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Abstract 
In this paper we discuss some novel algorithms for linear programming 
inspired by geometrical considerations and use simple mathematics 
related to finding intersections of lines and planes. All these algorithms 
have a common aim: they all try to approach closer and closer to 
“centroid” or some “centrally located interior point” for speeding up the 
process of reaching an optimal solution! Imagine the “line” parallel to 
vector C, where CTx denotes the objective function to be optimized, and 
further suppose that this “line” is also passing through the “point” 
representing optimal solution. The new algorithms that we propose in this 
paper essentially try to reach at some feasible interior point which is in 
the close vicinity of this “line”, in successive steps. When one will be 
able to arrive finally at a point belonging to small neighborhood of some 
point on this “line” then by moving from this point parallel to vector C 
one can reach to the point belonging to the sufficiently small 
neighborhood of the “point” representing optimal solution. 
  
1. Introduction: There are two types of linear programs (linear 

programming problems):  
 1. Maximize: xCT   

Subject to: bAx ≤   
                     0≥x  
Or 

                   2. Minimize: xCT    
Subject to: bAx ≥  
                     0≥x  
Where x  is a column vector of size 1×n of unknowns. 
Where C  is a column vector of size 1×n of profit (for 

maximization problem) or cost (for minimization problem) 
coefficients, and TC is a row vector of size n×1 obtained by matrix 
transposition of vector C . 

Where A  is a matrix of constraints coefficients of size 
nm× . 
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Where b  is a column vector of constants of size 1×m  
representing the boundaries of constraints. 

By introducing the appropriate slack variables (for 
maximization problem) and surplus variables (for minimization 
problem), the above mentioned linear programs get converted into 
standard form as: 

Maximize:   xCT  
Subject to:   bsAx =+                                          (1.1) 
                       0,0 ≥≥ sx  
Where s is slack variable vector of size 1×m . 
Or 
Minimize:   xCT  
Subject to:  bsAx =−                                            (1.2) 
                      0,0 ≥≥ sx  
Where s  is surplus variable vector of size 1×m .             

                              In the geometrical language, the constraints defined 
by the inequalities form the so called convex polyhedron bounded by 
the constraint planes, bAx = , and coordinate planes, 0=x , and it is 
straightforward to check that there exists at least one vertex, of this 
polyhedron at which the optimal solution for the problem is situated 
when the problem at hand is well defined having at least one solution 
and not unbounded or infeasible one. Further, we denote the plane 
defined by equation dxC T = , for some chosen value, d , as the 
objective plane. Many a times there exists be unique optimal solution 
but sometimes there may exist many optimal solutions, e.g. when one 
of the constraint planes and the objective plane are parallel to each 
other then we can have a multitude of optimal solutions.  
                              The method that is proposed in this paper attempts to 
utilize the geometrical structure of the linear programming problem. 
As mentioned above, in geometrical language every linear 
programming problem defines a convex polyhedron formed by 
intersecting constraint planes and coordinate planes. The region inside 
of this convex polyhedron is called the feasible region. It is made up 
of feasible interior points lying inside this convex polyhedron. These 
so called feasible interior points satisfy all boundary constraints and 
are nonnegative. Solving the maximization (minimization) linear 
programming problem in geometrical terms essentially consists of 
pushing this objective plane outwards (inwards) in the direction of C 
such that this objective plane will reach to the extreme end of the 
polyhedron and will contain the extreme vertex. This extreme vertex 
is actually the optimal solution of the problem at hand. In geometrical 
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terms solving a linear programming problem means to arrive at the 
point representing extreme vertex, to determine coordinates of this 
point, and further to find value of the objective function (the so called 
optimal objective value) at this point. 

 
2. New Algorithms for Linear Programming: Because of the far great 

practical importance of the linear programs and other similar problems 
in the operations research it is most desired thing to have an algorithm 
which works in a single step, if not, in as few steps as possible. No 
method has so far been found which will yield an optimal solution to a 
linear program in a single step ([1], Page 19).  
                           We wish to emphasize in this paper that when one is 
lucky enough to arrive at some interior feasible point belonging to the 
“line” parallel to vector C which is also passing through the point 
representing optimal solution, where xCT  denotes the objective 
function to be optimized, then one can find the point representing 
optimal solution to the linear program under consideration in a single 
step by just moving along this “line” till one reaches the desired 
extreme vertex on this “line” at the boundary of the convex 
polyhedron!!  
                             We wish to develop some NEW algorithms for 
solving linear programming problems. We now proceed with brief 
description of these algorithms. We will try to capture the essence of 
the methods with the help two geometrical figures, FIG.1 and FIG.2 
given below. We hope that these figures will make explicit the 
geometrical motivation that lies behind these algorithms.  
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A Brief Description of Figures:  
 
In FIG. 1 we have chosen for the sake of simplicity a typical two 
dimensional linear programming problem, i.e. a problem which 
contains two variables, say x and y. In this 2-dimensional case the 
objective plane, constraint planes, coordinate planes, are all actually 
lines as shown in this figure. Vector C which is perpendicular to 
objective plane (a line in this case) is shown. Also, the (the most 
important) “line” parallel to vector C and passing through the point 
representing optimal solution (extreme vertex) is shown. A vector 
perpendicular to vector C, say Cper, is shown. So called starting point, 
which is some feasible interior point is shown. Starting at this so 
called “starting” interior point we move in the direction of C till we 
reach at a farthest possible feasible interior point near boundary. In 
this step the value of objective function improves. Now, from this 
interior point near boundary we move in the direction of Cper till we 
reach at another interior point near boundary lying in this direction. In 
this step the value of objective function remains the same, as this new 
point is on the same objective plane. This step is carried out to locate 
the desired centrally located point. We take it as midpoint of line 
segment joining these two interior points near the boundary and take 
this midpoint as new starting point to start next iteration and to move 
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in the direction of C till we again reach at a new interior point near 
boundary, and so on.  
 
In FIG.2 we have tried to depict higher dimensional case of a linear 
programming problem, i.e. a problem containing at least three 
variables (or more: say n variables). The constraint planes and 
coordinate planes give rise to a convex polyhedron (in n dimensional 
space) enclosing feasible interior points as shown in the figure. The 
objective plane passing through some feasible interior point intersects 
with the polyhedron and the intersection is a convex polygon as shown 
in the figure. Vector C which is always perpendicular to (any) 
objective plane as shown. So called starting point, which is some 
interior point is shown. Starting at this so called “starting” interior 
point we move in the direction of C till we reach at an interior point 
near boundary. We consider intersection of the objective plane passing 
through this interior point near boundary with polyhedron which is a 
polygon as shown. We determine n points lying on the boundary 
(edges of convex polygon). We use these points (in place of vertices) 
and find the centriod of this polygon. We take this centroid as new 
starting interior point to start next iteration and move along the line 
parallel to vector C passing through this centroid till we reach a new 
farthest possible feasible interior point near boundary, and so on. The 
other method find a centrally located point as mean of interior point 
near boundary and farthest interior point near boundary as shown in 
figure. The farthest interior point is found here using methods of 
calculus. For this purpose, we maximize the distance function. We 
consider line segment joining the point we arrived at near the 
boundary and the other interior point lying on the polygon at assumed 
maximum distance. We then take the mean of these two points as 
centrally located point to be used as new starting point to start new 
iteration i.e. to move in the direction of C till again we reach at a new 
interior point near boundary, and so on.    
 
A Brief Description of First Algorithm: The first algorithm starts at 
some feasible interior point. One then moves along the line passing 
through this point and parallel to vector C in outward (inward) 
direction for maximization (minimization) problem till one will reach 
at an interior point very close to the boundary of the convex 
polyhedron defined by the problem. One then finds the value of 
objective function (objective value) at this newly obtained feasible 
interior point. One then considers objective plane passing through this 
point and so having this newly obtained objective value (for all its 
points). One then considers the intersection of this objective plane, 
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which has newly obtained objective value for its points, with the 
convex polyhedron defined by the problem. This intersection will be a 
convex polygon. One then finds out the centroid of this polygon. This 
centroid will be the new starting point to move along the line passing 
through this centroid and parallel to vector C in outward (inward) 
direction for maximization (minimization) problem again till one will 
reach at an interior point very close to the boundary of the convex 
polyhedron defined by the problem. One then repeats the same earlier 
steps of finding the value of objective function (objective value) at this 
newly obtained feasible interior point, considering the objective plane 
passing through this point and so having this newly obtained objective 
value (for all its points), considering the intersection of the objective 
plane, having newly obtained objective value for its points, with the 
convex polyhedron defined by the problem, which will again as 
previous will be a polygon. One then finds out centroid of this new 
polygon, again moves along the line passing through this centroid and 
parallel to vector C in outward (inward) direction for maximization 
(minimization) problem again till one will reach at an interior point 
very close to the boundary of the convex polyhedron defined by the 
problem. The steps mentioned above taken repeatedly will make us 
arrive at different objective planes in succession which will have  
improved value for the objective function, and different polygons will 
be formed in succession by the intersection of these objective planes 
with the  convex polyhedron defined by the problem. These polygons 
formed in succession will be having smaller and smaller size (area). In 
each iterative step one thus will be going in the direction parallel to 
vector C along the line passing through the centroid of these polygons 
with reduced area generated through intersection of objective planes 
arrived at in successive steps with the convex polyhedron. It is 
straightforward to see that in successive steps of this algorithm one 
will clearly arrive finally either at a point on the “line” or at a point 
belonging to small neighborhood of some point on the “line” which is 
parallel to vector C and also passing through the “point” representing 
optimal solution. By moving then from this point on the “line” or 
point belonging to small neighborhood of a point on the “line”  
parallel to vector C one can reach to the “point” representing optimal 
solution or to the point belonging to the close neighborhood of the 
“point” representing optimal solution. 
 
A Brief Description of Second Algorithm: The steps of the second 
algorithm are almost identical with that of the first algorithm. It also 
starts at some feasible interior point. One then moves in the direction 
of vector C till one reaches at a feasible interior point lying  just inside 



 7

the boundary of the convex polyhedron defined by the problem in that 
direction. One then considers the objective plane passing through this 
point which intersects with the convex polyhedron and again as 
previous this intersection is a polygon. In the first algorithm we found 
the centroid of this polygon by finding and using certain n points on 
the boundary of this polygon. In this second algorithm we differ in this 
step. Instead of finding centroid we find some other point which is 
also centrally located. Starting with the feasible interior point just 
obtained in the previous step one finds the direction in which if one 
will proceed along some line lying on the objective plane passing 
through just obtained feasible interior point near the boundary till one 
reaches at a feasible interior point on the other side near the boundary 
of the convex polygon then this feasible interior point will be at 
longest possible distance. By this choice for the direction to proceed 
from obtained feasible interior point near the boundary of the polygon 
to some other interior point on the other side of the boundary such that 
the length of this line segment joining these points is largest. By using 
methods of calculus we manage to maximize the distance between the 
above mentioned two boundary points so that we make this line 
segment as longest line segment that resides on the polygon. This 
obviously makes this line to proceed through central region of the 
polygon for ensuring largest possible length for this line segment. 
Thus, by moving in this direction one will be moving in the close 
vicinity of the centroid! We find midpoint of the line segment joining 
of these two extreme feasible interior points. This midpoint will 
automatically be close to centroid as desired. One starts the new 
iteration here and again one moves in the direction parallel to vector C 
along the line passing through this centrally located midpoint of the 
segment till one arrives at some new point lying on the boundary of 
the convex polyhedron in the direction of vector C.  Thus, almost all 
the steps of second algorithm are identical to first algorithm except the 
step of finding centroid. Instead, here one finds a centrally located 
point (something similar to centroid) which also works well to achieve 
same results as the first algorithm.  
 
A Brief Description of Third Algorithm: The steps of the third 
algorithm are again almost identical with that of the earlier algorithms. 
It differs in its method of locating centrally located point. It also starts 
at some feasible interior point. One then moves in the direction of 
vector C till one reaches at a feasible interior point lying just inside the 
boundary. From this point near the boundary we draw perpendiculars 
on each of the constraint planes (as well as the coordinate planes) and 
find these foots of perpendiculars. Using these points which are foots 
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of perpendiculars we find centroid and use it as new starting point and 
move in the direction parallel to vector C along the line passing 
through this centroid till one arrives at some new interior point lying 
on the boundary, and so on. Instead of dropping perpendiculars on the 
constraint planes one can drop them on the edges of convex polygon 
that results through the intersection of objective plane passing through 
just obtained feasible interior point near boundary intersects with 
convex polyhedron defined by the problem under consideration. We 
use thus obtained foots of perpendiculars lying on the edges of the 
polygon to find centroid and use this centroid as new starting point to 
start a new iteration and again move in the direction parallel to vector 
C along the line passing through this centroid till one arrives at some 
new interior point lying on the boundary, and so on. 
 

3. A Detailed Description of Algorithms:  
First Algorithm 

1) We take some interior point to start with, say 
sx , 

),,,( 21
s
n

sss xxxx L=  

2) We then move along the line passing through this point, 
sx ,  and 

parallel to vector C in outward (inward) direction for maximization 
(minimization) problem till one will reach at an interior point very 
close to the boundary of the convex polyhedron defined by the 

problem, say 1ix .  
3) We then find the objective value (value of objective function) at 

1ix , namely, 
11 iiT dxC =  

 
4) We then form the objective plane defined by the equation, 

1iT dxC =  
     This objective plane intersects the convex polyhedron defined by 

the problem at hand and gives rise to a polygon. We wish to find 
centroid of this polygon and for this purpose we proceed to find the 

points, one on each edge of this polygon, say, 
mxxx ,,, 21 L , as 

described in the following step. 
Note that the matrix equation, bAx = , actually together represent 
m number of equations representing  m number of constraint 
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planes. These constraint planes together with coordinate planes, 
0=x , give rise to convex polyhedron.  

5) We solve together the equation defining first constraint plane say,  

11 bxA = , where 1A represents first row of matrix A ,  and the 

objective plane 1iT dxC = and find solution representing the 

first point (vertex), say 
1x . We solve together the equation 

defining second constraint plane say, 22 bxA = , where 

2A represents second row of matrix A  and 1iT dxC = and 

find the solution representing the second point (vertex), say 
2x . 

We continue solving pairs of equations till finally we will solve 
together the equation defining m-th constraint plane say,  

mm bxA =  and 1iT dxC = and find solution representing the 

m-th point (vertex), say 
mx . 

6) We now find the centroid, namely,  
 

 

ns

m

i

i

x
m

x
R =










=
∑
=1

This centroid will be used as a new starting 

point to proceed. We move in the direction of vector C , along the 
line passing through this centroid till again as previous we reach at 
an interior point very close to the boundary of the convex 

polyhedron defined by the problem, say 2ix .  We now treat this 

point 2ix as 1ix (i.e. 21 ii xx ← ) and go to step 3) and begin 
next iteration of the algorithm.  

7) We continue iterations for sufficiently many times, which will 
produce polygons of smaller and smaller sizes in successive 
iterations, and this will finally take us to the point which represents 
optimal solution of the problem, or in very small neighborhood of 
such a point which represents optimal solution of the problem. 

 
Second Algorithm:  This second algorithm is almost identical to 
first algorithm. All the steps except one are same. The only 
difference between this algorithm and the first algorithm is in the 
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procedure that we follow here to find a centrally located point on 
the polygon. We therefore discuss only this step of finding 
centrally located point in order to avoid unnecessary repetition. In 
the first algorithm we take centroid as such a point. In this 
algorithm we don’t find and take centroid as such a point but 
obtain the required centrally located point through different 
considerations. It is straightforward to see from geometry that each 
time (i.e. in each iterative step) finding and choosing some 
centrally located point as a starting point to move parallel to vector 
C till one reaches very near to the boundary of polyhedron will take 
us near the point that represents optimal solution in a much faster 
way causing substantial improvement in the value of the 
objective function in each step. Choosing some other point on the 
polygon which is away from a centrally located point to move 
parallel to vector C till one reaches very near to the boundary of 
polyhedron will show much slower improvement and so will 
demand large many steps to reach the point which either itself the 
optimal point or lying in very small neighborhood of optimal point. 

As is done in first algorithm we start at some interior point, 
sx say 

and proceed along a line through this point which is parallel to 
vector C, till we reach at an interior point near the boundary of 

polyhedron, say 
fx  .  Thus, 

fx is the farthest interior point on 

the line through
sx and parallel to vector C. One can write  

Cxx sf α+=  
Where scalar α is so chosen that bAx f ≤  is satisfied. To find 

such α we put 
fx in the first constraint, i.e. we consider 

11 bxA f ≤  

and find condition on α  like 1l≤α . We then put 
fx in the 

second constraint, i.e. we consider 22 bxA f ≤  

and find condition on α  like 2l≤α .  We continue in this way 
and consider every constraint in succession and consider finally the 

m-th constraint, i.e. we consider m
f

m bxA ≤  

and find condition on α like ml≤α .  We then set  
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α = min { }il .With this α we get farthest possible interior point 

in the direction of vector C on the line passing through 
sx .  

 
 
As done in previous algorithm we consider objective plane passing 
through fx  and consider its intersection with polyhedron which 
will be a convex polygon. In the first algorithm we obtained 
centroid of this polygon to treat it as a new starting point. Now, for 
this algorithm we wish to consider various lines passing through 
point fx and lying in the objective plane defined by equation 

fT dxC =  having θ  as the angle between any two neighboring 

lines. Let us suppose that 
w
m

ww xxx ,,, 21 L  are the feasible interior 

points lying on these lines through 
fx going in different 

directions and at the farthest possible distance from point 
fx , the 

maximal nature of these distances is ensured by observing the 
fulfillment of constraints maximally. We then aim to search out the 

line such that for the obtained point, say
w
kx , among the distances 

L,2,1|,| =− ixx w
i

f
 the distance || w

k
f xx −  is maximum. It 

is easy to check that such line will pass closely to centroid or 
centrally located point. 
As a simplified version for the above procedure let us consider 
following different lines lying on this polygon and passing 

through the interior point
fx . All these lines will belong to the 

objective plane through 
fx ,  namely, fT dxC = , where 

fTf xCd = and so will be perpendicular to vector C . Let us 

denote a vector belonging to objective plane through 
fx ,  by 

symbol  ⊥C (or perC ) , then clearly, 0. =⊥CC . Let 

),,,( 21 nC ωωω L=⊥ . Using 0. =⊥CC  we can eliminate 

one parameter and in the expression for ⊥C . Thus, we can have 

),,,( 32
1

1 nωωωφω L= and therefore we can write 

),,,( 2
1

nC ωωφ L=⊥ where 
1φ is function of parameters 
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nωωω ,,, 32 L . Similarly, we can have  

),,,( 31
2

2 nωωωφω L=  and therefore we can write  

),,,( 2
1 nC ωφω L=⊥ , On continuing on these lines we can 

have variety of expressions for ⊥C  ,like  

),,,,( 3
21 nC ωφωω L=⊥ , ......., ),,,( 21

nC φωω L=⊥ . 

Now in order to generate various lines passing through 
fx and 

lying on the objective plane defined by equation fT dxC =  let us 
assign unit values to the parameters in functions. We can build in 
this way different vectors perpendicular to vector  C   , like 

)1,,1),1,,1,1(( 11 LLφ=⊥C , )1,),1,,1,1(,1( 22 LLφ=⊥C , 

…, ))1,,1,1(,,1,1( LL nnC φ=⊥ . Now, from the above obtained 
vectors perpendicular to C we build following vectors like , 

1
1

1
⊥+= Cxx fg µ , 

2
2

2
⊥+= Cxx fg µ , 

3
3

3
⊥+= Cxx fg µ , 

……, 
n

n
fg Cxx n

⊥+= µ . For each vector we find the largest 

possible value for iµ  such that all the constraints remain valid 

and the vectors igx represent feasible interior points. Among 

these vectors igx we choose the one for which the Euclidean 

distance between the chosen vector say, kgx and vector 
fx is 

maximum. It is easy to check that for such vector kgx the line 

joining the points represented by vectors kgx and 
fx will pass 

nearest to a centrally located point among these vectors igx . We 
now choose a new starting point to move in the direction of 

vector C , namely, ( )kgfns xxx +=
2
1

. It is easy to check that all 

these steps will finally take us to the point which represents 
optimal solution of the problem, or in very small neighborhood of 
such a point which represents optimal solution of the problem.  
 
                        In the method just discussed to locate a centrally 
located point we have suggested to test and find from several 
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vectors 
i

i
fg Cxx i

⊥+= µ  the best one. We now proceed to see a 
smarter method to find a centrally located point. In this method 
we make use of the methods of calculus as follows: We consider a 

general point represented by vector 
gx on the objective plane 

passing through point represented by vector 
fx , thus 

⊥+= Cxx fg µ , whose coordinates are n parameters. We 
correlate and determine these parameters using maximal nature of 

distance between points represented by points 
fx and 

gx . 

When these points 
fx and 

gx are maximally separated we can 

expect these points 
fx and 

gx to be situated diametrically 
opposite to each other with respect to a circle enclosing the 
polygon. So, further we can safely expect that the line joining 

points represented by respectively 
fx and 

gx will pass closely to 
centrally located point (of the polygon) if the Euclidean distance 

between points represented by respectively 
fx and 

gx will be 

maximum, i.e. |||| ⊥=− Cxx fg µ is maximum. We take 

),,,( 2
1

nC ωωφ L=⊥ , setup equations 
( )
( ) 0||

=
∂
∂ ⊥

i

C
ω  for all 

ni ,,3,2 L= and find interrelations between parameters iω . As a 

consequence, we finally get the equation, ⊥+= Cxx fg µ  , 

where ),,,( 21 nC βββ L=⊥ and these iβ are certain constants, 
and we have to determine largest possible value for µ again using 
constraints (as it was done above to find largest possible value for 

α ) so that 
gx will be farthest interior point from 

fx . As is 
done early, we now find a new starting point to move in the 

direction of vector C , namely, ( )gfns xxx +=
2
1

 It is easy to 

check that all these steps will finally take us to the point which 
represents optimal solution of the problem, or in very small 
neighborhood of such a point which represents optimal solution of 
the problem. We have thus discussed only that portion of second 
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algorithm that differs and for the entire rest portion both algorithms 
proceed in identical way!   

 
Third Algorithm: This third algorithm is almost identical to first 
two algorithms. All the steps except one are same. The only 
difference between this algorithm and the first two algorithms is in 
the procedure that we follow here to find a centrally located point.  
We therefore discuss only this step of finding centrally located 
point in order to avoid unnecessary repetition. As is done in 

previous algorithms we start at some interior point, 
sx say and 

proceed along a line through this point which is parallel to vector 
C, till we reach at an interior point near the boundary of 

polyhedron, say 
fx  .  Thus, 

fx is the interior point near 

boundary on the line parallel to vector C through
sx . From this 

point 
fx we draw perpendiculars on constraint planes, 

ii bxA = for all i = 1, 2,.., m. and find each foot of perpendicular, 
u
m

uu xxx ,,, 21 L . Again as previous we find the centroid, namely,  

ns

m

i

u
i

x
m

x
R =










=
∑
=1

This centroid will be used as a new 

starting point to proceed along the line passing through it in the 
direction parallel to vector C, and so on. As an alternative, we draw 
perpendiculars on edges of convex polygon, i.e. on lines formed by 

intersection of each constraint plane, ii bxA = for all i = 1, 2,.., 

m, with the objective plane, 
fT dxC = , where 

fTf xCd =   and find each such foot of perpendicular, 
v
m

vv xxx ,,, 21 L . Again as previous we find the centroid, namely,  

ns

m

i

v
i

x
m

x
R =










=
∑
=1

This centroid will be used as a new 

starting point to proceed along the line passing through it in the 
direction parallel to vector C, and so on.  
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Example 1: Maximize: yx +    
                     Subject to:     42 ≤+ yx  
                                        1≤+− yx  
                                          1224 ≤+ yx  
                                           0, ≥yx  
Solution: It is easy to check that (1, 1) is a feasible interior point. 
The value of objective function at this point is  

yx +  = 1 + 1 = 2. 
So, we start by taking (1, 1) as starting interior point. We now have 
to proceed in the direction of vector C till we reach near boundary 
and thus reach at an interior point near boundary. Now, C = (1, 1) 
so our new interior point will be  

(1, 1) + Cα   = (1, 1) + α (1, 1) = (α +1, α +1) 
Now, we determine α  such that we get interior point near 
boundary, i.e. a point near boundary such that all the constraints 
will be satisfied. Substituting the point in the first constraint  

α + 1 + 2α + 2 ≤  4, i.e. α ≤  1/3 
Substituting the point in the second constraint 

-α -1 + α + 1 ≤  1, i.e. 0 ≤  1 
Substituting the point in the third constraint 

4α + 4 + 2α + 2 ≤  12, i.e. α ≤  1 
 

Thus, we take α = min {α } = 1/3. Using this α =1/3 we get the 
desired point near boundary, namely,   

(1, 1) + Cα   = (1, 1) + α (1, 1) = (α +1, α +1) = (4/3, 4/3) 
The value of objective function at this point is  

yx +  = 4/3 + 4/3 = 8/3 = 2.66 
Thus, the value of objective function got improved as expected. We 
have C = (1, 1), therefore, Cper = ⊥C = (-1, 1). Starting from the 
just obtained interior point near boundary we now move in the 
direction of ⊥C till we reach the (farthest) interior point on the 
(other side of the) boundary. Thus, we find   

(4/3, 4/3) + ⊥Cβ = (4/3, 4/3) + β (-1, 1) = (4/3 - β , 4/3 + β ) 
Substituting this point in the constraint equations we find β 2−≥  
and using 2−=β  we get (4/3, 4/3) + ⊥Cβ = (10/3,-2/3), and we 
then have the centroid as 1/2[(4/3, 4/3) + (10/3, -2/3)] = (7/3, 1/3). 
Substituting point (7/3, 1/3) + Cα   = (7/3, 1/3) + α (1, 1) in the 
constraints we find α =1/3. This yields new point near boundary as 
(7/3, 1/3) + α (1, 1) = (7/3, 1/3) + (1/3, 1/3) = (8/3, 2/3). The value 
of objective function at this point is  
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yx +  = 8/3 + 2/3 = 10/3 = 3.3333. 
Thus, the value of objective function got improved as expected. 
Actually, one can easily check by carrying out one more iteration 
that we have already reached the optimal solution!    
  
Example 2: Maximize: 10 1x  +6 2x +4 3x  

                               Subject to:     100321 ≤++ xxx  
                                                 10 1x  +4 6005 32 ≤+ xx  
                                                   2 1x  +2 2x +6 3003 ≤x  
                                                     1x , 2x , 3x 0≥  

 
Solution 1: We have C = (10, 6, 4). Let us take as starting interior    
point, sx = (1, 1, 1). Value of objective function at sx = 20. We 
now move in the direction of vector C till we reach near boundary 
and thus reach at an interior point near boundary. So our new 
interior point will be  
(1, 1, 1) + Cα   = (1, 1, 1) + α (10, 6, 4) = (10α +1, 6α +1, 4α +1) 
Now, we determine α  such that we get interior point near 
boundary, i.e. a point near boundary such that all the constraints 
will be maximally satisfied. Substituting the point successively in 
the constraints we get α = min {4.85, 4.034, 5.17} = 4. Thus, we 
get the point near boundary as (41, 25, 17). Value of objective 
function at this point is (410 + 150 + 68) = 628. Thus, the value of 
objective function got improved as expected. We now find point on 
the intersection of objective plane 10 1x  +6 2x +4 3x = 628 
separately with each constraint plane and find the intersection 
points as follows:  1x = (38, 0, 62), 2x = (54, 14, 0), 3x = (49.38, 0, 
33.5), therefore, centroid  = (47.12, 4.6667, 31.84). Moving in the 
direction of vector C through centroid we reach to  
(47.12, 4.6667, 31.84)  +  0.1786 (10, 6, 4). Value of objective 
function at this point is  = 653.72. Again, we now find point on the 
intersection of objective plane 10 1x  +6 2x +4 3x = 653.72 separately 
with each constraint plane and find the intersection points as 
follows:  1x = (42.28, 0, 57.7), 2x = (-100, 276, 0), 3x = (67.73, 0,  
-5), therefore, centroid  = (3.336, 92, 17.56). Moving in the 
direction of vector C through centroid we reach to  
(3.336, 92, 17.56)  +  0.1(10, 6, 4). Value of objective function at 
this point is = 670.9. We thus see that the value of objective 
function is improving in the successive steps and by continuing 
these steps we can find out the desired optimal solution. 
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Solution 2: We have C = (10, 6, 4). Let ),,( γβλ=⊥C . Using 

0. =⊥CC , we have  ),,
10
4

10
6( γβγβ −−=⊥C . We maximize 

distance, i.e. 222)
10
4

10
6( γβγβ ++−−=F  is maximum. By 

equating partial derivatives to zero i.e. setting  0,0 =
∂
∂

=
∂
∂

γβ
FF

  we 

get βγ 3.11−=  or βγ 103.0−= . Let us take as starting interior    
point, sx = (1, 1, 1). Value of objective function at sx = 20. We 
now move in the direction of vector C till we reach near boundary 
and thus reach at an interior point near boundary. So our new 
interior point will be  
(1, 1, 1) + Cα   = (1, 1, 1) + α (10, 6, 4) = (10α +1, 6α +1, 4α +1) 
Now, we determine α  such that we get interior point near 
boundary, i.e. a point near boundary such that all the constraints 
will be maximally satisfied. Substituting the point successively in 
the constraints we get α = min {4.85, 4.034, 5.17} = 4. Thus, we 
get the point near boundary as (41, 25, 17). Value of objective 
function at this point is (410 + 150 + 68) = 628. Using relation 

βγ 3.11−= for maximization of distance we have other point  
(41, 25, 17)  + )33.11,1,92.3( −µ , where using constraints we get 

35.1−=µ  and so, we have other point  =  (35.708, 23.65, 32.29). 
Therefore, the centrally located point  =  (38.354, 24.325, 24.645). 
Thus, we consider (38.354, 24.325, 24.645) + α (10, 6, 4) and find 
α using constraints as α = 0.64 giving rise to point (44.75, 28.165, 
27.205). Thus, value of objective function at this point = 447.5 
+168.96 + 98.58 = 715.04. A marked improvement!! We thus see 
that the value of objective function is improving in the successive 
steps and by continuing these steps we can find out the desired 
optimal solution. 
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