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Abstract

The paper investigates the possibility of continuous variation of a manifold starting from a
given one. Theoretical investigation engenders the fact that such a continuous passage is not
possible provided you start from a given manifold specified by its metric coefficients. You have
to move in discrete steps starting from the given one, satisfying some equations discussed in
the paper. A manifold surface can always be constructed using arbitrary continuous and
differentiable functions as metric coefficients. The ensuing Ricci tensor and Ricci scalar will
always satisfy the Bianchi Identity and hence the field equations. The functionals in the
general Relativity use the Ricci scalar [ensuing from the metric coefficients] as arguments.
Different surfaces[manifolds ] are generated by varying the metric coefficients [in order to vary
the Ricci scalar or such functions as dependent on it]. In each case the manifold satisfies the
Bianchi identity and hence the Field Equations prior to the application of the stationary action
principle. This perhaps induces a motivation for discretization. Discretization will modify all the
principles involved in General Relativity making them of a suitable nature in the present
context. This may open up the gates for including the General Relativity Lagrangians in a more
rigorous manner.[Basic calculations have been incorporate in the red lighted section: Variation
of the Action]
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1.Introduction

The paper aims to establish the following ideas: (1)From a given manifold we may move to
other manifolds only in discrete steps but not in a continuous manner by changes in the metric
coefficients. Any effort to access manifolds in a continuous manner would lead to
contradictions. This idea is intimately tied to the idea of the General Relativity Lagrangians
starting from the Einstein Hilbert Action to the f(R) gravity and other Lagrangians in the
Extended gravity Theories. The common feature connected with the actions corresponding to
the stated Lagrangians is making continuous changes in the metric coefficients to allow for the
process of variation. But such continuous variation is not possible as we shall see in this
paper.(2)If a surface(manifold) is constructed with arbitrary continuous differentiable functions
as metric coefficients, the ensuing Ricci tensor together with the Ricci scalar and the metric
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coefficients will satisfy the Bianchi identity:VB(R“ﬁ - g“ﬁR) = 8nGT*F. The physical basis
behind the field Equations is that energy density curves space and time and that the covariant
derivative of the stress energy tensor with respect to time and spatial coordinates is zero. All
surfaces [manifolds] constructed from arbitrary using continuous differentiable functions as
metric coefficients will serve this purpose. The general Relativity like those of Einstein Hilbert
and the f(R) gravities use manifold surfaces expressed through their metric coefficients as
independent variables. But we cannot vary them in a continuous manner in applying the
stationary action principle.

2.Global Transformations
Transformation of tensors in Curved Space Time

A second rank contravariant tensor(! T2 has been chosen to discuss some salient features
related to the current investigation.

axH ax¥

Tav =
dx® 0xB

T (1)

axH . ) . .
ooa are elements from the transformationmatrix. You may consider transformation from

spherical to rectangular system in Schwarzschild geometry. Manifold!?! remaining the same we
consider these coordinate transformations from one system to another. Such transformations
do always exist

Transformations described by (1) do not contain or involve the metric coefficients: they are
independent of the nature of the manifold.The transformations may be of a local nature but

. . axH . . .
the variable are global variables. It means Sxa May be a function of space time variables

(t,x,y,z) but the variables t,x,y and z are global variables figuring in local transformations.

It may be noted that the metric coefficients are described as functions of the global
coordinates[grid coordinates] but the transformations described by (1) do not involve the
metric coefficients

Incidentally these metric coefficients themselves participate in global transformations

ox* dx”
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Standard literature proof of the above relates to the invariance of the line element and the
involvement of global coordinates and is provided below:



ds? = gopdx®dxP
ds'? = g'pdx"tdx"
[prime in the above denotes transformation and not derivative]
Due to invariance:
ds'? = ds?

ox*  9xP

g pdx'dx" = ds? = ga,;dx“dxﬁ = ga/gax—,#dx K FI dx"

Therefore
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The proof of the fact that g4 is a second order covariant tensor is connected with global

transformations

Now if you transformed from spherical to rectangular system for the Reissner Nordstrom!?!
. oxt . . . . .
metric the elements axia in the transformation matrix will not change though the manifold has

changed. This is corroborated by the proof!*! that the difference of two connections is a
tensor. It considers changes in the manifold[changes in g,z] with unchanged values of the
transformation matrix elements[Supplementary Material ; Section 2: Difference of Two
Connections]

We have two types of transformations

1) Manifold remaining the same the system of coordinates change: the metric coefficients
change according to the transformation given above

2) The manifold itself changes: in this case the metric coefficients may change in an
arbitrary manner, remaining continuous differentiable functions. We may use arbitrary
continuous differentiable functions to construct a manifold surface:thev following will
hold (1) Covariant derivative of g,,, with respect to time and spatial coordinates will be
satisfied.(2) The Bianchi identities will remain valid
During the process of variation information in point (2) above becomes active.
Again while we are on some particular manifold before or after variation information in
point (1) becomes relevant

In a particular type of geometry for example Schwarzschild Geometry®! you may consider in
relative motion of complicated type between the two global coordinate systems. In such
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situations we have the same type of relation as (1) except that the transformation elements will
contain velocity components, angular speed acceleration etc.

— axH axv
uv = — aﬁ

T ox% dxP T (2)

The matrix elements for (1) and (2) will be different when we change the system of coordinates

with out changing the manifold. But they will not change when we pass from one geometry to

another[from one manifold to another] due to the absence of g,,in provided we maintain the

same type of relative motion between the global grid systems. The transformation elements

will contain speed acceleration and other higher order derivatives in the global perspective

We may consider a manifold due to several masses in the fray. The global coordinate system
will have world lines where the observer is spatially at rest but such observers may be in
motion with respect to all the bodies in the fray.

In this paper we are concerned with the global transformations in relation o both the points
(1) and (2). The tensors are being viewed from the perspective of global coordinates. For
example if you are in Schwarzschild geometry you are viewing the tensors as a spatially
stationary observer in the commonly used spherical system of coordinates or in some other
system like the rectangular one which is less common.. This corresponds to some particular
world line at any specified point on the manifold. Let us call it the stationary world line at the
point P

Local Transformations

Though we are concerned with global transformations we have a brief discussion on the local
transformations in this section.

P is a point on manifold M1 and P’ is the image on the close manifold M2. At the same
coordinate location((t, x, y, z), the tangent planes at P and P’ have been considered before and



after the infinitesimal change of the manifold.

M, M,

First we consider the tangent plane at some point P in curved space time geometry. Observers
passing along AB and CD have their own mutual local transformation laws, simplest being the
Lorentz Transformations when relative motion is uniform.

If curvature changes as we change the manifold by some valid infinitesimal amount the
inclination of the said tangent plane changes [with respect to the previous position: inclination
between planes not shown in the figure]] and the angles between curves passing through P
also change. Angle between AB and CD is different from the angle between A’B’ and C'D’

At each point P and P’ we will have a world line where the observer is at rest with respect to
the global system of coordinates. Each point will have such a ”stationary” world line passing
through it. Metrics like Schwarzschild’s are relative to spatially stationary observers at origin.

The transformation elements as depicted in equation (1) will not be different for the two
manifolds for observers on the stationary world lines.

We may work out “global transformations” for observers along these stationary world lines
when we pass from one manifold to another(point 1) and while on any particular manifold we
consider global transformations between coordinate systems as depicted in point 2



Again we have transformations for observers moving along different world lines on same the
tangent plane. The motion between such observers may not be uniform and will not necessarily
fall into the category of the Lorentz Transformations though such relative motion pertains to
the tangent plane. Lorentz transformations are the simplest type of transformations on the
tangent plane when relative motion is uniform in nature. The tangent plane is not an exclusive
uniform motion plenum: it is simply Minkowski space where acceleration and relative
accelerations are permitted. A p[air of frames may have relative acceleration between them

We simply do not know the laws for frames that translate non uniformly between them but we
may assume the existence of relevant laws.

In formal literature tensors and their transformations are defined in respect of the tangent
planel®! at some point P on a manifold. We can pass locally from curved space time at point P
to the tangent plane[Euclidean plane: Minkowski space] by numerous local chartings and
each local chart creates a basis for tensors in the tangent space .This basis incidentally has
the same dimensionality as the manifold.. The bases thus created on the same tangent plane
at point P may be transformed into one another and the corresponding tensors defined on
them may also be transformed using relations like (1) where the coordinates involved are
local coordinates, derived from the global ones [obviously by transgression of the Gauss
Egregema: we are passing from curved space time to Minkowski space by such
mapings/diffeomorphisms].

[The transformations on the tangent described above are transformations in Minkowski
space]

The same tensor on the tangent plane can have different representations in the distinct bases
on the said plane. Any tensor on the local tangent plane may be transported to some other
tangent plane on the manifold another by the method of parallel transport.

In the case of variations, the manifold itself changes though by an infinitesimal amount at
each coordinate location (t,x,y,z). We have close tangent planes at P before and after
variation. We may call the point P, P’, after variation but it is actually the same coordinate
location (t,x,y,z)

The Tangent planes representing Minkowski space are inclined with respect to each other
and the angles between curves passing through them have changed. Our aim would be to
locate a world line L1 at P and L2 at P’ so that the values of elements of the local

. . OTH .
transformation matrix % have not changed though the local coordinates may have changed

due to subtle changes in the local charting due and due to variation of the manifold.[ €% and &#
are local coordinates on the same tangent plane pertaining to distinct basis formed by different
local charts:x* « &Y and x* « &V at P

Here x* is the global coordinate at P while ¥ and £ are the local coordinates on the same
tangent plane at P due to different local chartings



On the new tangent plane formed due to variation we could as before think of an infinite
63” . as?’u

number of local charts from x* to ¢’V and &'V. We can choose a pair so that 307 = 35

This technique can help us in adding and subtracting tensors on different tangent planes using
relations like (1). The value of the metric tensor coefficients are independent of local charts and
they conform to global transformations of the type described by relation (1)

These metric coefficients are expressed in terms of global coordinates in the known metrics like
Schwarzschild’s metric. There is always a necessity of transforming them in respect of the global
coordinates

Considering the fact that g, is a tensor [metric tensor of rank 2 we have in the global
perspective

Any denial of global transformation would render the tensor attribute of g,,,, as
invalid

We may inter relate global and local tensors by suitable processes /mappings though such
procedure is not necessary for our article. The local transformations on any particular tangent
plane are not of concern to us. We are concerned in global transformations of two types: in one
type the manifold itself does not change: only the coordinate system described on it changes.

In the other type of transformation we are concerned with the manifold changes globally
without the coordinate system on it changing.

Let us take the stationary world line on each tangent plane at the points P and P’. Observers
on such lines are at rest with the global coordinate system. Due to the process of infinitesimal
change the in the manifold the metric coefficients have changed but events continue to be
labeled by the same global coordinates for example (t,x,y,z) unless we change the system of
coordinates like from rectangular to spherical.

We can always link the local tensors on the tangent plane to some global tensor[many to one
mapping], the global tensor obeying relation (1) between the two manifolds as considered in
the process of variation. The local tensor follows similar rules with the local coordinates

For the two tangent planes considered ion the variation we may take such local charts in each
. .. &k . . . .

case maintaining that % remain the same in value in each case though the local coordinate ¢

may change. This is just for our convenience. But local transformations are not so much of



concern to us: we are interested in the global changes. Nevertheless we have in this section we
have alluded to a small discussion on local transformations on the tangent plane

Example of the GPS

Time changes due to General Relativity effects predominate over Special Relativity time dilation
for GPS calculations. The two effects have to be calculated separately. This is done in the case
of the Global Positioning System[®! Schwarzschild’s metric does not provide us with the time
dilation of Special relativity. Relation (1) relates only to global transformations[for example
from rectangular to spherical and vice versa]. Such transformations are not necessary for GPS in
relation to what we are discussing .

We require time changes at different heights due to potential difference and we come to know
of it from Schwarzschild’s metric. This time difference predominates over Special Relativity time
dilation

3.Variation of the Action

The Einstein Hilbert Action!”! and the f(R) gravity!® Action
1

S=[d* [ER —g +Lm1/—g] (3)

Action for f(R) gravity

S = [ d*x [ f(R)J=g + Lmy/=7]| ()

We consider different functions R to work out the variation of S due to change in the metric
coefficients § g,

[Vaguw = 0 as arelevant feature of metric compatibility]

S is a set of real numbers corresponding to the integration of the Ricci scalar R or different
functions R, f(R

Let the initial manifold be represented by M1[R;being the function representing Ricci scalar on
it. We have V,g,, = 0 on M1

We choose an infinitesimal §g,, . Then we go on to define another surface M2

having as metric coefficients, (gm, + 6gw,). Now (gm, + 6gm,). Automatically we have
Vp(gm, + 59w) = 0 with respect to M2 The result Vp(gm, + 6gm,) = 0 will follow
automatically when the surface M2 is constructed from the functions g,,, + 69, as metric
coefficients. This has already been discussed in the earlier section.



With respect to M2:

ax* dxP

gluv + 59’#1/ = ax_r#m(gaﬁ + 59aﬁ)
With respect to M1

/ ox* 9xP
g uv 6x76xr" gaﬁ (5)

[Prime above denotes transformed values and not differentiation]

system

By subtraction we obtain:

_ 9x% axF
(Sg [lv - ;.C,u aj:,v gaﬁ (6)

Therefore § g, is a tensor with respect to each surface M1 and M2[the grid transformations
do not change]

(g% + 8 g%]is a symmetric tensor being a metric coefficient on M2: § g% will also be a
symmetric tensor on M1 and on M2];

We have from tensor properties[§ g, being a tensor]

5g%F = g™ gPvs9,, (7)

On M1:V, g,, = 0 but it is not necessary to have V,,6g,, = 0. We do have dg,, as a tensor
on M1 but not as a metric tensor

On M2:V, (g, +69,) =0
With respect to M2, V,,(g,, + 69,,) = 0

But on M2 it is not necessary to have V,g,,, = 0 and V,,89,,, = 0 individually/separately

gip + 69ip are metric coefficients with respect to M2
Therefore (g“i + (Sg“i)(giﬁ + Sgiﬁ) =6% ((8)

We could have used the above to define §g*#from 89qp- But we know that § g4 is a tensor
with respect to both M1 and M2:
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59 = ggPvsg,,

So we do not have the advantage of defining §g*#from 8gapusing (3)without using extra
conditions as given by
59 = g™ gP g,

Now,
9% 9ip + 9" 09ip + 9ip89™ + 696915 = 6%
Referring to Ml:g“igiﬁ = §%g:Kroneker delta transforms to the Kronetker delta in all systems:
Therefore,
8% + 9™ 8gip + 989« + 69915 = 6%
Or,
9“89ip + 9ig69™ +89%'8g;5 =0 (9)

9“69ip + grpb9™ + 69* g, = 0 (10)

Referring to M1 and an orthogonal system on it we have for fixed indices aand :
9““6ap + 9ppbg*’ +59*8gip = 0 (11)
[Referring to (4.1) g* = 0if i # a and gxp = 0 if if k # B]
Now

9% = g™ g™ 8 Gmn
And

59%F = g gP15g,q

9““89ap + 99 9" 189pq + 9% 9" 6GmnSgip = 0

But the system is orthogonal
Therefore for non trivial metric coefficients:
m=aqn=ilandp =a;q=p
g 8gap + gﬁﬁg“"‘gﬁﬁdgaﬁ + g““g”(?gangiﬁ = O[summation oni only]
In the orthogonal systems:

gﬁﬁ = g%[summation on 8 not implied in this formula]
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Or,

9“%8Gap + 9*“69ap + g““g”Sgangi/; = 0 [summation holds on i: alpha and beta are fixed
indices]

Or,

29%*89ap + 9**9" 69469 = 0 (12)[summation on i only ]
If the product term  §g,,69;5 ignored with respect to §g,g,
g“*8gap = 0[not summed]

Implies: §gq5 = 0

If we do not ignore g““gingai&qiﬁ[a,ﬁ fixed indices: summation on i]

We have from (6)(12)
9% 86gap = — %g““g”t?gaifﬁgiﬁ[summation only on i]
Multiplying both sides of the above by g,,

Jaa9"0Gap = —%gaag““gii&qai(?giﬁ [we have summed on i:alpha,beta fixed]
Jaa = y%[orthogonaIsystems;alpha not in summation]

89ap = —%gii(ﬁgm(ﬁgiﬁ (13)[summation on i: a, B fixed indices]

1
8Gap = —§g°°69a05g03 — 969416918 — 9°°69426925 — 9>°69436935

The 10 quadratic equations have been listed below[§ 9,5 = §9pq]

1
8900 = _590059005900 - 91159015910 - 92259025920 - 93359035930

1
86911 = _590059105901 - 91159115911 - 92259125921 - 93359135931

1
89z, = —590059205902 - 91159215912 - 92259225922 - 93359235932

1
8933 = —590059305903 - 91159315913 - 92259325921 - 93359335933
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1
8910 = _590059105900 - 91159115910 - 92259125920 - 93359135901
1
8720 = —590059205900 - 91159215910 - 92259225920 - 93359(125930
1
8930 = —590059305900 - 91159315910 - 92259325920 - 93359335930
1
8912 = —590059105902 - 91159115912 - 92259125922 - 93359135!]32

1
89ga3 = _590059205903 - 91159215913 - 92259225923 - 93359235932

1
8931 = _590059306901 - 91159315911 - 92259325921 - 93359335931

We have 10 quadratic equations for 10 unknowns g, in (13), g/ being known to us

In fact § gqp is a tensor as shown by relation ....and. § g, and 5g%F related by the usual index
raising and index lowering rule of the tensors.

Thus we have a discrete set of values for § g,z or 59%F because of the ten quadratic quations.

The action cannot be varied by varying the metric coefficients in a continuous manner

For a particular manifold M1 we can move to some specific ones by solutions of (13) but we
cannot move to any arbitrary close manifold . There are 21° = 1024specific manifolds M2
according to solutions of (13) and from any one of them we may move to another specific
manifold which is again the solution of (7). Thus we may move through distinct manifolds in
discrete steps but not in a continuous manner.

Incidentally we also have,
59%F = (g™ + 8g™)(gP’ + 89P)6 g,y (14)
[Since 69, is a tensor wrt M2].
59%F = (g™ gPv + g+ 5gPY + P 6g9™ + 5g™59P")6 gy
89%F = g™ gl g,y + (969" + g 5™ + 59597V )6 g4y
89°F = 69°F + (g*5gP" + gP 6g™ + 59™59")8 g,
(g%489P" + gP*8g9° + 5g*#59"")8gu = 0

(969" + gPisg™ + 59 6gP )5 gy = 0
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Again

(9% +69*)(gip + 69ip) = 6% = 9™69ip + 9ip09™ + 595 gip = O(A)(15)[rank 2 mixed
tensor terms]

Or,

9 90i9p69™ + 9ni9pr 9™ 9"+ gnigp69* 9™ = 0

Or,

gnigpr(9™6g™ + g"t6g™ + g*6g™ ) = 0(16)

5g%F = g™ gFs9,,

6gaﬁ = (g™ + 6gau)(gﬁv + 6gﬁv))6glw — (gaﬂé‘gﬁv + gﬁv(gga/i + 59(1#59[31/)59!” =
0 = (g*6gP + gPlsg™ + 59*69P7)6g:; =0 (17)

A’ and B are identical. Therefore movement of manifold in discrete steps is possible.

We have to consider these discrete processes.
The Gauss Egregema context:

Gauss Egregema is concerned with the transformation of coordinates. In so far as the problem
we are investigating, the coordinate grid remains unchanged: only the metric coefficients are
changing on the same grid. For the rectangular system will remain rectangular while the metric
coefficients will change producing another metric compatible manifold; the spherical system of
coordinates will remain spherical there while the expressions [and consequently the values] of
the metric coefficients between any pair of coordinate labels will change.

We are not considering grid changes: rectangular to spherical or from spherical to elliptic. Our
formulations are not in violation of the Gauss Egregema

Tensors incidentally are defined by transformation rules: these transformations relate to
changes in the grid system keeping the manifold constant/fixed. Changes may be from spherical
to cylindrical, rectangular to elliptic etc. ...

Example:

oy _ OFH 0T

TeB
dx* oxP

These transformations involve coordinate transformations on the same type of manifold. The
coordinate system will change for example from rectangular to spherical etc.Th eemanifols will
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not change: flat space time will remain flat space time or Schwarzschild geometry will remain
Schwarzschild geometry.

But in our case the metric coefficients will change on the same coordinate grid.

Discussion:

Between two surfaces M1 and M2 we may have millions of metric compatible surfaces but all
the 10 equations given by (7) will not be simultaneously satisfied by them. Starting from a
given manifold M1 only 2%° specific surfaces will adhere to the required equation s as listed
earlier. We are considering metric compatible surfaces only in the process of variation
because of the Ricci scalar worked by changes in the metric coefficients.

Each metric compatible surface satisfies the Bianchi Identity and consequently is a solution of
the Field Equation[Einstein’s Field equations: incidentally they may be deduced without using
the Einstein Hilbert Action] So the procedure indicated provides us the opportunity to locate
different solutions to the Field equations starting from a known one.
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Supplementary Material

1.0n the Covariant Derivative of the Metric Tensors


http://ned.ipac.caltech.edu/level5/March01/Carroll3/Carroll3.html

We may choose arbitrary differentiable functions f,,,, (t,x,y, z): four of them for orthogonal
systems and sixteen of them for on orthogonal systems. If a surface[manifold] is considered
where the above functions are chosen to be metric coefficients that is g,,, = f,,, then have

Vaguv

=0or Vofyy =0

Prooflt!;

Step 1:

We will first show:

1.

09uv ] _1 (agac 99bc
o = [um.v] + [vm. u]; where [ab,c] = \oxt T 928 axc
of typel]
uw
%im = _glmrmnv - gvnl-'mnﬂ

[where Christoffel symbols of the second type: Fﬁy“ = %g“k (

99k , 99ky _ 99py

oxY axh
Proof of 1.
1/0guw  0gvy 0gum) 109y
L. v] = E(axm oxm  9xv ) 20xm
1 agvu aguv ag/im 1 aguv
vm. ul = §<6xm axm  9x¥ )  29x™
Therefore,
0
[um.v] + [vm.u] = 6?::
Proof of 2.
9%gx; = &'
Partial Differentiating with respect to x™ we obtain:
09k 0g™
k J —
T axm T a9 =0
x99k 99"
dxm — 9xm Gkj
Multiplying both sides of the above by gir we obtain
. agik . ik agk]
jrg, .29 — _ qJrgik 22k
Or,
agt - o
8" 5 = =9 9" lkem, j1 = " g™ [jm, k]
g . .
Ixm = _glkrkmr - gjrrjml

Same as

axk

)
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— ag“b): FChristoffel symbols



axm
Step 2:
Proof of V,,g*¥ =0
ag*v
Vmg"” = aim + Tem“ 9" + Tim” g
But
agt’ v
oo = 9 Tiem = 9" Tiem
[from 2 of stepl]
Therefore V,,g*¥ =0
Proof of V;, gy = 0
Gy

- ax_m - 1-‘umkgkv - vakguk

VG = [um.v] + [vm.u] — [um.v] — [vm.u] = 0
Results used:

09 uv
1. =&
ax™m

= [um.v] + [vm. u]

2. gkvrﬂmk = 61/5[‘[1177,, s] = [um,v] and vakguk = [vm.y]

[ Discussion: Fumkgkv = [um.v]: Proof: Fﬂmk = lgks (

agus 0gsm _ agum) _
2

ax™m doxH xS

ks[

g um, s] or, gkvrumk = gkvgks [um, s]

Or,
gkvrumk = 5vs[ﬂm’ s] = [um,v]
Therefore

Va(guw) = 0 and V,g*¥ = 0 follow as necessary conditions for covariant differentiation. We
cannot part with this so long as we do not change the fundamental premises relating to the
space being considered in the Lagrangian.
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Moreover the said conditions are tied to the fact that parallel transport of a pair of vectors
along a curve lying on the manifold does not change the dot product/inner product between
them.

2 Difference of two Connections
We may analyze it the following way.
We are given metric compatible functions g, (t, x,y, z)

We consider an incremented g,“,(t, x,y,z) +6g(t,x,y,z). The new functions are metric
compatible in respect of the manifold constructed by using them as metric coefficients . Then
we have constructed a new transformation of passing from one manifold to another[both are
metric compatible satisfying Va[gm,(t, X, Z)] =0andV, [glw(t, x,y,z)+6g(t,xyz)] =0]

Suppose M2 is not metric compatible in the sense Vagm,(t, x,v,z) #0

The final metric figuring in the field equations will be of the type M1, that is metric compatible,
and not of the type M2 which may be metric incompatible for arbitrary increments . Possibly
that may allow inclusion of fictitious metric incompatible surfaces in the variation.
Differentiation will always take place on the metric compatible surfaces like M1 and not on
surfaces of the type M2. . But this idea cannot be entertained in view of the fact that we
consider the difference of two connections as a tensor

Standard Proof from Literature[Sean Carroll]
Transformation of Christoffel Symbols

4 OxF axY axt dx* axV 9%xV

F r - F T
wv dxH dxVv' 9xr H*Y dxH 0xV' dxHdxV

In the above coordinate system has changed on the same manifold. Now the manifold changes
and we have coordinate transformation on the new manifold.

5 Oxt dx¥ axV _ 5 9xH axV 9%k
HIVE T dxel gxv' gxr PV 9xH 0xV' dxHOxV

u
:;Cu, remaining unchanged with change of the manifold

The transformation elements

Difference between two connections:

1 — A
Ly =Ty
_9x* axY axV 1 OoxH axV a%xM axk axv 92xMV axt axv axM i A (1)
T 9xM! gxV! gxi THV! AxM dxV! dxHAxV  IxH dxV' dxHdxV  AxH dxV' dxA KV

Therefore,
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A o= A dxH axY axM 1 = 4
Lurv™ =T = 5 5w o (L™ = T | (2)
axt axv axt
AxH axv' 9xt

due to change in the manifold at the concerned point. This is a vital point for us

We have been able to factor out the common quantity which has not changed

. A .
The quantity l“m,,)l — I transforms like a tensor.

= A . . = A .
I Aande, stand on the same coordinate grid. I‘M,v,’l'andf‘#,v, " stand on the same grid but

pvr
different from the previous one. Variation takes place on the same grid. This variation is then

considered on other grids through coordinate transformation.

The Christoffel symbols have been considered on the same coordinate grid that allows the
cancellation of two identical middle terms on the right side of (1). That leads to the tensor
transformation criterion in (2). We have different sets of g,, hanging on the same grid

= 2 . . . .
F#,V,A'and[‘#,v, ' correspond to different manifolds but they are on the same coordinate grid.

= A , . . .
[ vlandl"m, correspond to different manifolds but they are on the same coordinate grid.

u

FH,V,A'andFWAenjoy the same manifold but different coordinate grids

= 2 = 2 . . . . .
Loy 'andF#,v, " are on the same manifold but their coordinate grids are different

[the above derivation does not consider §g,4 as a tensor: this goes in favor of the formula as
we shall see soon.

(gm, + 6gm,)is a tensor and also a metric coefficient in respect of M2
3.Tensors

Coordinate and Physical Values Infinitesimal Separations:

We start with the metric

c?dt? = g d(ct)? — guxdx® — gy, dy* — g,,dz* (1)

c?dr? = d(cT)? —dL? (2)

Physical Separations

Physical Time interval: dT = ./ g, dt (3)

Physical Length:dL = \/gxxdxz + gyydt? + g,,dz? (4)

Physical separations along the x, y and the z direction:
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dx,p = \[gxxdx (5.1)
dy,n = \/Gyydy (5.2)
dzpn = /92,42 (5.3)
[Sufficx: "ph” stands for physical]
For the Null Geodesic: ds? = c2dt? =
d(cT)? —dL?> =0
Or c2dT? = dI?
dL

. . . . dL .
In this physical separation formulation locally we always have T =C for the null geodesic.

Now we take a light ray travelling along the x axis: rather we orient the x axis[an infinitesimal part of it ]
al.ong the direction of propagation of light ray in curved space

ds? = g c?dt? — g, dx?
ds?> =0
Therefore, 0 = g,c?dt? — g, dx?
ax _ ’&
== gxxc (7)
Coordinate speed of light in curved space time
dx
T #* ¢ (8)
But physical speed of light [Local physical Speed], % =c
It is interesting to note that relation (7)
Reduces to % = ¢ when we are in Minkowski space that is when g, = land g, =1

wE do have an allied concept of proper speed

Coordinate and Physical Values of Tensors:

Proper speed in General Relativity is defined by:
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(dt dx dy dz
dt’dt’dt’dr
curved space time. So we have different values for proper speed components in flat space time and in

) . Now proper time interval dt is not expected to be the same for flat space time and

curved space time: due to difference in the value of proper time interval
(cdt dx dy dZ)

dr'dt’dt’ dt
cdt dx

\/gnd(ct)z — Gxxdx? — gy, dy? — g,,dz? \/gttd(Ct)z — Gxxdx? — gy, dy? — g,,dz?

dy dz

\/gttd(Ct)z - gxxdx2 - gyydyz - gzzde \/gttd(Ct)z - gxxdxz - gyydyz - gzzdz2

In the flat space time context g = gxx = gyy = g2z = 1 and we have the proper time interval for
Minkowski space. In a thought experiment you may turn on gravity starting from Minkowski space : the
proper time interval will change gradually as the manifold changes.

Replacing proper time interval of curved space time by proper time interval; of Minkowski space is
theoretically incorrect. But we can always do the following:

Locally we can replace

c?dt? = gy d(ct)? — guxdx? — gyydy? — g,,d2°
By

c2dr? = ¢2dT? — dx,p” — dypn” — dzpn” (9)

Relation (9) locally has the “ form “ of the Minkowski metric. We have to be care ful that this metric
contains gravity. But the advantage with it is that we have the form of the flat space time metric

cdT dxpn AYph ,dZpn
Four Ten arklz(— L ——)
our speed as Tensor[Ra ] ' ar ar as

The above is a tensor considering the Minkowskian form of the metric (9). The proper time in (9) is not
the proper time of Minkowski space but we consider it to be locally invariant in its own manifold.

The justification of considering physical values becomes cl;ear.

In a transformation relation like

- oxH
At = —A“
ox“
axH . . - = . o
az_a does not contain the metric coefficientsg,,, . As a mater of fact A* and A* are Euclidean quantities.

But the physical values (orthogonal systems being considered):A“ph = /9aaA% and

ff“ph = /JuuA%(summation over a or or u not implied]These physical values are cvharacterizedby the
metric properties of the manifold. These physical quantities exhibit local Lorentz covariance in view of
metric (9)
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A
The variables in gi—a are those of (1) but he physical variables pertain to (9).

Important to note that if you look at relation (1) the quantities £, x, y and z do not contain the metric
coefficients g,,,,

The metric cvoefficients are responsible o=]for curving space time . The global variables standing
independent of them do not curve space.

Now we are write the following two equations

c?dr? = c?dt? — dx? — dy? — dz?

c2dt'? = gy c?dt® — gy dx? — gy, dy* — g,,dz?

Absence of metric coefficients in ¢, x, y and z pints to un structured space, But lookingat the above
two equations the interval , dx, dy and dz are Euclidean if the variables t,x,y and z are identical in
the two equations.

We may justify this physically by a thought experiment. Starting from Minkowski space you turn =on
gravity gradually the quantities dt, dx, dy and dz will change to ./ g, dt ,./g..dx, |g,,dy and

./9,,dz forthe same pair of space time coordinate locations (t,x,y,z) and (t +dt,x + dx,y +
dy,z + dz). Thus the first equation defines the Euclidean background while the second onerepresents
curved space time with the labels t x y and z remaining Euclidean

IN the curved spasce time context the measurable quantities having the same dimensions of length are

to c/Gedt , Grxdx, [G,,dy and /g,,dz

Let us try to comprehend the situation with Schwarzschild metric:

2Gm 26m\ !
c?dr? =c?(1- dt?> — (1 - dr? —r2(d6? + Sin?6d¢p?)
c?r c?r

26m)‘1/2 dr

The radial distance between two infinitesimally close points is not dr but it is : (1 ——

VGrrdr

Suppose In try transfortming Schwarzschild metric from Spherical to Cartesian system for the stationary
observer in the global system of coordinates.

, dx® dxP
8w = g7 59 98

x =rCospSind
y =rSingSind
z =1rCos6

t' = t [relatively stationary observers in the global system of coordinates]



Cartesian coordinates related to Schwarzschild coordinates by familiar relations!?!

0x% . . . . .
The above transformations are use a::ru in consideration of the Euclidean grid
Special Example B!:
d?x® dxP dxv
f¥=my|==+T¢

o] dr2 By dr dv

We consider a spatially stationary observer near a Schwarzcchild mass so that we have non geodesic
motion and f* # 0

Four speed= (u;, 0,0,0)

Norm of four speed=c? = 1

2m\ "2
w=(1-21)
r
We are in the (7, 6, @) system .For(spatially) stationary observer u, = % =0;ug = % =0u, =
de _
dr

dt? dt r2

2.1 tN 2 t\ 2 -1
Radial force: f7 = m, [d X+ | (‘%) ] =ml" (di) = Tﬂz(l —2m/r) (1 — ZT’”) =

fr= rﬂZ gives us the coordinate value of the radial component of the force four vector[Minkowski

force]. It is the same as Newtonian thrust

-1/2
The physical component is given by :,/ g, f* = (1 — sz) Tﬂz The physical value is much greater

than Newtonian thrust and infinitely larger a r approaches 2m.

Additional Point

We start with the definition of four acceleration:

d?x® dx?f dx¥

a

r' —_
dt? Ty dr dt

a® =

For motion along a geodesic each component of four acceleration is zero. In particular for radial
motion under gravity the radial component of four acceleration=0. Though four acceleration and four
force are elegant mathematical formulations they do not conform to what we understand by
acceleration in the physical sense. An apple falling from a tree will accelerate at the rate3 9.8 m/s2. If
gravity were a million times stronger it would have accelerated at a much faster rate. But four
acceleration would always remain zero for geodesics.

22
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We can always formulate relations closer to what we mean by acceleration in the day to day physical
sense. We do the following

The Geodesic Equation:

d?x® L ra dxP dx? _ o
dt? BY dar dr —

For radial motion under gravity, Schwarzschild metric being considered we have,

d’r _ dty? - dr\?
a=Tulg) - (&)

dr _ _rﬁzu —2m/r) (g)z + rﬂz(l —2m/r)™* <ﬂ>2

dr? dr
Or,

d?r m dt\* dr\?

= _ | — —_ -1

dt? 2 (1 =2m/r) (dr) (1 —2m/r) (dr)

[ Christoffel symbols in the above have been taken in the (-,+,+,+) signature]
Now we write the Schwarzschild metric:

dt? = —(1 = 2m/r)dt*> + (1 — 2m/r)~tdr? + r2(d6? + Sin*0d¢?)

For radial motion
dt? = —(1 - 2m/r)dt? + (1 — 2m/r) " 1dr?

Dividing both sides of the above by the proper time interval squared dt? we have:

dt\? dr\*
_ _ _ — -1
1=—-(1-2m/r) (dr) + (1 -2m/r) (dr)
d?r . m
dr2 2

G
m—>6—72nandr—>cr;t—>ct

Explanation for the positive sign: In our chosen signature(-,+,+,+),dt is imaginary for time like
interval separations. dt contains the imaginary “I” as a factor. When we double differtentiate to

2
evaluate % on the left side of the formula we evidently have ,i x i = —1
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In effect we are having

d*r o om

R
Which is equivalent to

d*r _ Gm

R

Notable issue: How does the relation stand in view of transformations considering the fact
d’r . .o d?x” a« dxPdx?
that Sz isnota four vector component like —z T r BY I an

comprise a core aspect in physical considerations?

, given that transformations

The tangent to a geodesic curved gets parallel transported along it. In presence of gravity
alone only geodesics are available for physical motion . But parallel transport may be
considered for all types of world lines , even the imaginary ones

We are concerned with radial motion under gravity[geodesic in terms of spatial and temporal

coordinates]

For parallel transport along non geodesics the norm of the vector is preserved. But in these
situations we have agents other than gravity in operation.

We may start with the velocity vector for [geodesic] motion in the radial direction and move
it along the same radius. The four speed and the corresponding four acceleration will remain
unchanged. If we consider a Cartesian system with origin on the same radial line and x —axis
along the radial direction then,

we will have dr _ dx
dt2 ~ dr?

This Cartesian system may have the same origin as the global Schwarzschild coordinate
system. But the x axis has to coincide with the outward radial direction

In fact we have without any type of mathematical fanfare, dr = dx and dt unchanged when
we align the x axis of the Cartesian frame in the direction with out changing the origin]

On the Curving of Space time Geometry

In general relativity coordinate distances and physical distances are

identical only for flat spacetime. But in curved spacetime the coordinate separations and
the physical separations are different. They may become radically different if the
curvature is strong enough. Lets consider the physical curving of 3D space in view of the
above fact. We consider two flat surfaces parallel to the x-y plane at two levels, z=a and
z=b in the flat spacetime context. Several points are considered on the two mentioned
planes. A gravitational change is now considered. The metric coefficients change and the
physical distances of the points lying on each plane change . The points may be
considered pair wise on each plane and also pair wise on the two separate planes. Their
mutual distances change with changes in the gravitational field and change may occur
differently for the different pairs. The planes become undulating surfaces—space gets
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curved!

Let’s consider a spherical planet like the earth. A dense mass approaches it in our

thought experiment. The value of the metric coefficients change at each point in the

concerned field changes.. Due to gravitational effects, even in our classical interpretation,

the shape of the earth’s surface might change due to an interaction between the changes

in the space time curvature and non-gravitational factors like the resistance of the earth’s

crust etc In our “experiment” in the first paragraph we may consider the

coordinates as labels---stickers of different colors at different points on the two planes.

Initially they were on a flat surface. After the gravitational change they lie on a pair of
undulating surfaces. A straight line on some plane becomes a curved line — the

path of a light ray bends and the straight line path of a test particle the Minkowski space

picks up the curved path of a planet!

We may start with a spherical coordinate system describing Schwarzschild geometry. Due to
manifold changes the coordinate planes become curved surfaces. The axes become curved lines
instead of straight lines. Prior to Schwarzchild geometry there could have been some other type
of geometry with global Cartesian or spherical coordinates. The straight line x,yz axis became
curved lines in Schwarzschlild geometry. Old curved lines became strait in the physical sense.
The Euclidean background remains maintained.

Events are Labeled by Coordinate Values

Events are labeled by Coordinate values and not by physical values. The light cone is created by
such coordinate labels. If there is a change in the nature of the manifold the surface of the light
cone will get distorted

Dot product and its invariance

a.b = g,,a’b* = a,b*: Invariant (1)

In the orthogonal system: a.b = g, a*b*

[since g,y =0 ifu #v]

a” and b* are coordinate values of the vectors: vectors/tensors are denoted by coordinate values and
not by physical values.” g,,," pertain to the nature of the space where the objects are situated.

Physical value of a” in orthogonal system :,/g,,a” = a”pp, [\/1g,v| has been implied by /g, ]
Physical value of b* in orthogonal system :,/g,,,b* = b*,,

u u
a"ph b¥ph

h
Jup~9un

a.b = gya'b* =g, = (appropriate sign)a”phb“ph = a,b* (2)

Example for clarifying the sign aspect:For flat space time(With the (+, —, —, —) signature
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a‘uph buph _ ph b° ph a ph b pn phb ph ph b pn

19w === OOJEJgTJr In T 9 e 933 Jo5s Joss

4y @ph Dlpn _ 2o D2ph | oy @Ppn PPpn o .o
SN =T =T )\/| T TR iy R L R e
(3)

Similar extensions

[Appropriate sign has to be taken since \/g_,m is always positive]

The above signifies the MInkowskian nature of the physical quantities a and b.
They agree with the definition of dot product

Now

FH = grAY — 0VAH (4)

The above is in relation to coordinate values

In relation to physical values we may write[orthogonal systems]

FHV = gH (Avl’hysical> — g (Auphysical>
v NEm

0

nb

0

1t

2
—a%,.b
h ph™ 4

3 13
h aphb

But A(coordinate value) is gauge dependent...gauging on A should not alter the physical nature of

FH*Y(which is not violated in the above).

Standard efininition physical value: orthogonal or non orthogonal:

F”‘ph = J9iuJiwF** (5)[allowing summation convention]

Multiplying both sides of (5)by gi,gkv

GiuGiwF* o = VIiuGiev Gin Giew F¥¥ Implies that

9inIivF*pn = \[GiuIrvFir (6)

Define Fy.pn = g#*gkvF,, (7)[allowing summation convention]
FuypnF* pn = \/gmgkaik\/mFaﬁ(&l)

You have in the orthogonal system, i = u = a:andk = v = f§ and

FuypnF* pn = En F*V (8)[summation considered]

[On the left side we have curved space time metric coefficients on the right we don’t have.

[In the orthogonal system:gjj = gi [summation not implied]: this simplifies the rhs of (6.1) causing

ji
cancellation][]

26
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Thus in the orthogonal system the dot product of the physical values is invariant

You may compare equation (8) with the relation a"phb“ph = a,b*

Further investigation of the tensorial nature of F*V ., and Fy,,,..,

Recalling (6)
giugkaikph = giugkaik

And treating F “‘ph as a tensor let us lower its indices :F,.,n = ./ 9iuGrvFix- This agrees with our

definition of Fyy.pn-

Recalling (7) let is raise the indices of F,,.,,n, = g gkvF;,.. Multiplying both sides by g g*” we have

9" 9" Fuvpn = (99 g™ g Fy

Treating ., as a tensor and raising indices ,

Fikph = /g gkvFH*V: agrees with our definition

From relations (5) and (7) the quantities F*V,,,, and F),,,.,,, cannot be directly recognized as tensors

From the theoretical point of view you may take Fik = PiQ¥

We have the following differential equation: d* A — 0¥V A* = P*QV: There two quantities P and Q and
so we can exert choice. But P* and Q*each must transform like a vector

If A transforms like a 4 vector and if P and Q are 4 vectors preserving O*A¥ — 0V A* = P*QVwe have to
write.

(Ao A'™) = 07 (A AP ) = (Ao PM) (I Q)
The above equation will ensure the appropriate transformation properties

[the background system is Euclidean and Lorentz transformation holds for uniform relative motion
between the frames].

F™ is the coordinate value of the vector.
But
Fik _ ai (Akphysical> _ ak (Alphysical>
Gvv BV, g/.tu

Therefore:
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v in ok i AkphySical k Aiphysical
F¥pn = [gtg"| 0| —— | - 0" | —F—
Gvv N

The above is identical with
F”vph — giugkv(auAv _ avAy)

Transformation:

Flik — AiuAkauv

’giugka'ikz /giugkvAi Aka;w
u

\/g/iug/kv\/giugkvplik :\/g'iug'kv\/giugkv[\i Aka/“W
u

’gi,ugRVF’MV — g’iug’kHAiHAka/,W
ph ph

Again:

We have the curved space time transformations for the physical values of F*¥
g'iy and g’y are transformed values of the metric coefficients.

When we consider transformation of tensors we involve only the coordinate values and not the physical
values of the tensor for example we take A" instead of ./g,,, A*
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