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Abstract Multi-dimensional classification (also known variously as multi-
target, multi-objective, and multi-output classification) is the supervised learn-
ing problem where an instance is associated to qualitative discrete variables
(a.k.a. labels), rather than with a single class, as in traditional classification
problems. Since these classes are often strongly correlated, modeling the de-
pendencies between them allows MDC methods to improve their performance
– at the expense of an increased computational cost.

A popular method for multi-label classification is the classifier chains (CC),
in which the predictions of individual classifiers are cascaded along a chain,
thus taking into account inter-label dependencies. Different variant of CC
methods have been introduced, and many of them perform very competitively
across a wide range of benchmark datasets. However, scalability limitations be-
come apparent on larger datasets when modeling a fully-cascaded chain. In this
work, we present an alternative model structure among the labels, such that
the Bayesian optimal inference is then computationally feasible. The inference
is efficiently performed using a Viterbi-type algorithm. As an additional con-
tribution to the literature we analyze the relative advantages and interaction
of three aspects of classifier chain design with regard to predictive performance
versus efficiency: finding a good chain structure vs. a random structure, car-
rying out complete inference vs. approximate or greedy inference, and a linear
vs. non-linear base classifier. We show that our Viterbi CC can perform best
on a range of real-world datasets.
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1 Introduction

Multi-dimensional classification (MDC) is the supervised learning problem
where an instance is associated with multiple qualitative variables, called la-
bels. MDC is also known in the literature as multi-target, multi-output or
multi-objective classification. The task of multi-label classification (MLC) can
be viewed as a particular case of the MDC that only involves binary labels.
There are a vast range of active applications of MLC, including tagging im-
ages, categorizing documents, and labelling video and other media, and learn-
ing the relationship among genes and biological functions (see [10,1,6,9] for
overviews). Note that any MLC dataset can be converted into an MDC dataset
and vice versa, along the same logic that any number has both a binary and
decimal representation: an MDC label taking up to four distinct values, can
be represented equivalently as two binary labels.

In literature, there exists two main strategies for tackling a MDC problem
[10]: direct approach where an algorithm is directly designed or adapted for
handling MDC, or the problem transformation approach where a MDC prob-
lem is converted into a multi-class (single-label) problem. In this work, we
focus on this second class.

A basic transformation approach to MDC is the independent classifiers
(IC) method, (commonly known as binary relevance in the multi-label litera-
ture), which decomposes the MDC problem into a set of standard single-label
classification problems (each label becomes a separate problem) and uses a
classifier for each label variable (e.g., a logistic regressor or a support vec-
tor machine) separately. Unfortunately, although IC has a low computational
cost, it obtains unsatisfactory performance on many data sets and performance
measures, because it does not take into account the dependencies between la-
bels [6,12]. A main challenge in MDC is the design of efficient classification
schemes that can take into account label dependencies and still deal with the
scale of real-world problems.

An improvement over IC is that of classifier chains (CC), which improves
the performance of IC by constructing a sequence of classifiers that make
use of previous outputs of the chain. The original CC method [8] performs a
greedy approximation, and is fast (similar to IC in terms of complexity) but
is susceptible to error propagation along the chain of classifiers.

A CC-based Bayes-optimal method, probabilistic classifier chains (PCC),
was proposed by [2]. However, although it improves the performance of CC,
its computational cost is too large for most real-world applications. Some ap-
proaches have been proposed to reduce the computational cost of PCC at test
time [12,5,3,7], but the problem is still open.

In this paper we introduce a novel method that attain the performance of
PCC, but remains tractable for high-dimensional data sets both at training
and test times. Our approach considers a simpler dependence structure among
the labels. This simplification allows a more efficient exhaustive exploration
of the possible combinations of label values, using the well-known Viterbi
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algorithm [11]. Another advantage of the proposed algorithms is that predictive
performance can be traded off for scalability depending on the application.

2 Problem statement: Multi-Dimensional Classification

Let us assume that we have a set of training data composed of N labelled
examples, D = {(x(n),y(n))}Nn=1, where

x(n) = [x(n)
1 , . . . , x

(n)
D ]> ∈ X = X1 × · · · × XD ⊆ RD

is the n-th feature vector (input), and

y(n) = [y(n)
1 , . . . , y

(n)
L ]> ∈ Y = Y1 × · · · × YL ⊂ NL

+

is the n-th label vector (output), with y
(n)
` ∈ Y` = {1, . . . ,K`}, and K` ∈ N+

being the finite number of classes associated to the `-th label. The goal of
MDC is learning a classification function,1

h = [h1, . . . , hL]> : X → Y .

Let us assume that the unknown true posterior probability density func-
tion (pdf) of the data is p(y|x). From a Bayesian point of view, the optimal
label assignment for a given test instance, x∗, is provided by the maximum a
posteriori (MAP) label estimate,

ŷMAP = hMAP(x∗) = argmax
y∈Y

p(y|x∗), (1)

where the search must be performed over all possible test labels, y ∈ Y .
The MAP label estimate is the one most commonly used in the literature,
although other approaches are possible, as shown in [2]. Unfortunately, the
problem is further complicated by the fact that the true density, p(y|x), is
usually unknown, and the classifier has to work with an approximation, p̂(y|x),
constructed from the training data. Hence, the (possibly sub-optimal) label
prediction is finally given by

ŷ = h(x∗) = argmax
y∈Y

p̂(y|x∗). (2)

Table 1 summarizes the main notation used this work.
Figure 1 clarifies the relationship among MDC, MLC and the ‘standard’

binary and multi-class classification tasks. For instance, in MDC w.r.t. MLC,
there is a higher dimensionality (for the same value of L); MLC deals with
2L possible values, whereas MDC deals with

∏L
`=1K`. Figure 2 depicts an

1 We consider h as a vector because this fits naturally into the independent classifier and
classifier chain context, but this is not universal, and h : X → Y is possible in other contexts
(such as LP)
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Notation Description
x = [x1, . . . , xD]> ∈ X ⊆ RD D-dimensional feature/instance.
y = [y1, . . . , yL]> ∈ Y ⊂ NL

+ L-dimensional label vector.

D = {(x(n),y(n))}Nn=1 Training data set, n = 1, . . . , N .
p(y|x) Unknown true posterior pdf.
p̂(y|x) Empirical pdf obtained by the classifier.
x∗= [x∗1, . . . , x

∗
D]> ∈ X Test feature vector.

h = [h1, . . . , hL]> : X → Y Classification function built from D.
ŷ = h(x) = [ŷ1, . . . , ŷL]> Generic classifier’s output.

Table 1: Main notation.

example of MLC scenario. In multi-class classification, only a single label is
predicted,

h(x) : X ⊆ RD → Y ⊆ N+,

where y ∈ Y = {1, . . . ,K}. If K = 2 the learning problem becomes binary
classification (also known as filtering in the case of textual and web data).
Observe that MDC can be seen as a multi-class problem with

∏L
`=1K` classes.

Each class is denoted as specific sequence of L integers [y′1, . . . , y
′
L]> ∈ Y ⊆ NL

+.
Clearly, this approach becomes quickly unfeasible when L or K` grows.

We have already noted that with K` = 2, for all ` = 1, . . . , L, MDC
becomes MLC. This can also be interpreted as a multi-class problem where the
label takes one of 2L possible values. For instance, in Figure 2 we can interpret
that the hexagons belong jointly to a class 6 (a decimal representation of 110).

K = 2 K > 2
L = 1 binary multi-class
L > 1 multi-label (MLC) multi-dimensional (MDC)

Fig. 1: Different classification paradigms: L is the number of labels and K is
the number of values that each label variable can take.

Fig. 2: Toy example of MDC with K = 2 (then it coincides with MLC, in
this case) possible values for each label and L = 3 labels (thus yj ∈ {0, 1} for
j = 1, 2, 3) and D = 2 features.
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3 Transformation strategies for MDC problem

In literature, a major approach to tackle the MDC problem is that of problem
transformation [10] where a MDC problem is transformed into a multi-class
(single-label) problem and, as a consequence, then a single-label learning al-
gorithm is applied (of which there already exists a plethora of exemplars in
the literature).

3.1 Independent Classifiers (IC)

One simple and well-known procedure is the so-called independent classifiers
(IC) [10,9,8,12]. As the name suggests, given a new instance x∗ each label
y` is classified using a classifier independent from the other labels. Namely,
for each ` = 1, . . . , L a classifier h` is employed defined as (probabilistically
speaking)

ŷ` = h`(x∗) = argmax
y`∈Y`

p̂`(y`|x∗), (3)

so that finally ŷ = [ŷ1, . . . , ŷL] is ŷ = h(x∗) = [h1(x∗), . . . , hL(x∗)]>. This
method is easy to build using off-the-shelf classifiers, but it does not explicitly
model label dependencies, and its performance suffers as a result. In fact, it
assumes complete independence, i.e., it approximates the density of the data
as

p̂`(y|x) =
L∏

`=1

p̂`(y`|x). (4)

Figure 3(a) corresponds to the IC model.

3.2 Classifier Chains (CC)

The classifier chains (CC) method [8] models the correlation among labels
by creating a chain of labels, and using earlier labels as additional feature
attributes for later feature attributes, in a cascade, as shown in Figure 3(b).
Consider the chain rule from probability theory. Given a test instance, x∗, the
true label probability, is

p(y|x∗) = p1(y1|x∗)
L∏

`=2

p`(y`|x∗, y1, . . . , y`−1). (5)

This probabilistic formulation w.r.t. CC was first given by [2] in what they
called probabilistic classifier chains (PCC). Theoretically, label order is irrel-
evant in Eq. (5), as all the label orderings result in the same pdf. However,
since in practice we are modelling an approximation of p (i.e., p̂), label or-
der can be important for attaining a good classification performance (see [7]
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and references therein). So, to make it clear, PCC approximates the true data
density as

p̂(y|x∗) = p̂1(y1|x∗)
L∏

`=2

p̂`(y`|x∗, y1, . . . , y`−1), (6)

where each conditional probability p̂ is learnt by the used classifier during
the training stage, thus effectively constructing a chain of classifiers: the `-th
classifier considers the vector [x∗, y1, . . . , yL]> as its input (i.e., as instance).

PCC carries out an optimal search of Eq. (6) by trialling each possible y
in

ŷ = h(x∗) = argmax
y∈Y

p̂(y|x∗), (7)

The original formulation of CC used a rough but fast greedy approximation
of this where, given a new (test) instance, x∗, CC simply predicts ŷ` from x∗

and all the previous predictions (ŷ1, . . . , ŷ`−1), i.e.,

ŷ` = h`(x∗, ŷ1, . . . , ŷ`−1) = argmax
y`∈Y`

p̂`(y`|x∗, ŷ1, . . . , ŷ`−1). (8)

which essentially means following a single path of labels y greedily down the
chain of L binary classifiers. This is shown in Figure 4 through a simple ex-
ample. Mathematically speaking, CC maximizes separately each conditional
pdf p̂(y`|x∗, ŷ1, . . . , ŷ`−1) (see Eq. (8)), which is a sub-optimal strategy w.r.t.
maximize the joint pdf p̂(y|x∗).

Note that CC and PCC are identical in the training phase. Both can be
represented by Figure 3(b). In [2] an overall improvement of PCC over CC
is reported, but at the expense of a high computational complexity: it is in-
tractable for more than about 10 labels (≡ 210 paths), which represents the
majority of practical problems in the multi-label domain (clearly, the results
can also depend on the chosen label order as in CC). Figure 4 depicts an ex-
ample of inference by using CC and PCC: the red dashed path corresponds to
the best path representing the decision of PCC (i.e., analyzing all the possible
paths), whereas the green dotted path corresponds to the decision of CC.

Several ‘in-between’ methods have been proposed which provide a closer
probabilistic approximation at inference time, while still retaining tractability.
We mention these in the next section.

4 Viterbi Classifier Chain

A number of search variants have been proposed for classifier chains, including:
[3]’s ε-approximate inference, based on performing a depth-first search in the
probabilistic tree with a cutting-off list; ‘beam search’ [5], a heuristic search
algorithm that speeds up inference considerably; and Monte Carlo search [3,
4,7].

In this paper we consider a simplified chain structure, which still takes
in account the label dependence but allows the Bayes-optimal inference in a
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Fig. 3: Graphical models (L = 3) of (a) Independent Classifiers (IC), (b) of Classifier

Chains (CC) and (c) of the Viterbi Classifier Chains (VCC).
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Fig. 4: Example of the
QL

`=1K` = K1×K2×K3 = 2×3×2 = 12 possible paths along the

tree of class labels y` (` = 1, . . . , L = 3). The best path, ŷPCC = [1, 3, 2]>, with probability

0.2160, is shown with dashed red lines. This path represents the decision of PCC. The

suboptimal path ŷCC = [1, 2, 3]> represents the output of CC (dotted green line).

faster and more scalable way than PCC. This simpler graphical model is shown
in Figure 3(c). Namely, given a specific sequence y1, . . . , yL, in this case we
consider the simplified factorization

p̂(y|x∗) = p̂1(y1|x∗)
L∏

`=2

p̂`(y`|x∗, y`−1). (9)

Note that this expression is more sophisticated than Eq. (4) (taking in account
the dependence among labels) and simpler than Eq. (6) (we only consider a
Markov dependence).

In this case, the tree in Fig. 4 can be transformed in a Trellis diagram as
shown in Figure 5. Hence, the goal is to find the optimal label vector (as in
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Fig. 5: Example of Trellis diagram corresponding to VCC, with 3 class labels y` (` =

1, . . . , L = 3) and K1 = 2, K2 = 3, K2 = 2. The best path, ŷV CC = [1, 3, 1]>, with

probability 0.2880, is shown with dashed red lines.

PCC)

ŷ = h(x∗) = argmax
y∈Y

p̂(y|x∗), (10)

where p̂(y|x∗) is given in Eq. (9). In this case, the vector ŷ coincides with
the optimal path in the Trellis diagram in Figure 5 and it is well-known that
this path can be efficiently obtained using the Viterbi algorithm [11]. From
the point of view of Hidden Markov Model (HMM), the states are represented
by the different values that each label can get. The metric of each branch is
defined by p̂`(y`|x∗, y`−1), provided by a multi-class classifier. Observe that
the transition probability p̂`(y`|x∗, y`−1) depends on the index `. Note that,
this can consider this scenario as a special case of a generic HMM since we
always “observe” the same instance x∗, for all ` = 1, . . . , L.

The resulting Viterbi Classifier Chain (VCC) algorithm is summarized in
Table 2.

As the numerical results show, VCC provide a good trade-off between the
description of the label dependence and the scalability of the inference.

In the previous section we mentioned the potential importance of order or
sequence of the chain (in which order the labels appear in the chain, chosen
at training time). We do not focus specifically on this issue, but many of the
same search techniques used at inference time can also be used to search the
space of chain orders. In the experimental evaluation we consider that of Monte
Carlo search, both for existing verities of classifier chains, and our presented
Viterbi classifier chain. This task can be done separately to inference (namely,
at training time).
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1. Initialization:
- Obtain p̂1(y1|x∗) by a multi-class classifier.
- Set δ1(i) = p̂1(y1 = i|x∗) and ψ1(i) = 0 with i = 1, . . . ,K1.

2. Recursion:
For ` = 2, . . . , L :

For j = 2, . . . ,K` :
- Obtain p̂`(y`|x∗, y`−1) by a multi-class classifier.
- Set

δ`(j) = max
1≤i≤K`

δ`−1(i)p̂`(y` = j|x∗, y`−1 = i),

ψ`(j) = arg max
1≤i≤K`

δ`−1(i)p̂`(y` = j|x∗, y`−1 = i).

3. Output (ŷV CC = [ŷ1, . . . , ŷ`, . . . , ŷL]>) :
- ŷL = arg max

1≤i≤K`

δL(i).

- ŷ` = arg max
1≤i≤K`

φL(ŷ`−1).

Table 2: Viterbi Classifier Chain (VCC).

Table 3: Evaluation under Jaccard Index, logistic regression is the base classi-
fier.

Dataset IC CC MCC VCC MsCC VsCC

Music 0.536 5 0.572 2 0.585 1 0.554 4 0.567 3 0.536 5
Scene 0.603 6 0.699 3 0.710 1 0.644 5 0.705 2 0.647 4
Yeast 0.502 6 0.526 1 0.526 1 0.512 5 0.520 3 0.514 4
Medical 0.691 4 0.699 3 0.700 2 0.691 4 0.726 1 0.691 4
Enron 0.337 4 0.354 2 0.355 1 0.337 4 0.351 3 0.334 6
avg rank 5.00 2.20 1.20 4.40 2.40 4.60

Table 4: Evaluation under Jaccard Index, random forest of decision trees as a
base classifier.

Dataset IC CC VCC MsCC VsCC

Music 0.552 5 0.588 3 0.576 4 0.589 2 0.597 1
Scene 0.665 5 0.697 3 0.694 4 0.726 2 0.727 1
Yeast 0.511 5 0.545 3 0.543 4 0.558 1 0.557 2
Medical 0.609 5 0.637 3 0.633 4 0.665 2 0.680 1
Enron 0.484 3 0.466 5 0.471 4 0.488 2 0.489 1
avg rank 4.60 3.40 4.00 1.80 1.20

5 Empirical Evaluation

We use and implement methods in the MEKA framework (http://meka.
sourceforge.com), in a relatively standard setup on a number of commonly-
used multi-label datasets. Details on datasets, evaluation metrics, and other
benchmark methods, can be found in [7]. Here we only display results under the
evaluation metric Jaccard index, 1

N

∑N
i=1

|y(n)∧ŷ(n)|
|y(n)∨ŷ(n)| , but we found no difference

in relative results under other metrics. The methods denoted with ’s‘ trial 50
random chains (i.e., label orders) and elect the best one for inference. Results
are displayed in Table 3 and Table 4, with two different base classifiers (the
individual models for each label).
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6 Discussion and Conclusions

Table 3 indicates that chain connectivity is more important than exact infer-
ence: the fully cascaded CC and MCC outperform VCC, even though VCC is
the only one capable of exact inference (at a cost of less connectivity). Even
VsCC, with chain search, cannot compete with even basic CC. Of course, the
number of extra attributes in the final classifier (corresponding to the number
of incoming links) is D+L−1 in CC, but only D+1 in VCC. We further note
that when searching the chain space (say, by swapping two label indices at
each proposal step like in [7]), VsCC only needs to rebuild the models in the
sub-sequence between the first and last index, whereas MsCC must rebuild all
models to the right of the left-most index; implying a much faster search of
the space of chain-orders.

Nevertheless, even after providing encouraging results on time complexity,
it would be difficult to argue in favor for a Viterbi classifier chain wrt Table 3.
However, when we use a non-linear base learner in Table 4 (namely, random
decision-tree forests), results change markedly: the performance of V(s)CC is
virtually indistinguishable from M(s)CC. By using a stronger base classifier,
dependence among the labels is reduced. In other words, each base model
is able to make a better decision using only the input features and is thus
becomes less-dependent on the other labels as features. Of course, many non-
linear machine learning methods come at a more computationally intensive
cost than more basic linear learners.

In summary, it is an interesting discovery that in multi-label problems,
exact inference does not outperform greedy or approximate inference with
greater connectivity. Nevertheless, when connectivity is limited based on scal-
ability reasons (namely, a large numbers of labels) VCC offers some interesting
options, as it scales linearly with the number of labels, and furthermore major
savings can be made in finding an appropriate chain order. But in this case,
the suitability of the base classifier should be carefully to avoid introducing
dependence inadvertently. Current work has not studied this interaction be-
tween base classifier and chain connectivity and inference, although our results
reveal that it is a fundamental interaction, and should be investigated further
in future work.
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