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Which is the best belief entropy?
Liguo Fei, Yong Deng, Sankaran Mahadevan

Abstract—In this paper, many numerical examples are
designed to compare the existing different belief functions
with the new entropy, named Deng entropy. The results
illustrate that, among the existing belief entropy functions,
Deng entropy is the best alternative due to its reasonable
properties.

Index Terms—Dempster-Shafer evidence theory, Uncertain-
ty measure, belief entropy, Deng entropy.

I. INTRODUCTION

EVIDENCE theory is becoming more and more im-
portant in the field of information fusion. However,

it is an open issue about how to measure the uncertainty
degree in evidence theory. This is a very important work
to measure the uncertainty for estimating the conflict and
combining information among different evidence.

To measure the uncertainty degree in evidence theory,
a number of measurement methods have been devel-
oped by researchers. In [1], Dubois and Prade analyzed
about Yager’s specificity index and the ”possibilistic
entropy” introduced by Higashi and Klir. A probabilistic
interpretation of Yager’s index is provided in that, so,
there is a conclusion that both indices can be applied
to evaluate the amount of imprecision of Shafer’s belief
functions. Höhle [2] proposed the concept of Confusion
to measure the uncertainty degree. Yager [3] introduced
the concepts of entropy and specificity in the framework
of Dempster-Shafer evidence theory. Then to indicate the
quality of evidence. In [4], Klir and Ramer proposed
a new method called a measure of discord, then they
also discussed a measure of total uncertainty, which is
defined as the sum of nonspecificity and discord. Klir
and Parviz [5] introduced a new entropy-like measure as
well as a new measure of uncertainty in Dempster-Shafer
evidence theory. And they argued that this method is the
best one comparing with all the existing measure. In [6],
George and Pal established the need for a new measure
of conflict and followed a fresh approach to achieve the
same. In their work, the average of conflict between
propositions provoids a measure of total conflict in
an evidence. Maluf [7] examined one form of current
development regarding the entropy measure induced
from the measure of dissonance. Entropy measure as
a monotonically decreasing function is proposed in his
paper, symmetrical to the measure of dissonance. In [8],
existing methods and encountered difficulties regarding
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these issues are proposed in evidence theory and pos-
sibility theory. In the recent times, Deng [9] proposed
a new belief entropy named Deng entropy to measure
the uncertainty of the mass functions. In this paper,
all the above methods are applied to several numerical
examples to compare the effectiveness among them.

The paper is organized as follows. The preliminaries
Dempster-Shafer evidence theory and uncertainty mea-
surement methods are briefly introduced in Section 2.
Section 3 presents some numerical examples and com-
pares the different measurement methods. Finally, this
paper is concluded and discussed in Section 4.

II. PRELIMINARIES

A. Dempster-Shafer evidence theory

Dempster-Shafer evidence theory (D-S theory) is pro-
posed by Dempster and developed later by Shafer [10],
[11]. This theory extends the elementary event space
in probability theory to its power set named as frame
of discernment and constructs the basic probability as-
signment(BPA) on it. In addition, there is a combination
rule presented by Dempster to fuse different BPAs. In
particular, D-S theory can definitely degenerate to the
probability theory if the belief is only assigned to single
elements. Therefore, the D-S theory is the generalization
of probability theory with the purpose of handling un-
certainty and is widely used to uncertainty modeling
[12], decision making [13], [14], information fusion and
uncertain information processing [15]. The basic defini-
tions about D-S theory is shown as follows:

1) Frame of discernment: D-S theory supposes the defi-
nition of a set of elementary hypotheses called the frame
of discernment, defined as:

θ = {H1, H2, ..., HN} (1)

That is, θ is a set of mutually exclusive and collectively
exhaustive events. Let us denote 2θ the power set of θ.

2) Mass functions: When the frame of discernment is
determined, a mass function m is defined as follows.

m : 2θ → [0, 1] (2)

which satisfies the following conditions:

m(φ) = 0 (3)

∑
A∈2θ

m(A) = 1 (4)

In D-S theory, a mass function is also called a basic
probability assignment (BPA).
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3) Belief and plausibility functions : The belief function
Bel is defined as:

Bel(A) = ∑
B∈A

m(B) (5)

The plausibility function Pl is defined as:

Pl(A) = ∑
B
⋂

A 6=φ

m(B) (6)

and
Pl(A) = 1 − Bel(Ā), Pl(φ) = 0 (7)

where Ā = Ω - A. Obviously, Pl(A) ≥ Bel(A), these
functions Bel and Pl are the lower limit function and up-
per limit function of the probability to which proposition
A is supported, respectively.

4) Dempster’s rule of combination: In a real system,
there may be many evidence originating from different
sensors, so we can get different BPAs. Dempster [11] pro-
posed orthogonal sum to combine these BPAs. Suppose
m1 and m2 are two mass functions. The Dempster’s rule
of combination denoted by m = m1

⊕
m2 is defined as

follows:

m(A) =
∑B

⋂
C=A m1(B)m2(C)

1 − K
(8)

with
K = ∑

B
⋂

C=φ

m1(B)m2(C) (9)

Note that the Dempster’s rule of combination is only
applicable to such two BPAs which satisfy the condition
K < 1.

B. Weighted Hartley entropy

The non-specifity in D-S theory can be described by
Cardinality-Based based on Hartley entropy. Dubois et
al. defined a kind of consonant belief structure, and they
proofed the plausibility of this structure is a possibility
measure. The consonant means the focal elements in D-
S theory is a group nested Sets, such as B1 ⊃ B2 ⊃
... ⊃ Bq. Let’s suppose that µ is possibility measure,
then µ({xi}) = Poss({xi}) = αi, if xi has the order
αi ≥ αj, (i > j). So, αn = 1. Let’s suppose Bj = {xi|i =
j, j = 1, ..., n}, then it’s the consonant structure, if the
BPA is: m(Bi) = αj − αj−1, j = 1, 2, ..., n, supposing that
α0 = 0, we have that:

Pl({xi}) =
j

∑
i=1

m(Bi) =
j

∑
i=1

(αj − αj−1) = αj (10)

Based on this work, Dubois and Prade [1] generalized
the uncertainty into D-S theory:

NDP(m) = ∑
A⊆X

m(A)log(|A|) (11)

It is a kind of weighted Hartley entropy of total focal
elements. m will degenerate to a probability distribution
when the BPA is only assigned to single elements.

C. Conflicting model

It becomes more and more important to measure the
conflict in D-S theory between different mass functions.
Some uncertainty models are proposed based on the
conflicting model, including the confusion proposed by
Höhle [2], Dissonance introduced by Yager [3], Discord
presented by Klir and Ramer [4], and Strife defined by
Klir and Pariz [5]. Their definitions are shown as follows.

Hohle : [2] CH(m) = − ∑
A∈F

m(A) log Bel(A) (12)

Yager : [3] CY(m) = − ∑
A∈F

m(A) log Pl(A) (13)

Klir&Ramer : [4] CKR(m) = − ∑
A∈F

m(A) log ∑
B∈F

m(B)
|A

⋂
B|

|B|
(14)

Klir&Parviz : [5] CKP(m) = − ∑
A∈F

m(A) log ∑
B∈F

m(B)
|A

⋂
B|

|A|
(15)

George and Pal [6] proposed a similar model:

CGP(m) = ∑
A∈F

m(A) ∑
B∈F

m(B)[1 −
|A

⋂
B|

|A
⋃

B|
] (16)

D. Shannon entropy-like model

There exist some researchers constructed uncertainty
model based on Shannon entropy-like model, for exam-
ple, Maluf [7] determined the evidence entropy model
as follows.

CM = − ∑
A∈F

Pl(A) log Bel(A) (17)

In addition, Klir [8] presented a new model as follows.

CK(Bel) = −
1

c ∑
A∈F

Bel(A) log Bel(A) + Pl(A) log Pl(A) (18)

where ∀A ∈ F, c = ∑A∈F[Bel({A}) + Pl({A})].

E. Deng entropy

Deng entropy [9] is presented to measure the un-
certainty degree of basic probability assignment as a
generalized Shannon entropy in D-S evidence theory.
Deng entropy can be described as follows

Ed = −∑
i

m(Fi) log
m(Fi)

2|Fi| − 1
(19)

where Fi is a proposition in mass function m, and |Fi|
is the cardinality of Fi. Deng entropy is similar with
Shannon entropy in form. The difference is that the belief
for each proposition Fi is divided by a term (2Fi − 1)
which represents the potential number of states in Fi

(The empty set is not included). So Deng entropy is
the generalization of Shannon entropy, which is used to
measure the uncertainty degree of BPA [9].
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Specially, Deng entropy can definitely degenerate to
the Shannon entropy if the belief is only assigned to
single elements. The process is shown as follows.

Ed = −∑
i

m(θi) log
m(θi)

2|θi| − 1
= −∑

i

m(θi) log m(θi)

(20)

III. EXAMPLES AND COMPARISON

Example III.1. Given a frame of discernment X with 15
elements which are denoted as element 1, element 2, etc. A
mass function is shown as follows.

m({3, 4, 5}) = 0.05, m({6}) = 0.05, m(A) = 0.8, m(X) = 0.1

Figure 1 lists various uncertainty when A changes, which
is graphically shown in Figure 2. The results shows that
the Deng entropy and the Weighted Hartley entropy of m
increases monotonously with the rise of the size of subset
A. However, others uncertainty measurement methods are
declining or changing irregularly. The dash area of Figure
1 represents the irrationality of uncertainty measurement
methods. It is rational that the entropy increases when the
uncertainty involving a mass function increases. So, the con-
clusion can be come to from Example III.1 that Deng entropy
and Weighted Hartley entropy have a good performance in
measuring the uncertainty.

      Case 

Uncertainty 

Case1 

A={1} 

Case2 

A={1,2} 

Case3 

A={1,2,3} 

Case4 

A={1,…,4} 

Case5 

A={1,…,5} 

…. Case11 

A={1,…,11} 

Case12 

A={1,…,12} 

Case13 

A={1,…,13} 

Case14 

A={1,…14} 

 

 Weighted Hartley entropy[1] 0.4699 1.2699 1.7379 2.0699 2.3275  3.2375 3.3379 3.4303 3.5158  

 Confusion[2] 0.6897 0.6897 0.6897 0.6897 0.6198  0.5538 0.5538 0.5538 0.5538  

 Dissonance[3] 0.3953 0.3953 0.1997 0.1997 0.1997  0.0074 0.0074 0.0074 0.00074  

 Discord[4] 0.6469 0.6374 0.4914 0.4356 0.3934  0.2685 0.2687 0.2682 0.2670  

 Strife[5] 0.6538 0.6137 0.4876 0.4157 0.3639  0.1574 0.1487 0.1404 0.1326  

 Conflict between propositions[6] 0.3317 0.3210 0.2943 0.2677 0.2410  0.1959 0.1877 0.1791 0.1701  

 Monotonically decreasing function[7] 1.5863 1.5863 5.0600 5.0600 4.9769  8.3637 8.3637 8.3637 8.3637  

 Imprecise probabilities[8] 0.4019 0.4019 0.2507 0.2507 0.2365  0.1203 0.1203 0.1203 0.1203  

 Deng entropy[9] 2.6623 3.9303 4.9082 5.7878 6.6256  11.4617 12.2620 13.0622 13.8622  

 

Fig. 1. Uncertainty of different methods by changing the Size of A, and
the dash area denotes the irrationality of corresponding uncertainty
measurement methods

Example III.2. Given a frame of discernment X =
{a1, a2, · · · , aN}, let us consider three special cases of mass
functions as follows.

m(X) = 1.

Figure 3 lists the uncertainty change with N, as shown in
Figure 4.

It can be seen that all the listed method except Deng entropy
and Weighted Hartley entropy obtain the uncertainty is 0 from
Figure 3. The irrationality also can be found in Figure 4.
So, the same conclusion is that Deng entropy and Weighted
Hartley entropy do a good job in measuring the uncertainty
in Example III.2.
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Fig. 2. Comparing uncertainty measurement methods by changing
the Size of A

      N 

Uncertainty 

N = 1 N = 2 N = 3 N = 4 N = 5 … N = 16 N = 17 N = 18 N= 19 N = 20  

 Weighted Hartley entropy[1] 0 1 1.5850 2 2.3219  4 4.0875 4.1699 4.2479 4.3219  

 Confusion[2] 0 0 0 0 0  0 0 0 0 0  

 Dissonance[3] 0 0 0 0 0  0 0 0 0 0  

 Discord[4] 0 0 0 0 0  0 0 0 0 0  

 Strife[5] 0 0 0 0 0  0 0 0 0 0  

 Conflict between propositions[6] 0 0 0 0 0  0 0 0 0 0  

 Monotonically decreasing function[7] 0 0 0 0 0  0 0 0 0 0  

 Imprecise probabilities[8] 0 0 0 0 0  0 0 0 0 0  

 Deng entropy[9] 0 1.5850 2.8074 3.9069 4.9542  16.00 17.00 18.00 19.00 20.00  

 

Fig. 3. Uncertainty of different methods by changing N, and the dash
area denotes the irrationality of corresponding uncertainty measure-
ment methods
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Fig. 4. Comparing uncertainty measurement methods by changing N

Example III.3. Given a frame of discernment X =
{a1, a2, · · · , aN}, let us consider three special cases of mass
functions as follows.

m(a1) = m(a2) = · · · = m(aN) = 1/N.

Their associated Deng entropies change with N, as shown
in Figure 6.

It is obvious that the Weighted Hartley entropy method
obtains the uncertainty keeps 0 with the change of N from
Figure 5. But others method obtain the reasonable results from
Figure 5-6. From this example, the conclusion can be reached
that Weighted Hartley entropy method losed efficacy in some
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cases. However, only the Deng entropy keeps good performance
without exception.

      N 

Uncertainty 

N = 1 N = 2 N = 3 N = 4 N = 5 … N = 16 N = 17 N = 18 N= 19 N = 20  

 Weighted Hartley entropy[1] 0 0 0 0 0  0 0 0 0 0  

 Confusion[2] 0 1 1.5850 2 2.3219  4 4.0875 4.1699 4.2479 4.3219  

 Dissonance[3] 0 1 1.5850 2 2.3219  4 4.0875 4.1699 4.2479 4.3219  

 Discord[4] 0 1 1.5850 2 2.3219  4 4.0875 4.1699 4.2479 4.3219  

 Strife[5] 0 1 1.5850 2 2.3219  4 4.0875 4.1699 4.2479 4.3219  

 Conflict between propositions[6] 0 0.5 0.6667 0.7500 0.8000  0.9375 0.9412 0.9444 0.9474 0.9500  

 Monotonically decreasing function[7] 0 1 1.5850 2 2.3219  4 4.0875 4.1699 4.2479 4.3219  

 Imprecise probabilities[8] 0 1 1.5850 2 2.3219  4 4.0875 4.1699 4.2479 4.3219  

 Deng entropy[9] 0 1 1.5850 2 2.3219  4 4.0875 4.1699 4.2479 4.3219  

 

Fig. 5. Uncertainty of different methods by changing N, and the dash
area denotes the irrationality of corresponding uncertainty measure-
ment methods
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Fig. 6. Comparing uncertainty measurement methods by changing N

IV. CONCLUSION AND DISCUSSION

According to the problem how to measure uncertainty
in evidence theory, in this paper, the main existing
methods are introduced and analyzed. Some numerical
examples are defined to comparing the effectiveness of
different approaches. The conclusion can be obtained
that the new entropy, named Deng entropy is a effective
means for measuring the uncertainty in evidence theory
from the experimental results.
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