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If God plays dice, must we do the same? 

Quantum entanglement as a deterministic phenomenon 

 

Abstract 

Entanglement between separate, distant systems, be it pairs of photon, atoms or molecules, 

is a well-documented phenomenon. It is the bases for emerging quantum information 

technologies, including cryptographic secure keys, quantum teleportation and quantum 

computing. At present there is a consensus among physicists that the violation of non-

locality, prescribed by quantum mechanics, should be accepted as a fact of how nature 

behaves, even if it conflicts with human reasoning and intuition, including those of Albert 

Einstein and John Bell. In the present paper I describe a new relativity theory, termed 

Information Relativity, and show that it can account, both qualitatively and quantitatively, 

for entanglement in a bipartite preparation like the one described in the EPR paper. The 

theory rests on two axioms: The relativity axiom of Special Relativity, plus an axiom 

designating light as the information carrier. The theory is deterministic, local, and complete, 

in the sense that each element in the theory is in a one-to-one correspondence with reality. 

The fact that the theory, with no hidden variables, can make precise predictions of 

entanglement, is in itself sufficient for casting serious doubts about the nonlocality condition 

imposed by Bell's Inequality. More importantly, the theory results demonstrate that 

entanglement is in fact, a local phenomenon, and that communicating information between 

entangled systems occurs by local causality, even at long distances. These conclusions imply 

that quantum theory is incomplete, that entanglement is not spooky, and that the reasoning 

and worries of Einstein and Bell were intact. The results also demonstrate that although God 

might be playing dice, we can do otherwise.            

 

Keywords: Relativity, Information, Quantum Entanglement, Nonlocality, EPR, Bell's 

Inequality.    
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1. Introduction: 

Albert Einstein is known to have maintained strong disagreements with several of quantum 

mechanics features. One of his famous quotes “God does not play dice” protested the 

quantum-mechanical view of nature as inherently uncertain. Another objection, articulated 

in the influential 1935 EPR paper [1], concerned the quantum-mechanical entanglement, 

which Einstein considered to be dubious, even "spooky".  In essence, the EPR paper argued 

that the nonlocality of entanglement prescribed by quantum mechanics entails that the 

theory is incomplete, such that its elements are not in one-to-one correspondence with 

physical reality. John Bell, despite his acknowledgment of the success of quantum 

mechanics in producing accurate predictions, was no less disturbed about its nonlocality. 

But while the main reason for Einstein's "spookiness" was that entanglement implies mutual 

influence (correlation) between two systems separated by an arbitrary large distance, Bell 

was mostly worried by the temporal simultaneity of entanglement.  In his view:  “It is the 

requirement of locality [of QM] . . . that creates the essential difficulty.” (Bell, 1964, p. 195) 

[2], where by “locality” he meant the prohibition of special relativity's faster than light 

causation. “For me then this is the real problem with quantum theory: the apparently 

essential conflict between any sharp formulation and fundamental relativity. That is to say, 

we have an apparent incompatibility, at the deepest level, between the two fundamental 

pillars of contemporary theory. . .” (Bell, 1984, p. 172, quoted in [3]). Bell's Inequality 

theorem [2, 4, 5] makes clear that any theory that can reproduce the quantum correlations 

should violate the principle of locality.  

The present papers aspires to show that a newly proposed relativity theory, termed 

"Information Relativity", albeit being deterministic and local, is capable for accounting for 

quantum entanglement. It is shown that a deterministic and local theory provides a plausible 

explanation for entanglement, while yielding exact predictions of maximal probability of 

entanglement (p = 0.09016994) derived by L. Hardy [6, 7]. In a related paper [8] I also 

show that the theory explains the de Broglie's wave-particle duality and accounts 

successfully for quantum criticality and phase transition. 

The following section gives a brief account of IR's propositions and transformations. Section 

three discusses the theory's account for entanglement and provides quantitative predictions 

for the two particles' case discussed in the EPR paper. Section four concludes. 
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2. Information Relativity theory (IR) – A brief account   

 

Information Relativity theory [9-11] takes a completely different view of relativity, than the 

ontic view of Einstein's relativity. Rather than treating relativity as a true state of nature, the 

theory argues that relativity accounts for difference in information (knowledge) about 

nature, between observers who are in motion relative to each other. The theory is based on 

two well accepted axioms: 

1. The laws of physics are the same in all inertial frames of reference (SR's first axiom); 

2. All translations of information from one frame of reference to another are carried by light 

or by another carrier with equal velocity (information-carrier axiom). 

For the case of two frames of reference moving in constant relative velocity with respect to 

each other, the theory's resulting transformations are depicted in Table 1 (for derivations, see 

supporting information). 

 

Table 1 

Information Relativity Transformations 

Physical Term     Relativistic Expression  

Time  
𝑡

𝑡0
=  

1

1−𝛽
           .... (1) 

Distance 

 

   
𝑥

𝑥0
= 

1+𝛽

1−𝛽
        …. (2) 

Mass density
 

  
𝜌

𝜌0
 = 

1−𝛽

1+𝛽
           .... (3) 

Kinetic energy 

density 

 𝑒𝑘

𝑒0
=  

1−𝛽

1+𝛽
 𝛽2      ... (4) 

 

In the table the variables 𝑡0, 𝑥0, and 𝜌0 denote measurements of time, distance and mass 

density at the rest frame, respectively,  β = 
𝑣

𝑐
, and 𝑒0 =  

1

2
 𝜌0  𝑐

2. 
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As seen in Eq. 1, IR disobeys the Lorentz Invariance principle. It predicts time dilation with 

respect to departing bodies, and time contraction with respect to approaching bodies, very 

much like the Doppler Formula for wave travel, which predicts red- or blue shift, depending 

on whether the wave source is departing or approaching the observer. The relativistic 

distance term prescribes distance contraction for approaching bodies, and distance stretching 

for departing bodies, causing the mass density along the travel axis to increase or decrease 

respectively. Noteworthy, IR has some nice properties: (1) it is very simple. (2) It satisfies 

the EPR necessary condition for theories completeness, in the sense that every element of 

the physical reality must have a counter part in the physical theory [1]. In fact, all the 

variables in the theory are observable by human senses or are directly measurable by 

human-made devices. (3) The theory applies, without alterations or the addition of free 

parameters, to describing the dynamics of very small and very large bodies (see [10] for 

application to cosmology), suggesting that the dynamics of the too small and the too abide 

the same laws of physics.  

 

3. Entanglement 

Quantum entanglement [12-15] implies the existence of global states of composite system 

which cannot be written as a product of the states of individual subsystems. For example, it 

is possible to prepare two particles in a single quantum state such that when one is observed 

to be spin-up, the other one will always be observed to be spin-down and vice versa, this 

despite the fact that it is impossible to predict, according to quantum mechanics, which set 

of measurements will be observed. As a result, measurements performed on one system 

seem to be instantaneously influencing other systems entangled with it. 

Quantum entanglement has applications in the emerging technologies of quantum 

computing and quantum cryptography, and has been used to realize quantum teleportation 

experimentally. Examples of such experiments include the pioneering invention of A. 

Ekert's of a secure cryptographic key [16-17], quantum communication dense coding [18-

19], and teleportation experiment, starting from pioneering experiments (e.g., [20], [21]), to 

more recent experiments on teleportation in different scenarios (see e.g. [22-25]).   

Starting from the EPR's conclusion that quantum description of physical reality is not 

complete, Bell (1964) formalized the EPR deterministic world idea in terms of local hidden 

variable model (LHVM) (Bell, 1964). The LHVM  assumes that (1) measurement results are 

determined by properties the particles carry prior to, and independent of, the measurement 

(“realism”), (2) results obtained at one location are independent of any actions performed at 



6 
 

spacelike separation (“locality”) (3) the setting of local apparatus are independent of the 

hidden variables which determine the local results (“free will”) [12]. Bell proved that the 

above assumptions impose constraints on statistical correlations in experiments involving 

bipartite systems in the form of the Bell inequalities. He then showed that the probabilities 

for the outcomes obtained when suitably measuring some entangled quantum state violate 

the Bell inequality. By this he concluded that entanglement is that feature of quantum 

formalism which makes impossible to simulate the quantum correlations within any classical 

formalism. 

It is now believed that the correlations predicted by quantum mechanics, and observed in 

experiments reject the principle of local realism, positing that information about the state of 

a system should be mediated by interactions in its immediate surroundings. In the following 

I show that this view is incorrect and that entanglement, as well as other quantum 

phenomenon like quantum criticality sand phase transition could be accounted for by a 

complete without violating the principle of locality and causality. Since we are interested 

mainly in demonstrating the main principles and not in providing recipes for applications, I 

treat here a simple case of a bipartite system comprised of two identical particles moving 

away from each other with constant linear velocity. Such system could be realized by the 

design of the EPR thought experiments, or other preparation. Suppose that two particles are 

made to interact and then separate from each other as described in Figure 1. For simplicity 

assume that the particles have single degrees of freedom and that following their separation 

at 𝑡 =  𝑡0 = 0, they no longer interact between each other. We suppose further that the states 

of the two systems at t= 0 are known, such that each of them is departing from the point of 

interaction, on leftward (-x) towards Alice's box, while the other departs rightward (+x) 

towards Bob's box (see figure).  

 

   

  

 

 

 

Figure 1: Illustration of an EPR-type experiment 

 

 

Alice 

          

          

          

          

          

Bob 

x 
𝐴 (𝐹) 

𝑣 2⁄  𝑣 2⁄  

x=0 B (𝐹0) 
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For a relative departure velocity β = 
𝑣

𝑐
, the relative length "stretch" of particle B in the frame 

of reference of particle A is expressed by:    

𝑙 𝑙0⁄  =  
1+𝛽

1−𝛽
                ….. (5) 

And it relative mass density is given by: 

𝜌 𝜌0⁄ = 
1+𝛽

1−𝛽
                        ….. (6) 

These relationships are depicted in Fig 2. From eq. 5 we can express the velocity β as 

function of the "stretch" 𝑙 defined as 𝑙 𝑙0⁄  as:  

β = 
𝑙̂−1

𝑙̂+1
             ….. (7) 

 

 

 

Figure 2. Relative length and mass density as functions of velocity 

 

The above results could be summarized as follows: When flying away from each other with 

constant relative velocity, a particle's length along its travel path will be stretched in the rest 

frame of the other particle. The amount of relative stretch depends on the relative velocity as 
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escribed by eq. 5 (see Fig. 2). Concurrently, the particle's total rest mass 𝑚0 will be 

distributed along stretched length. As result the particle mass density along the travel path 

will be diminished (see eq. 6 and Fig 2). The rates of stretching in distance and decrease in 

density will always balance (see equations 5 and 6), such that the total rest mass of the body 

remains unchanged. Noteworthy, the state of affairs described above is consistent with de 

Broglie's wave-particle model [26]. In general, at high enough velocities, 𝛽,  a traveling 

particle with respect to a frame of reference will gradually abandon its matter properties and 

behaves more like a wave packet, and vice versa, wave quanta that are forced to decelerate, 

will eventually reach a point of phase transition, after which it behaves more like a matter 

particle than a wave. Put simply, in the framework of Information Relativity theory, waves 

could be considered as extremely stretched normal matter, whereas normal matter could be 

viewed as extremely crunched waves. We shall say more about these important issues in a 

subsequent paper dedicated to wave-matter duality, quantum criticality and phase transition.    

 

Kinetic energy 

The kinetic energy density distribution of particle B in the frame of reference of particle A 

as function of the relative "stretch" 𝑙, could be obtained by substituting the value of β from 

eq. 7 in eq. 4, yielding: 

 

 𝑒𝑘

𝑒0
=

1

𝑙
 .

(𝑙−1)2

(𝑙+1)2                     ….. (8) 

This relationship is depicted by the continuous line in Fig. 3. The point of maximum energy 

density is obtained by deriving the above expression with regard to 𝑙  and equating the result 

to zero, which yields:  

𝜕
 𝑒𝑘
𝑒0

𝜕𝑙
=

(𝑙−1)(𝑙 ̂2−4𝑙−1)

𝑙 2 (𝑙+1)3   = 0        ….. (9) 

Which for 𝑙 ≠ 0 solves for: 

  𝑙̂𝑚𝑎𝑥 = 2 + √5  ≈ 4.2361        ….. (10) 

Which, using Eq. 7 yields a velocity 𝛽𝑐𝑟 equaling: 
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𝛽𝑐𝑟 =  
2 + √5 −1

2 + √5 +1
  =  

1 + 
√5 −1

2

1 + 
√5+1

2

 = 
1 + Φ

1 + 
1

Φ

 = Φ     ….. (11) 

Where Φ is the Golden Ratio,  Φ = 
√5 −1

2
≈ 0.618 [27, 28]. The maximal relative kinetic 

density is equal to: 

(
 𝑒𝑘

𝑒0
 )𝑚𝑎𝑥 =  

(1+ √5)
2

(2 + √5)(3+ √5)
2 ≈ 0.09016994375             ….. (12) 

Interestingly, 𝑙̂𝑚𝑎𝑥 could be expressed in terms of the Golden ratio as: 

𝑙̂𝑚𝑎𝑥= 2 + √5  = 
1 + Φ

1− Φ
  =(1 +  Φ)3 ≈ 4.2361     …. (13) 

While using eq. 4 the maximal relative energy density 
 𝑒𝑘

𝑒0 𝑚𝑎𝑥
could be expressed as: 

 
 𝑒𝑘

𝑒0 𝑚𝑎𝑥
= 

1−Φ

1+Φ
 Φ2         …. (14) 

Using the equality Φ2 + Φ – 1 = 0, we can write: 1 −  Φ =  Φ2 , and 1+ Φ = 
1

Φ
. Substitution 

in Eq. 14 gives: 

(
 𝑒𝑘

𝑒0
)𝑚𝑎𝑥= Φ5 ≈ 0.09016994                    …. (15) 

The above results reveal a very striking Golden Rati symmetry. First, the velocity 𝛽𝑐𝑟 at 

which 
 𝑒𝑘

𝑒0 𝑚𝑎𝑥
reaches its peak is equal to the Golden Ratio. Second, the relativistic length 

"stretch" is equal to the Golden Ratio raised to the power 3, sometimes termed "silver mean" 

[29, 30], a number related to topologies of Hausdorff dimension [31]. Third, the maximal 

kinetic energy density is obtained at the Golden ratio raised to the power of five. Strikingly, 

Φ5 if approximated to the eighth decimal digit, is precisely equal to L. Hardy’s probability of 

entanglement (0.09016994) [6, 7]. We briefly note that from Figures 3 and 3a (see SI), for the 

discussed case of one traveling away body, the theory predicts that the point of max energy 

entanglement (at the Golden ratio) coincides with the point of quantum criticality and phase 

transition. A convincing evidence for the role of the Golden Ratio, as point of quantum 

criticality was recently reported in science by Coldea et al [32]. A more elaborate 

investigation of the predictions of Information Relativity theory regarding the wave-particle 
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duality, quantum criticality, and quantum phase transition, will be considered in a subsequent 

paper [8].  

The cross correlation between the two energy densities of particles A and B for a given 

relative velocity β, over the dimension of motion could be calculated as: 

𝑟(𝑙) =  𝑒𝑘 ∗  𝑒0 = ∫ 𝑒𝑘(𝜉)
𝑙≥1

𝑒0(𝜉 + 𝑙) 𝑑𝑙 = ln (
𝑙 +1

𝑙 
 ) - 

4

(𝑙 +1)(𝑙 +2)
                …. (16) 

  

Maximum correlation is obtained at 𝑙 satisfying  
𝜕( 𝑒𝑘∗  𝑒0)

𝜕𝑙 
 = 0, which yields: 

- 𝑙̂
3
 + 3 𝑙̂

2
 +4 𝑙̂ - 4 = 0                 …. (17) 

Which for 𝑙 ≥ 1 solves at 𝑙 ≈ 3.7785. 

Substitution in eq. 16 gives: 𝑟𝑚𝑎𝑥   ≈ 0.08994    

Momentum 

The momentum of particle B in the rest frame of particle A is given by: 

P = m v = 𝑚0 
1−𝛽

1+𝛽
 𝛽 c = 𝑚0 c 

1−𝛽

1+𝛽
 𝛽            …. (18) 

Which when expressed as function of 𝑙 become: 

P = 𝑚0𝑐 
1−( 

𝑙̂−1
𝑙̂+1

 )

1+( 
𝑙̂−1
𝑙̂+1

 )
 ( 

𝑙̂−1

𝑙̂+1
 ) = 𝑚0𝑐  

𝑙̂−1

𝑙̂ (𝑙̂+1)
          ….. (19) 

Or: 

𝑃

𝑃0
 = 

𝑙̂−1

𝑙̂ (𝑙̂+1)
                ….. (20) 

Where  𝑃0 = 𝑚0𝑐. 
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The relative momentum 
𝑃

𝑃0
 as function of the relative stretch, 𝑙 is depicted by the broken line 

in Figure 3. The point of maximum in the figure is obtained by deriving 
𝑃

𝑃0
 with respect to 𝑙 

and equating the result to zero, which yields: 

𝜕
𝑃

𝑃0

𝜕𝑙
  = 

−𝑙2+2 𝑙+1 

𝑙2 (𝑙+1)2
 =0             ….. (21) 

For  𝑙 ≥ 1 we have: 

−𝑙2 + 2 𝑙 + 1 = 0             ….. (22) 

Which solves for: 

𝑙̂𝑚𝑎𝑥= √2 + 1 ≈ 2.4142             ….. (23) 

Which corresponds to velocity 𝛽𝑐𝑟2 equaling: 

𝛽𝑐𝑟2 = 
𝑙𝑚𝑎𝑥 −1

𝑙𝑚𝑎𝑥 +1
 = 

√2 + 1 −1

√2 + 1 +1
 = 

√2 

√2 + 2
 = 

√2 

√2 + 2
 = 

1 

1 + √2
 ≈ 0.4142                …… (24) 

With 𝑃 𝑃0⁄
𝑚𝑎𝑥

 equaling:   

𝑃 𝑃0⁄
𝑚𝑎𝑥

 = 
(1 + √2)−1

(1 + √2) (1 + √2+1)
 = 

√2

(1 + √2) (2 + √2)
 ≈ 0.1716             …… (25) 

 

Figure 3: Relative kinetic energy density and momentum as functions of the relative stretch 𝑙 
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The above results could be summarized as follow: A particle (A) in free flight with linear 

constant velocity β away from the rest frame F of another particle (B), will "stretch" in F, 

such that given a sufficient velocity, it will superimpose, or get entangled with particle B. 

The energy density of particle A in particle B's rest frame is predicted to be non-monotonous 

with velocity β (eq. 4,  see also Fig. 5a in SI), and with relative stretch 𝑙 (eq. x, see also Fig. 

3). Maximal energy entanglement is predicted to occur at relative velocity β equaling the 

Golden Ratio Φ ≈ 0.618, which corresponds to length stretch 𝑙 equaling (1 +  Φ) 3 (≈

4.2361 ) .  The maximal energy density attained at these values is equal to Φ 5 ≈ 

0.09016994, which is exactly equal to L. Hardy's probability of entanglement. 

The symmetry of the above results is astonishing, particularly given the key role played by 

the Golden Ratio and the related Fibonacci numbers, as ordering and symmetry numbers in 

esthetics and arts [33-35], biology [36], the physical sciences [32] , brain sciences [37, 38], 

the social sciences [39-41], and more. It is possible that the emergence of these numbers in 

the various systems in the physical and social world is a result of optimal self-organization 

processes. The validity of this conjecture, and the nature of the systems' observables that are 

ostensibly optimized, remain to be investigated.  

  

 4. Main conclusions 

The present paper shows that a deterministic relativity theory, which rests on two well 

accepted axioms, accounts successfully for the experimentally verified quantum 

entanglement in a bipartite EPR experiment. The above analysis demonstrated 

unequivocally, that quantum entanglement could be explained plausibly and accurately, 

without violating the locality condition. A corollary of the aforementioned is that the 

impossibility of classical theories for explaining quantum phenomena, as imposed by Bell's 

inequality, could be grossly violated. Another corollary is that the assumption of inherent 

uncertainty in nature, although possibly true, might be overlooked, while still accounting 

plausibly and accurately for a quintessentially quantum phenomenon. It is tempting to say 

that while God might be playing dice, we can (as Einstein's believed) calculate the results in 

advance, deterministically. 

A relatively minor remarks is in order: In the discussed inertial system, all the relativistic 

effects are function of the velocity β (see Table), i.e., on the ratio of the velocity v to the 

information carrier c. Thus the theory could be applied to other physical systems regardless 

of the velocities involved. For the dynamics of small particles, as well as for cosmology, the 
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translation of information by light or other electromagnetic waves is the natural default. 

Other systems, like thermodynamic and acoustic systems, could be equally investigated 

using Information Relativity theory, provided that the velocity of the information carrier is 

specified and that the relative velocities involved cannot exceed the velocity of the 

information carrier.                
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Supporting Information 

Derivation of Information Theory's Transformations 

1. Time 

 We consider the modulation of information regarding the time interval of a given 

event taking place in frame of reference 𝐹′, while departing with constant velocity v with 

respect to an observer in another frame of reference F. Assume that at the "moving" frame 

𝐹′, a certain event started exactly at the time of departure (t=t'= 0). Assume that promptly at 

the termination of the event, the observer in the "moving" frame measures the time (denote it 

by t'), and with no delay, sends a wave signal to the observer in the "staying" frame in order 

to indicate the termination of the event. Also assume that with the arrival of the signal, the 

"staying" observer promptly registers his/her termination time, denoted by t. The termination 

time t, registered by the "staying" observer, is equal to t', the termination time registered by 

the "moving" observer, plus the time the wave signal took to cross the distance x in F that 

the "moving" observer has crossed relative to the "staying" observer, from the moment the 

event started (t= 0) until it ended (t=t). The time in F that the wave signal took to cross the 

distance x is equal to  
𝑥

𝑐
 , where c is the velocity of the wave signal relative to the “staying” 

observer. 

Thus, the termination time t registered by the "staying" observer is equal to: 

t = t' + 
𝑥

𝑐
  .                       .... (1a) 

On the other hand, the distance x is equal to: 

x = v t                    .... (2a) 

Substituting x from (2) in (1), we get: 

t = t' + 
𝑣𝑡

𝑐
  ,                                              .... (3a) 

or 

𝑡

𝑡′
 =  

1

1− 
𝑣

𝑐

   =  
1

1− 𝛽
 ,                                .... (4a) 
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Where β = 
𝑣

𝑐
.   Notably, eq. (4a) is fundamentally different from the famous time dilation 

prediction of SR (
𝑡

𝑡′
)𝑆𝑅= γ = 1 √1 − 𝛽2⁄  . Figure 1 depicts the comparison between the two 

predictions. 

 

 

Figure 1a: Time transformation in IR and SR 

 As the figure shows, for positive β values (𝐹′departing from F), the predicted pattern 

of dependence of 
𝑡

𝑡′ on β is similar to the one predicted by SR, although the time dilation 

predicted by information modulation is larger than the time dilation predicted by SR. 

Conversely, for negative β values (𝐹′ approaching F), the relative time 
𝑡

𝑡′ as a function of β 

predicts time contraction and not time dilation, as predicted by SR. 

Note that equation 4a closely resembles the Doppler formula. The Doppler Formula predicts 

a red- or blue-shift depending on whether the wave source is departing or approaching the 

observer. Similarly, Eq. 4a predicts that the time duration of an event on a moving frame is 

dilated or contracted depending on whether the frame is departing or approaching the 

observer. 

2. Distance  

  Consider the two frames of reference F and 𝐹′shown in Figure 2a. Assume the two 

frames are moving away from each other at a constant velocity v. Assume further that at 

time 𝑡1 in F (and 𝑡1 
′ in 𝐹′), a body starts moving in the +x direction from point 𝑥1 (𝑥1

′  in 𝐹′) 
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to point x2 (𝑥2
′  in 𝐹′), and that its arrival is signaled by a light pulse that emits exactly when 

the body arrives at its destination.  Denote the internal framework of the emitted light by 𝐹0. 

Without loss of generality, assume 𝑡1 =𝑡1
′  = 0, 𝑥1 =𝑥1

′  = 0. Also denote 𝑡2 = ,   𝑡2
′ = 𝑡′, 𝑥2 = 

𝑥,   𝑥2
′ = 𝑥′. 

 

Figure 2a: Two observers in two reference frames, moving with velocity v with respect to 

each other 

From eq. 4a, the time 𝑡𝑝 in 𝐹0 that the light photon takes to reach an observer in 𝐹′ equals 

𝑡𝑝 = (1 − (−
𝑣

𝑐 
)  ) 𝑡′ = (1 + 𝛽) 𝑡′,                  ..… (5a) 

Where 𝑡′ is the corresponding time in  𝐹′, and c is the velocity of light in the internal frame. 

Because 𝐹′ is moving away from F with velocity v, the corresponding time that the light 

photon takes to reach F is equal to: 

t = 𝑡𝑝 + 
𝑣𝑡

𝑐
 = 𝑡𝑝 + 𝛽 t.        …… (6a) 

Substituting 𝑡𝑝 from eq. (5a) in eq. (6a) yields: 

t = (1 + 𝛽) 𝑡′ + 𝛽 t ,  

or: 

𝑡

𝑡′
 = 

(1+ 𝛽) 

(1− 𝛽) 
 .                     …… (7a) 

But x = c t and  𝑥′ = c 𝑡′. Thus, we can write: 

𝑥

𝑥′
 = 

(1+ 𝛽) 

(1− 𝛽) 
                        ……. (8a) 
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3. Mass and energy densities 

Consider the two frames of reference F and 𝐹′shown in Figure 3a. Suppose that the two 

frames are moving relative to each other at a constant velocity v. Consider a uniform 

cylindrical body of mass  𝑚0 and length of 𝑙0  placed in 𝐹′ along its travel direction. 

Suppose that at time 𝑡1 the body leaves point 𝑥1 (𝑥1
′ in 𝐹′) and moves with constant velocity 

v in the +x direction, until it reaches point 𝑥2 (𝑥2
′ in 𝐹′) in time 𝑡1 (𝑥2

′ in 𝐹′). The body’s 

density in the internal frame 𝐹′ is given by: 𝜌′ = 
𝑚0

𝐴 𝑙0 
 , where A is the area of the body’s cross 

section, perpendicular to the direction of movement. In F the density is given by: ρ = 
𝑚0

𝐴𝑙 
 , 

where l is the object’s length in F. Using the distance transformation (Eq. 8a) l could be 

written as: 

 

l  =  
1+ 𝛽

1− 𝛽
  𝑙0         …… (9a) 

 

Fig. 2a. Two observers in two reference frames, moving with constant velocity v 

with respect to each other 

Thus, we can write: ρ = 
𝑚0

𝐴𝑙 
 = 

𝑚0

𝐴  𝑙0 (
1+ 𝛽

1− 𝛽
) 

 = ρ0 (
1− 𝛽

1+ 𝛽
)    …. (10a) 

Or, 

𝜌

𝜌0
 = 

1+ 𝛽

1− 𝛽
          …. (11a) 

 

The kinetic energy of a unit of volume is: given by: 

𝑒𝑘 = ½ ρ 𝑣2= ½ ρ0 𝑐2  
(1− 𝛽) 

(1+ 𝛽)
 𝛽

2
 = e0 

(1− 𝛽) 

(1+ 𝛽)
 𝛽

2
                …. (12a) 
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Where e0 = ½ ρ0 c2. 

For β →0 (or v << c) Eq. 11a reduces 𝜌 = 𝜌0 , and the kinetic energy expression (Eq. 12a) 

reduces to Newton's expression e =
1 

2
𝜌0 𝑣

2. Figures 4a and 5a, respectively, depict the 

relativistic mass density and energy as functions of β.  

 

Figure 4a: Mass density as a function of β 

 

Figure 5a. Kinetic energy as a function of velocity 

As shown by the Fig.2, the energy density of departing bodies relative to an observer in F is 

predicted to decrease with β, approaching zero as β → 1, while the density in F for 

approaching bodies is predicted to increase with β, up to extremely high values as β → -1. 
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Strikingly, for departing bodies the kinetic energy displays a non-monotonic behavior. It 

increases with β up to a maximum at velocity β = 𝛽𝑐𝑟 , and then decreases to zero at β = 1.  

Calculating 𝛽𝑐𝑟 is obtained by deriving Eq. 4 with respect to β  and equating the result to 

zero, yielding: 

 

𝑑

𝑑𝛽
 (β

2 (1− 𝛽) 

(1+ 𝛽)
)  = 2 β 

(1− 𝛽) 

(1+ 𝛽)
 + β

2[(1+ 𝛽)(−1)− (1−𝛽)(1)]

(1+ 𝛽)2  = 2 β
(1−𝛽2 − 𝛽)

(1+ 𝛽)2   = 0             … (13a) 

 

For β ≠ 0 and we get: 

 

β
2
 + β – 1 = 0              … (14a) 

 

Which solves for: 

 

𝛽𝑐𝑟 = 
√5−1

2
 = Φ ≈ 0.618             … (15a) 

 

Where Φ is the Golden Ratio. Substituting 𝛽𝑐𝑟 in the energy expression (Eq. 12a) yields: 

 

 (𝑒
𝑘

)𝑚𝑎𝑥 =  𝑒0   𝛷2 1−Φ 

1+ Φ
          …. (16a) 

From Eq. 14a we can write: Φ2 + Φ – 1 = 0, which implies  1 −  𝛷 =  𝛷2 and 1+ 𝛷 = 
1

𝛷
.  

Substitution in Eq. 16a gives: 

 (𝑒
𝑘

)𝑚𝑎𝑥 =  Φ5 e0   ≈ 0.09016994  e0      …. (17a) 

       

 

 


