.

ex =
x0

0!
+
x1

1!
+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ . . . (13)

d

dx
ex = 0 +

1x0

1!
+

2x1

2!
+

3x2

3!
+

4x3

4!
+

5x4

5!
+ . . . (14)

d

dx
ex = 0 +

x0

0!
+
x1

1!
+
x2

2!
+
x3

4!
+
x4

4!
+ · · · = ex (15)

d

dx
ex = ex (16)
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Similarly, the derivative of the cos(x) function is calculated by taking the derivative
of each of the individual terms. One derivative of the cosine function (sin) is a
quarter of a turn. Four derivatives (or four quarter turns) returns you to the origin
(to the cos function).

cosx =
x0

0!
− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− x10

10!
+ . . . (17)

d

dx
cosx = 0− 2x1

2!
+

4x3

4!
− 6x5

6!
+

8x7

8!
− 10x9

10!
+ . . . (18)

= 0− x1

1!
+
x3

3!
− x5

5!
+
x7

7!
− x9

9!
+ · · · = − sinx (19)

d2

dx2
cosx = 0− 1x0

1!
+

3x2

3!
− 5x4

5!
+

7x6

7!
− 9x8

9!
. . . (20)

= 0− x0

0!
+
x2

2!
− x4

4!
+
x6

6!
− x8

8!
+ · · · = − cosx (21)

d3

dx3
cosx = 0− 0 +

2x1

2!
− 4x3

4!
+

6x5

6!
− 8x7

8!
. . . (22)

= 0− 0 +
x1

1!
− x3

3!
+
x5

5!
− x7

7!
+ · · · = sinx (23)

d4

dx4
cosx = 0− 0 +

1x0

1!
− 3x2

3!
+

5x4

5!
− 7x6

7!
. . . (24)

= 0− 0 +
x0

0!
− x2

2!
+
x4

4!
− x6

6!
· · · = cosx (25)

This illustrates how the cos derivatives loop endlessly (spin) every four steps - just
like in and ex. This pattern of four step looping is strong evidence for this new
theory of spin.
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3 Integrating the Spin Functions

Euler understood how the ex, cos(x) and sin(x) functions integrated with imaginary
numbers. Below is his elegant derivation of how they relate - starting with the basic
spin term ex.

ex =
x0

0!
+
x1

1!
+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ . . . (26)

eix =
i0x0

0!
+
i1x1

1!
+
i2x2

2!
+
i3x3

3!
+
i4x4

4!
+
i5x5

5!
+ . . . (27)

eix =
x0

0!
+
ix1

1!
− x2

2!
− ix3

3!
+
x4

4!
+
ix5

5!
+ . . . (28)

eix =

(
x0

0!
− x2

2!
+
x4

4!
− . . .

)
+

(
ix1

1!
− ix3

3!
+
ix5

5!
− . . .

)
(29)

eix =

(
x0

0!
− x2

2!
+
x4

4!
− . . .

)
+ i

(
x1

1!
− x3

3!
+
x5

5!
− . . .

)
(30)

eix = cos x+ i sinx (31)

Formula 27 shows x replaced with ix. Formula 28 is a simpli�cation of the imagi-
nary terms. Formula 29 groups the terms with even and odd exponents. Formula
30 factors out an i from the the odd exponents group.

Remarkably, the terms grouped within parentheses in formula 30, are the power
series for the cosx and sinx respectively. Formula 31 simply substitutes the terms
"cosx" and "sinx" for the respective series.
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Since eix is a spin equation, we can graph it and look at the table values to better
understand its properties.

.

n x sinx i sinx cosx eix

0 0 0 0 1 1
1 1/4τ 1 i 0 i
2 2/4τ 0 0 −1 −1
3 3/4τ −1 −i 0 −i
4 4/4τ 0 0 1 1
5 5/4τ 1 i 0 i

eix = cosx+ i sinx (32)

The table for eix is similar to previous tables except there is a new "i sinx" column
which is i times the "sinx" column. The last column (eix), is simply "i sinx+cosx".

The equation eix starts at the origin (n = 0) and steps counterclockwise around
the circle. Note that every other term generated by this equation is imaginary (this
can be seen by looking under the eix column in the table above). So before using
this equation it must be paired with its complex conjugate (e−ix) - to cancel out
the imaginary terms.

.
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3.1 Euler's' Identity

Starting with the complex Euler equation (formula 33), if you substitute π for x
and simplify, you get an equation referred to as Euler's identity (shown in formula
36).

eix = cos x+ i sinx (33)

eiπ = cos π + i sin π (34)

eiπ = −1 + 0 (35)

eiπ + 1 = 0 (36)

It is a famous identity because it integrates three mathematical constants: e, i, and
π. The physicist Richard Feynman called Euler's identity "the most remarkable
formula in mathematics". In 1988, a survey by the Mathematical Intelligencer
reported that its readers voted this equation the "Most beautiful mathematical
formula ever".

Mathematicians appreciated the elegance of this identity, even though its meaning
was unclear. Now we know that this identity is really a spin equation, and it is
easy to understand. If we look back at the eix table (used with formula 32) we can
see that eix is equal to -1 when x = π.

Or we can look at this equation using just spin concepts. We know this equation
spins π radians (or one half of a revolution), and we know the value at that point
is -1. Though again, this identity is technically not valid until it is paired with its
complex conjugate.
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3.2 Euler's Formula Completed

To eliminate the imaginary terms generated by the spin equation eix, we need to
pair it with its complex conjugate e−ix. Below is a way to derive an equation that
pairs eix (formula 37) with its complex conjugate. The �rst step is to determine
the complex conjugate of eix which is e−ix. We can get this by starting with the
formula for eix and then substituting −x for x (formula 38).

eix = cos(x) + i sin(x) (37)

ei(−x) = cos(−x) + i sin(−x) (38)

Then with the help of the following two identities (formulas 39 and 40), ei(−x) can
be simpli�ed to formula 41.

cos(−x) = cos(x) (39)

sin(−x) = − sin(x) (40)

e−ix = cos(x)− i sin(x) (41)

At this point we have a formula for both eix (formula 37) and and its complex
conjugate e−ix (formula 41). All we have to do is add those two equations together
and we get our fundamental spin equation:

eix + e−ix = 2 cos(x) (42)

For mathematical consistency, there also must be an imaginary form of brackets
placed around eix + e−ix to indicate that the two paired terms must be treated as
a single mathematical entity.

[eix + e−ix] = 2 cos(x) (43)
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4 Using spin concepts to compute energy

4.1 Basic energy equations

Energy formula

The energy (E) of a particle of light is equal to Planck's constant (h) times the
rate-of-spin (f).

f = Rate-of-spin (frequency in revolutions per second) (44)

h = Planck's constant (energy per revolution) (45)

E = h× f (46)

Since h is a constant, the rate-of-spin (f) is also the rate-of-energy. If you double
the rate-of-spin you double the energy.

Convert to radians

The frequency is often expressed in terms of radians instead of revolutions. Tau
(τ) is a constant equal to 6.28.... There are τ radians for each revolution - so the
rate-of-spin expressed in radians will be about 6.28 times greater.

τ = 6.28... (47)

one revolution = one radian× τ (48)

ω = f× τ (rate-of-spin in radians) (49)

We also need a reduced version of Planck's constant (h̄) to represent the amount
of energy per radian. So now we have an equivalent energy formula expressed in
radians.

h̄ = h/τ (Energy per radian) (50)

E = h̄× ω (Energy) (51)
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Computing momentum

The momentum (p) is equal to the energy (E) divided by the speed of light (c).
Similarly, the rate of momentum (k) is equal to the rate of energy (ω) divided by
the speed of light.

c = Speed of light (52)

p = E/c (53)

k = ω/c (54)
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4.2 The Schrodinger Equation

Ψ is often used to describe the �motion� of a particle of light. It is often expressed
as a complex exponential using the rate-of-energy (ω) and the rate-of-momentum
(k).

Ψ = ei(kx−ωt) (55)

k = p/h̄ (56)

ω = E/h̄ (57)

Using the �rst derivative of Ψ(t) to compute energy

With spin, steps are derivatives. The �rst derivative of Ψ(t) is how fast Ψ is
changing in time - which is how fast it is spinning and it is also the rate-of-energy.
We can use the rate of spin with Planck's reduced constant to determine EΨ - the
energy of Ψ.

So we take the derivative of Ψ with respect to time, and then multiply both sides
by ih̄ to get an energy equation for EΨ:

∂Ψ

∂t
= −iωΨ = −iE

h̄
Ψ (58)

ih̄
∂Ψ

∂t
= EΨ (59)

The i in the last equation basically means the energy will oscillate back and forth
from positive to negative. The rest of the equation says Planck's reduced constant
times the rate of spin gives us the energy.
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Using the �rst derivative of Ψ(x) to compute momentum

The derivative of Ψ(x) similarly gives us a formula for momentum. The change in
Ψ with respect to x is the rate of momentum. If we multiply this rate of momentum
times Planck's reduced constant, we get pΨ - the momentum of Ψ.

∂Ψ

∂x
= i

p

h̄
Ψ (60)

−ih̄∂Ψ

∂x
= pΨ (61)

This formula tells us that the momentum of Ψ is equal to the rate-of-momentum
(∂Ψ/∂x) times Planck's reduced constant. The −i makes the sign oscillate back
and forth from negative to positive.

Using the second derivative Ψ(x) to compute the kinetic energy

The second derivative of Ψ(x) is closely related to the kinetic energy - they only

di�er by a factor of − h̄2

2m
. So to compute the kinetic energy, we just take the second

derivative of Ψ with respect to x, and multiply both sides by that factor.

∂Ψ

∂x
= i

p

h̄
Ψ (62)

∂2Ψ

∂x2
= −p

2

h̄2 Ψ (63)

−h̄2

2m

∂2Ψ

∂x2
Ψ =

p2

2m
Ψ =

m2v2

2m
Ψ = 1/2mv2Ψ (64)

−h̄2

2m

∂2Ψ

∂x2
Ψ = Kinetic Energy of Ψ (65)

The Schrodinger equation is based on the fundamental energy equation that says
the total energy (EΨ) is equal to the kinetic energy (KEΨ) plus the potential
energy (PEΨ).

EΨ = KEΨ + PEΨ (66)

So we can substitute formula 59 for the total energy (EΨ). formula 65 for the
kinetic energy, and we can let υΨ equal the potential energy. This resulting energy
equation is the time independent Schrodinger equation.

ih̄
∂Ψ

∂t
=
−h̄2

2m

∂2Ψ

∂x2
Ψ + υΨ (67)
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4.3 Another Energy Equation

A similar solution for Ψ, also uses the rate-of-momentum and the rate-of-energy,
but this solution adds ωt.

Ψ = ei(kx+ωt) (68)

ω = E/h̄ (69)

k = p/h̄ (70)

Using the �rst derivative of Ψ(t) to compute energy

Again we take the derivative of Ψ(t) and then multiply both sides by −ih̄, but we
get a slightly di�erent energy equation for EΨ (this equation is negative).

∂Ψ

∂t
= iωΨ = i

E

h̄
Ψ (71)

−ih̄∂Ψ

∂t
= EΨ (72)

Using the �rst derivative of Ψ(x) to compute kinetic energy

The �rst derivative of Ψ(x) is also very similar to the kinetic energy. They only
di�er by a factor of −ih̄v/2. So we get the kinetic energy of Ψ, by taking the �rst
derivative and multiplying both sides by that factor.

∂Ψ

∂x
= i

p

h̄
Ψ (73)

−ih̄v
2

∂Ψ

∂x
=

v

2
pΨ =

v

2
mvΨ = 1/2mv2Ψ (74)

−ih̄v
2

∂Ψ

∂x
= Kinetic Energy of Ψ (75)
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Recall that the total energy (EΨ) is equal to the kinetic energy (KEΨ) plus the
potential energy (PEΨ).

EΨ = KEΨ + PEΨ (76)

This time we substitute formula 72 for the total energy and formula 75 for the
kinetic energy - again we let υΨ equal the potential energy. The resulting energy
equation is:

−ih̄∂Ψ

∂t
= −ih̄v

2

∂Ψ

∂x
+ υΨ (77)

The minus sign on both sides cancel, and we can substitute c for the velocity of
light, leaving the following energy equation:

ih̄
∂Ψ

∂t
= ih̄

c

2

∂Ψ

∂x
+ υΨ (78)
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