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Abstract. In this paper, random dynamic systems theory is applied to4

time series (∆t = 5 minutes) of measurement of water level, W , tempera-5

ture, T , and barometric pressure, P , in sea dikes. The time series were ob-6

tained from DDSC and are part of DMC systems dike maintenance program7

of the Ommelanderzeedijk in northern Netherlands. The result of numeri-8

cal analysis of dike (W,T, P ) time series is that after the onset of a more or9

less monotone increase in barometric pressure, an unexpected relatively sharp10

increase or decrease in water level can occur. The direction of change is re-11

lated to random factors shortly before the onset of the increase. From nu-12

merical study of the time series, we found that ∆Wmax ≈ ±0.5 mNAP1.13

The randomness in the direction of change is most likely explained by the14

random outcome of two competitive processes shortly before the onset of a15

continuous barometric pressure increase. The two processes are pore pres-16

sure compaction and expulsion of water by air molecules. An important cause17

of growing barometric pressure increase can be found in pressure subsidence18

following a decrease in atmospheric temperature. In addition, there is a di-19

urnal atmospheric tide caused by UV radiation fluctuations. This can give20

an additional ∆Ptide ≈ ±0.1 kPa barometric fluctuation2 in the mid lati-21

tudes (30◦N − 60◦N).22
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1. Introduction

Random dynamic theory is the stochastic variant of the study of deterministic dynamic23

systems. The theory of random dynamic systems (RDS) extends and unites probability24

theory and dynamical system theory Arnold [1998]. In an RDS model the ergodic theorem25

is involved. Its foundation is in stochastic differential equations (SDE) and/or random26

differential equations (RDE). On page 76-77 of Chueshov [2001] the relation between27

stochastic and random differential equations in the Wong-Zakai theorem is presented.28

The RDS is in fact the solution (a solution) of the SDE or RDE and shows interesting29

features such as absorbing sets and/or attractor sets in the solution space of the differential30

equation. There is a vast literature on attractor sets. We mention e.g. Cao [2010], Crauel31

[2001], Gess [2013], Crauel [1997], Crauel [1994], Chueshov [2001] and Arnold [1998]. In32

the present analysis we will not go into the possibility of attractor sets in the RDS model33

of water content data. However, the behavior of the data might possibly be understood34

in terms of attractor sets and much of our theoretical concepts can be found in the cited35

literature on attractors.36

The theoretical underpinning of the present application of RDS to time series in dikes37

can be found in the description of stochastic porous media and its nonlinear diffusion38

processes Hilfer [2000], Gess [2011]. Our data from the DMC system of the Omme-39

landerzeedijk (sea dike) lacks sufficient spatial differentiation in order to check the theo-40

retical assumption thoroughly. Nevertheless, given the nature of the time series, stochastic41

porous media seem to make sense.42
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Before we enter the details of our model it is noted here that there is equivalence43

between models employing Markov chains and RDS modeling of time series in dikes. This44

is demonstrated in theorem 2.1.4, page 53 Arnold [1998]. Hence, models of dike behavior45

that may appear very different from our present stochastics are still closely associated to46

it. For a discussion of the associated topic of measure attractors and Markov attractors47

see Crauel [2008].48

The essence of Random Dynamics is a functional operator ϕ(t, ω), parametrized with49

time t ∈ T and elementary random events ω ∈ Ω on some initial value x of states-50

pace resulting in the (time series) solution xt(ω) over a measurable dynamic system, DS,51

(Ω,F ,P, (θτ )τ∈T). We have the sample space denoted by Ω and ω ∈ Ω. θtω = ωt is the52

probability process at time t ∈ T, with T ⊂ R a time interval. In the paper we follow53

the general custom to have a time dependence indicated by an index, see e.g. Arnold54

[1998]. The θt is measurable in the probabilistic sense and θ0 = id the identity oper-55

ation. The semi flow property θs+t = θs ◦ θt, with ◦ the (topological) composition of56

θ operators, stands at the basis of the RDS. See Arnold [1998] page 536. A semi flow57

ensures a consistent probability process with a propagation in time but independent of58

time. Perhaps that a many sided dice with temperature and pressure on each side of59

the dice is a good approximative concept to understand a (discrete) measurable dynamic60

system of ω ∼ (T, P ) time series. Note for completeness that the ∼ indicates a relation,61

it is not a proportionality. If ω stands for the outcome of a throw of a dice at t = 0, then62

θtω stands for the outcome of a throw t seconds later. Furthermore, F is the associated63

σ-algebra and P is the θ independent probability measure over F . The θtω represents the64

θtω ∼ (Tt, Pt) time series.65
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An RDS functional transformation operator of the initial x has to follow certain rules.66

A random dynamical system with time domain T and statespace X, refers to a pair67

(θ, ϕ) consisting of a measurable dynamical system DS(Ω,F ,P, (θτ )τ∈T) and a cocycle68

ϕ : T × Ω × X → X. The reader is referred to Arnold [1998] and Chueshov [2001] for69

more details. If one holds the RDS ϕ(t, ω) then one holds a solution to the SDE or RDE.70

We quote here the important cocycle property of the RDS ϕ71

ϕ(t+ s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω) (1)72

In the cocycle for ϕ the ”echo” of the semiflow in the DS(Ω,F ,P, (θτ )τ∈T) shows. We may73

translate it such that the statespace control variables are consistently influenced in their74

temporal changes by the random fluctuations in the DS.75

In the present case we are interested in the effect of random fluctuations in causal vari-76

ables, here, temperature and barometric pressure time series on the control variables, here77

the time series of water content in a dike. In our study we employ, initially, temporal ran-78

dom differential equations in a continuous time domain. The ω ∼ (T, P ) dice is therefore79

only a conceptual approximation containing the measured time series. The continuous80

development can be approximated with linear interpolation. The DMC systems configura-81

tion is such that there are two water level measurement series Wt(ω) = (W1,t(ω),W2,t(ω))82

and two temperature measurements in the embankment of the dike T = (T1, T2). There83

is only one barometric pressure time series Pt.84

d

dt
Wt(ω) = f(t, ω,Wt(ω)) (2)85

and ω ∼ (T1, T2, P ). The RDS can be written as, ϕ(t, T1, T2, P )(W0). In our discussion86

we often will employ the equivalent ϕ(t, ω)(x) or even the ϕ(t, ω, x) notation when it suits87
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the discussion. The difficulty of (2) lies in the fact that the progresion of ω has important88

influence on the ϕ but the time change of ω is not a simple function of time but instead89

is driven by a measurable dynamic system operator θt ”in time”.90

2. A cocycle from a (W1,W2, T1, T2, P ) RDE ”Ansatz”

2.1. ω ∈ Ω dependence

Starting from the general form in (2) it is a long way to reach a cocycle ϕ such as in91

(1) given the data in time series (W1,W2, T1, T2, P ). The proces to reach a cocycle ϕ is92

to simply start with a linear approximation to the possible SDE(s) or RDE(s) behind the93

(W1,W2, T1, T2, P ) time series. If we admit in the Ansatz linearity then looking at (2) the94

f on the right hand side of (2) is a 1× 2 linear vector function. In the Asatz we may take95

e.g.96

f(t, ω, xt(ω)) = M(ω)xt(ω) + b(ω) (3)97

Here, M(ω) is a 2× 2 matrix depending on ω and the time series xt(ω) is a 1× 2 vector98

∼ (W1,t,W2,t). The t dependence of f resides in this Ansatz form in the xt. The b(ω) is99

a constant-of-time 1× 2 vector.100

Let us, for the sake of the example in the computation, first look at the estimation of101

the differential equation for W1,t. Then, with the discrete time series in the function f a102

a1 multiplication for x1,t ∼ W1,t and a2 for x2,t ∼ W2,t, together with b1 are estimated with103

the use of the ”glm” statistical estimation function from R. Because we may note that104

a1 and a2 are estimated coefficients and not functions we may use the aj, (j = 1, 2), in a105

further attempt to create an Ansatz for matrix M and vector b. In fact, in this particular106

Ansatz, we concentrated on M = M(ω) and note that ω ∼ (T1, T2, P ) without further107

”periodicity” data such as sea tide or rainfall or.. . Although we had no further periodicity108
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data it is wise to employ ”time” as an indicator for periodicity. All the more because the109

ϕ was erected for N = 100 sample points of the time series prior to a selected sample110

point (corresponding to a certain date-time label that can be selected as one pleases in111

the numerical experiments). For completeness, N = 100 consecutive data points were112

used showing time-date labels less than the sampled starting point are employed.113

Hence, if the aj are used as guiding lines for the function M(ω) then in a linear esti-114

mation the size relevant coefficients for ω ∼ (T1, T2, P ) are influenced by t. There is of115

course no random variable ”time” so in random studies time resumes its basic role as an116

integration variable in the algorithm and is neglected as random factor. We then aim to117

minimalize with least squares the functional relation for (c1, c2, c3, d) coefficients in118

S(c1, c2, c3, d) =
N∑
n=1

{â1 − u1(P ) + (c1u2(T1) + c2u3(T2) + c3u4(t) + d)}2 (4)119

The functions uk, with k = 1, 2, 3, 4 are transformations of (P, T1, T2, t), introduced for120

computational purposes. The â1 is the size N = 100 array containing the glm estimated a1121

and we assume that the (c1, c2, c3, d) numerically are taken in relation to a unit weighted122

barometric pressure in the linear Ansatz function. Of course, some criticism may be raised123

against this method of estimation but we note that we do not pretend to hold the final124

truth about the random differential equation generating the N = 100 time series with the125

Ansatz. Moreover, we note that for each next N = 100 an in principle, different RDE or126

SDE is allowed to generate the time series (W1,W2, T1, T2, P ).127
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2.2. Ansatz ϕ

The next step is to formally solve the differential equation that was more or less patched128

together from the (W1,W2, T1, T2, P ) time series data. If we look at x1,t we then may notice129

d

dt
xt = M1,1(ω)x1,t +M1,2(ω)x2,t + b1(ω) (5)130

The b1(ω) in (5) stays a glm estimate, hence a number not a ”function”, in this Ansatz.131

The M coefficients can be estimated such as in (4). The equation in (5) can be formally132

solved with basic means. This makes our employed algorithm at that point fairly easy. It is133

noted that ω may progress in time but is not a function of time. Suppose Rt = M1,2x2,t+b1134

where x2,t can be obtained from W2,t. Then the solution for some arbitrary N = 100135

consecutive sample points equals136

x1,t(ω) = eM1,1(ω)t

(
x1,t0 +

∫ t

t0

Rτe
−M1,1(ω)τdτ

)
= ϕ̃(t− t0, ω)(x1,t0) (6)137

Here, ϕ̃(t− t0, ω)(x1,t0) is the initial estimate from the Ansatz of the RDS. We note that138

ϕ̃(0, ω) = 1 for arbitrary ω ∈ Ω. In our computations we have ϕ̃ as a multiplication of the139

initial x1,t0 . So, ϕ̃(t− t0, ω, x1,t0) = ϕ̃(t− t0, ω)(x1,t0) = ϕ̃(t− t0, ω) · x1,t0 . The separator140

dot between ϕ̃(t − t0, ω) and x1,t0 that indicates the multiplication will be suppressed in141

the following. It is noted that higher Taylor terms can provide a more complete generator142

ϕ̃ function.143

3. Cocycle ϕ

3.1. Preliminaries

The next obvious question to be raised is of course whether or not we have a cocycle ϕ.144

Given the patchwork employed in the Ansatz we cannot expect that our multiplication145

function from (6) has the cocycle property formulated in (1). Furthermore we note that146
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in the algorithm that we employed the ω was, similar to time, an index to a matrix147

Φ. The multi indexed matrix Φ was supposed to have N × N × N entries where Φ :148

Tdisc×Ωdisc×Ωdisc → R. Note, Tdisc is the discrete series of times (steady growth with 5149

minute interval) and Ωdisc based on the measured triples (T1, T2, P ). The concept of two150

ω indices is a compromise between computational capacity and the wish to have ”other151

than measured” combinations between barometric pressure P on the one hand and in-dike152

temperature pairs (T1, T2) on the other. So in the computations we have the water level153

estimated generator ϕ̃(t− t0, ω, ω′) expressed in the discrete representation of the matrix154

Φ(tn, o1, o2) and tn = 1, 2..N , together with, o1 and o2 in 1, 2, ...N . If the need is there to155

obtain a function from Φ then cubic spline interpolation functions from R in addition to156

R’s numerical integration routines are employed.157

3.2. Transformation to a.s. cocycle

Obviously the discrete Φ and its continuous (interpolated) equivalent ϕ̃ from the Ansatz158

are not cocyclic. Let us present the continuous form testing parameter and describe the159

functional transformations leading to an ”almost sure” cocycle. Suppose we define160

Uk
s (t, ω) =

ϕkλ(t+ s, ω)

ϕkλ(t, θsω)ϕkλ(s, ω)
(7)161

The ω represents the two probability processes, the index λ on the phi shows linear162

transformation while the superscript k = 1, 2... indicates the number of transformations163

taken. We fix an arbitrary initial time in the N = 100 array to be s. If we test it in the164

discrete space (i.e. based on Φ ) we check whether165

1

N3

N∑
n=1

N∑
o1=1

N∑
o2=1

Uk
s (tn, o1, o2) ≈ 1 (8)166
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together with the check if the standard deviation over tn, o1 and o2, i.e. a N3 size array,167

σU , is ”small enough”. In the practice of our computations thus far (8) was always very168

closely met and we also found that always σU < 1, ranging from σU ≈ 0.6 to σU ≈ 1×10−5.169

On average we see σU ≈ 0.001 to 0.003. Randomly selecting t and s indices in the Φk
λ170

showed that the cocycle with the stopping criterion (8) and σU < 1, is ”almost surely”171

perfect.172

We note that there is the danger of a meaningless perfect cocycle where U = 1/(1 · 1).173

It is noted that therefore the variance of the U array, defined in (7), must be unequal174

to zero. Up until now we did not find any cocycle U such that all Φ entries are almost175

equal to unity. However, there are in the final Φ matrix not too large sections where176

1 is closely approximated from below and from above. Considering the approximative177

perfection measure we may conclude that in most of the important computations, there178

is no transformation to the trivial cocycle. This numeric fact adds to the claim of ±0.5179

mNAP variations at some sample point instances of the time series180

3.3. The reason for the cocycle

Apart from the existence of the attractor set which needs a cocycle projection between181

causal variables T and P and control variables W , there is another reason for insisting on182

a cocycle structure. The almost sure perfect non-trivial cocycle is the hallmark for the183

existence of an SDE or RDE. In Arnold [1998] in Theorem 2.2.13 on page 66 and also184

in Theorem 2.3.30 on page 87, it is demonstrated that a perfect cocycle is 1-1 related to185

either a random differential equation or a stochastic differential equation.186

Hence we conclude that starting from an imperfect linear Ansatz and demonstrating187

numerically that an a.s. perfect cocycle can be obtained which is not by necessity trivial,188

D R A F T February 2, 2016, 3:37pm D R A F T



GEURDES, J.F.: RANDOM DYNAMICS OF DIKE TIME SERIES. X - 11

we have an equivalent description of the dike time series as if we would have done an a.s189

correct guess at the initial SDE or RDE that generates the time series (W1,W2, T1, T2, P )190

for the N = 100 data points.191

In other words, we have a valid model in Φk
λ or its continuous equivalent ϕ(t, ω). Hence,192

we are allowed to meaningfully ”play” with the causal variables to see what will happen193

in the development of the water level time series.194

4. Barometric pressure exercises improving the functional form of the cocycle

The variable selected for further numeric experimentation is barometric pressure. Nu-195

merical experiments indicated an interesting phenomenon associated to the possibility196

to maintain a cocycle Φ, suppressing the λ and k indices, after manipulation with the197

pressure time series. In the first place the temporal index of Φ(tn, o1, o2) is ”mixed” with198

the time index of the barometric pressure, P [n] = P (tn) = Ptn . When nothing is changed199

then after cocycle transformation we see the relation in figure - 1. [Insert figure 1 about200

here.] So, using the array P [ ] = AtPressure[ ] to match the time index of Φ the following201

transformation numerical exercise with the data can be performed.202

for(o1 in seq(1, N)){
for(o2 in seq(1, N)){

as.function(fPHI < −splinefun(P [ ],Φ[, o1, o2],
method = c(”fmm”) , ties = mean))

for(n in seq(1, N)){
Φ′[n, o1, o2] < −fPHI(P ′[n])

}
}

}

(9)203

Starting from the ”raw” model and using this transformation, it is now possible to perform204

numerical experiments with uniformly varying the barometric pressure. Referring to (9),205

P ′[n] = P [n] + δP , for n = 1, 2...N together with the cubic spline interpolation, fmm206
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method, a new matrix Φ′(tn, o1, o2) is created. Initially δP added uniformly 0.5 kPa to207

the Ptn time series, n = 1, 2, ...N .208

Subsequently it was checked whether this new Φ′ obtained from the uniform transfor-209

mation P ′ = P + 0.5 could, again, be transformed to an a.s. cocycle. This numerical210

hypothesis was correct. For Φ′ an equivalent of (8) for each initial sample point, using211

N = 100 data points consecutively before the sample point, turned out to be valid. Here212

the monotinicty in sample point Nsmp = 3130 is presented in figure-2 [Insert figure-2 about213

here.]. Moreover, for the associated standard deviation for each sampled starting point214

in time, again based on N = 100 consecutive data points before sample point, we found215

σU ′ < 1. The transformation of the Φ - barometric pressure relation was however remark-216

ably changed into a more or less monotone decreasing or increasing relation in pressure217

and ϕ(·, ω). The next step was to subtract again δP = 0.5 kPa and to see if we then218

returned to the original Φ - barometric pressure relation after cocycle transformation.219

The outcome of this numerical experiment was that the subtraction of δP = 0.5 kPa220

after the addition of δP = 0.5 kPa in all cases provided an a.s. perfect non-trivial221

cocycle. In addition, the form of the Φ - barometric pressure relation again in all cases222

became increasingly more monotone, or what is the same, a function of C∞(R). It also223

showed either an initial increase or decrease in the initial part of Φ versus barometric224

pressure P function. The result for the next transformation step can be found in figure -3225

[Insert figure-3 about here.]. This monotonicity plus initial behavior remains more or less226

undisturbed by the ”factor” ω, described by o1 and o2 indices in the matrix. Although it227

has to be noted that every now and then, for small jumps along the y-axis representing the228
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ϕ, the initial increase turned into initial decrease for the initial section of the Φ(·, o1, o2)229

versus barometric pressure P (·) relation when the (o1, o2) pair changed.230

Because we have an a.s. perfect non-trivial cocycle in the numerics it can be claimed231

that the monotone relation between Φ, hence ϕ, and barometric pressure also describes232

a solution of the hypothetical SDE/RDE behind the time series (W1,W2, T1, T2, P ). This233

claim, again, is based on Arnold [1998], Theorem 2.2.13 on page 66 and Theorem 2.3.30234

on page 87.235

5. Random behavior after monotone increase in barometric pressure

In this section we study the importance of random factors in the prediction of increase236

or decrease of water level in monotone pressure increase.237

5.1. Mathematical preliminaries

Given the numerical proof of an a.s. description of a SDE responsible for the time series238

when we have an a.s. perfect non-trivial cocycle ϕ, we are allowed to formally write a239

Stratonovich SDE associated to (W1,W2, T1, T2, P )t, t ∈ T. Hence, in x notation240

dxt = F (xt, ◦dt) (10)241

Here it is important to note that the right hand side of (10), i.e. the F (xt, t, ω) is a242

semi martingale helix, see Arnold [1998] page 78 definition 2.3.15 and page 74 definition243

2.3.8 for the forward version. For our purpose we may state that a semi martingale helix244

contains a deterministic part (bounded variation) and a probabilistic part (martingale). A245

solution of the Stratonovich SDE in (10) also is a semi martingale as can be seen from the246

forward Stratonovich integral (Arnold [1998] page 81) from the SDE. We have formally247
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for initial x248

Gs(x, t, ω) =

∫ t

s

Fs(ϕs,u(ω)x, ◦d+u) (11)249

In this equation the compound notation ϕs,u(ω) = ϕ(u, ω) ◦ ϕ(s, ω)−1 and Fs(·, t, ω) =250

F (·, t, ω) − F (·, s, ω) is used. Because, ϕ is the RDS generator function related to the251

solution of the SDE, we may write for initial x252

Gs(x, t, ω) = ϕ(t, ω) ◦ ϕ(s, ω)−1x− x (12)253

which also reads, Gs(x, t, ω) = ϕs,t(ω)x− x. Interestingly, Arnold [1998] on page 88 also254

formulates the ”inverse” integration, with, again, x initial value of the x time series,255

Fs(x, t, ω) =

∫ t

s

Gs(ϕs,u(ω)−1x, ◦d+u) (13)256

If we then in a meaningful sense want to use the right hand of (12) into the Stratonovich in-257

tegral of (13) then let us make use of a notational device 1 ((ϕs,u(ω)y − y), ◦d+u) referring258

to the right hand side of Gs(y, ◦d+u) fully expressed in (12). So, e.g.
∫ t
s

1(f(u, ω), ◦d+u)259

is the Stratonovich integral of a semi martingale helix F (f(u, ω), u, ω) = f(u, ω) inte-260

grated for s ≤ u ≤ t. We note that because Stratonovich makes use of triangular area,261

when a nonstochastic function is integrated, a Stratonovich integral closely approximates262

a Rieman outcome.263

Returning to (11) we see that using (12)264

ϕs,t(ω)x− x =

∫ t

s

Fs(ϕs,u(ω)x, ◦d+u) (14)265

whereas Fs(ϕs,u(ω)x, ◦d+u) in (14) reads according to (13)266

Fs(ϕs,u(ω)x, u, ω) =

∫ t

s

Gs(ϕs,v(ω)−1 ◦ ϕs,u(ω)x, ◦d+v) (15)267
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If we take z = ϕs,u(ω)x, then268

Fs(z, u, ω) =

∫ t

s

Gs(ϕs,v(ω)−1z, ◦d+v) (16)269

or in the 1(·, ..) notation270

Fs(z, u, ω) =

∫ u

s

1
(
(ϕsv(ω) ◦ ϕs,v(ω)−1z − ϕs,v(ω)−1z), ◦d+v

)
(17)271

Because ϕsv(ω) ◦ ϕs,v(ω)−1z − ϕs,v(ω)−1z = z − ϕs,v(ω)−1z, which in turn also may read272

as ϕs,v(ω)−1 ◦ (ϕsv(ω)z − z), the following double Stratonovich arises from (14) with273

z = ϕs,u(ω)x274

ϕs,t(ω)x− x =

∫ t

s

(∫ u

s

1
(
(ϕsu(ω)x− ϕvs(ω) ◦ ϕsu(ω)x), ◦d+v

)
, ◦d+u

)
(18)275

Where, ϕsv(ω)−1 = ϕvs(ω) and the u integral is Stratonovich over the v integral which,276

in turn, refers to a semi martingale. Hence, taking ω dependence implicitly and employ277

the Stratonovich integral over he components278

ϕs,tx− x =

∫ t

s

1
(
(u− s)ϕsux, ◦d+u

)
−
∫ t

s

(∫ u

s

1
(
ϕvs ◦ ϕsux, ◦d+v

)
, ◦d+u

)
(19)279

Component wise splitting of the expression in (18) is allowed looking at the definition280

of forward Stratonovich in Arnold [1998] page 81. Suppose we take, t = s + τ then281

ϕst(ω) = ϕ(τ + s, ω) ◦ϕ(s, ω)−1. Then, ϕ(τ + s, ω) = ϕ(τ, θsω) ◦ϕ(s, ω). This gives, using282

θsω = ωs,283

ϕ(τ, ωs)x− x =

∫ τ

0

1(uϕ(u, ωs)x, ◦d+u)−
∫ τ

0

(∫ u

0

1
(
ϕv+s,s ◦ ϕ(u, ωs)x, ◦d+v

)
, ◦d+u

)
(20)284

With, ϕv+s,s(ω) = ϕ(s, ω) ◦ ϕ(v + s, ω)−1 and from the cocycle for ϕ(v + s, ω), we see285

that via, ϕ(v + s, ω)−1 = ϕ(s, ω)−1 ◦ ϕ(v, θsω)−1 it follows that ϕv+s,s(ω) = ϕ(v, θsω)−1.286

Because ϕ(0, ·) = 1, it follows using the cocyle that ϕ(−v, θvωs) ◦ ϕ(v, ωs) provides the287
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left inverse of ϕ(v, ωs). It can be demonstrated that ϕ(−v, θvωs) is the right inverse when288

we note that ϕ(v, θ−vωs+v) ◦ ϕ(−v, ωs+v) = 1 and θ−vωs+v = ωs. So we need a two-sided289

time development, see Arnold [1998].290

5.2. Barometric pressure increase

From equation (20) it follows that a ”naive” ∂
∂τ

, denoted by dot, on the left and right291

hand and a subsequent 0 < τ → 0 limit process provides , noting any ω can be ωs,292

lim
0<τ→0

ẋτ = − lim
0<τ→0

Iτ0 (ϕx) (21)293

Here,294

Iτ0 (ϕ) =

∫ τ

0

1
(
ϕ(−v, θvωs) ◦ ϕ(τ, ωs)x, ◦d+v

)
(22)295

and a ”negative time” progression occurs in the integral. When a multiplicative topology,296

such as here is used the limit 0 < τ → 0 unifies ϕ(τ, ω) → 1. Hence, the logarithmic297

derivative in τ = 0 stands on the left hand side of (22) while the right hand side also can298

be written as299

I00−(ϕ) = lim
0<τ→0

∫ 0

−τ
1
(
ϕ(v, θ−vωs), ◦d+v

)
(23)300

From our computations it follows that the ϕ-barometric pressure curves can be approxi-301

mated with a quadratic polynomial for a certain interval 0 < t < tmax. Some coefficients302

(a0, a1, a2) estimates from the data are presented in Tables 1, 2 and 3 below. If a1
a0
> 0 then303

the curve is ascending in 0 < τ < τmax and as a consequence the I00−(ϕ) < 0 nonzero. If304

a1
a0
< 0 then the curve is descending in 0 < τ < τmax and as a consequence the I00−(ϕ) > 0305

but not vanishing to zero on a small time scale.306
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5.3. Numerical results

Hence, we see that the initial behavior of the Φ barometric pressure curve is, the other307

way around, determined by the outcome of the Stratonovich integral on an infinitesimal308

small time interval prior to the onset of the monotone approximately linear increase309

Pτ ∝ P0τ with time τ . Defining a multiplicative factor in ∆W = x0(1 − ϕ(τ0.1kPa)
ϕ(0)

),310

with τ0.1kPa the time it takes for an increase of 0.1 kPa on the horizontal barometric311

pressure axis. From computational experiments we found that the maximal decrease ∆W312

caused by I00−(ϕ) > 0 is in the order of 0.5 mNAP (at Nsmp = 2365) and a maximal313

increase at I00−(ϕ) < 0 of ∆W in the order of 0.1 mNAP (at Nsmp = 2356). If we go 5314

minutes before and look at Nsmp = 2355, then I00−(ϕ) < 0 causes ∆W ≈ 0.009. If we look315

at Nsmp = 2357, i.e. 5 minutes later than Nsmp = 2356, we still have I00−(ϕ) < 0 but the316

computations show a difference ∆W ≈ 0.001. If the numerical experiments correspond to317

real behavior of the dike then we could say that the jump of 0.1 mNAP is surrounded by318

lesser (or negligible) upward movements in water level because we think, in the physics of319

the soil, the I00−(ϕ) < 0 remains.320

The question is what is causing a nonzero I00−(ϕ). Obviously in a vanishingly small321

interval, the deterministic contribution to the 6= 0 of I00−(ϕ) disappears. So the conclusion322

is that the I00−(ϕ) 6= 0 is related to the random factors that can still vary erratically in a323

small temporal interval.324

Of course the vanishingly small time interval is only a mathematical ideal. In practice325

it means that stochastic influences are still active on time scales where deterministic326

influences are negligible. In other words the martingale seems to dominate the behavior327
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of the water content in the dike shortly before a monotone barometric pressure increase328

sets in.329

6. Conclusion

The main conclusion from the computational and mathematical stochastic analysis of330

dike time series is that monotone almost sure perfect not trivial cocycles can be found331

in the time series of water content related to fluctuations in temperature and baromet-332

ric pressure. Temperature is measured inside the dike whereas barometric pressure is333

measured outside the dike.334

If there occurs a more or less monotone increase in barometric pressure and there is a335

0.1 kPa increase we uncovered the possibility of a maximum lowering of the order of 0.5336

mNAP while maximum increase of 0.1 mNAP apparently also may occur. The raising337

or lowering response is uncontrollable and stochastic. We can put forth the hypothesis338

that the outcome of the competition of expulsion by air molecules versus compaction by339

decreasing pore size, co-occur during an increase in barometric pressure. The outcome of340

this competition is determined by ”a coin flip”.341

Let us furthermore note that monotone increase in barometric pressure measurements342

is most likely caused by susbsidence in atmospheric pressure when the atmospheric tem-343

perature decreases. In addition, there exists the possibility of a small diurnal change of344

atmospheric pressure from the atmospheric tide caused by UV heating and cooling effects345

related to the rotation of the earth towards or away from the face of the sun LeBlanc346

[2011]. Of course the ”delta” of atmospheric tide can be small if change is uniformly347

distributed over 24h. On the other hand we found effects in the range of the atmospheric348

tide of 0.1 kPa. It depends on how the pressure changes develop in the atmospheric tide.349
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In a more jump like development caused by clouds or other unexpected conditions the 0.1350

kPa can set in more quickly. It is nototed that the atmospheric pressure subsidence caused351

by a cooling down of the atmosphere tends to coincide with a more clear sky and is most352

likely the important factor for level variation caused by barometric pressure increase.353

On the practical side, for maintenance of the water content in a dike and in combination354

with other conditions like high tide or meteorological water, a sub-critical level for adding355

water to or subtracting water from the dike incorporating the effect of pressure increase356

would contribute to its safety. The pressure effect is not the most critical but, combined357

with other factors, criticality can be reached earlier than expected because of the pressure358

effect. Moreover, it is possible that submarine groundwater discharges, which are also359

effective in a delta environment Taniguchi et al [2008], can with a nonzero probability be360

furthered by the influence of the found barometric pressure increase on water height in a361

dike.362

Notes

1. NAP indicates New Amsterdam water level which is a zero determining water level well known in the Netherlands.
363

2. 1Pa=1Pascal=1Nm−2 ≈ 10kgs−2m−1.
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Figure 1. Maximum pressure - generator ϕ relation in the raw model for sample point

N = 3130.

Table 1. coefficients for 0 < τ < τmax with sample point Nsmp = 2350

Parameters Value Estim stdev t-value Pr(|t| >) signif
a0 1.008 5.831× 10−6 172802.3 < 2× 10−6 ***
a1 −1.313× 10−2 2.694× 10−5 -487.4 < 2× 10−6 ***
a2 6.02× 10−3 2.608× 10−5 231.0 < 2× 10−6 ***

a Quadratic polynomial ϕ(τ) = a0 + a1τ + a2τ
2 for 0 < τ < τmax estimated with nls from R.

b Initially the Φ[·, o1, o2] ∼ P [·] curve has a downward slope
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Figure 2. Maximim pressure - generator ϕ relation in the model for sample point N = 3130

after uniform adding δP = 0.5kPa and cocycle transformation.

Table 2. coefficients for 0 < τ < τmax with sample point Nsmp = 3130

Parameters Value Estim stdev t-value Pr(|t| >) signif
a0 0.9651742 0.0004 2607.93 < 2× 10−6 ***
a1 0.1156603 0.00171 67.65 < 2× 10−6 ***
a2 -0.0798858 0.0017 -48.27 < 2× 10−6 ***

a Quadratic polynomial ϕ(τ) = a0 + a1τ + a2τ
2 for 0 < τ < τmax estimated with nls from R.

b Initially the Φ[·, o1, o2] ∼ P [·] curve has an upward slope
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Figure 3. Maximum pressure - generator ϕ relation in the model for sample point N = 3130

after uniform subtracting δP = 0.5kPa from the previous, thereby returning to the original

pressure distribution in time, and subsequent cocycle transformation. Maximum-y is 1.00097.

Minimum-y is 0.96114.

Table 3. coefficients for 0 < τ < τmax with sample point Nsmp = 3145

Parameters Value Estim stdev t-value Pr(|t| >) signif
a0 1.000 1.600× 10−10 6250395144 < 2× 10−6 ***
a1 −1.538× 10−3 7.393× 10−10 -2080852 < 2× 10−6 ***
a2 9.157× 10−4 7.157× 10−10 1279499 < 2× 10−6 ***

a Quadratic polynomial ϕ(τ) = a0 + a1τ + a2τ
2 for 0 < τ < τmax estimated with nls from R.

b Initially the Φ[·, o1, o2] ∼ P [·] curve has a downward slope
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