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Abstract

During an epoch when a uniform-density expanding dust ball’s radius doesn’t sufficiently exceed the
Schwarzschild value, the dust ball’s expansion rate will actually be increasing because the dominant
gravitational time dilation effect diminishes as the dust ball expands. However this “acceleration of
expansion” is absent in the “comoving” FLRW dust-ball model because the “comoving” fixing of the 00
component of the metric tensor to unity suppresses gravitational time dilation, an obvious fact in the static
gravitational field limit and manifested in the “comoving” FLRW model by the precisely Newtonian form
of its Friedmann equation of motion. Therefore we extend to all dust-ball initial conditions the singular
Oppenheimer-Snyder transformation from “comoving” to “standard” coordinates which they carried out
for a particular initial condition. In “standard” coordinates we find that gravitational and speed time
dilation is wired into the equation of motion of the dust ball’s dynamical radius. All sufficiently small
dust balls undergo acceleration rather than deceleration of expansion, but dust balls with sufficiently
highly “hyperbolic” initial conditions actually undergo acceleration of expansion at any size. Attempts
to account for the observed acceleration of the expansion of the universe by means of an ad hoc nonzero
cosmological constant thus seem to be quite unnecessary.

Introduction

The Friedmann equation for the spherically-symmetric, uniform-density FLRW dust-ball model in “comoving
coordinates” is mathematically indistinguishable from the strictly Newtonian equation of motion for a test
mass moving purely radially under the gravitational influence of a point mass [1, 2]. That fact certainly
appears to defy physical credibility in the context of GR, wherein the details of the motion of a test mass
moving radially under the influence of a spherically-symmetric gravitational source ought to reflect purely
relativistic phenomena, such as the effects of gravitational and speed time dilation, not merely Newton’s
completely nonrelativistic laws of gravitation and motion.

The essential characteristic of “comoving coordinates”, however, is the fixing of the metric component
g00 to unity [3], which, in view of the fact that (g00)−

1
2 is the gravitational time dilation factor in the static

gravitational field limit [4], implies that “comoving coordinates” in fact extinguish gravitational time dilation
in the limit of a static gravitational field. This makes it easier to make sense of the fact that the Friedmann
equation for the FLRW dust-ball model in “comoving coordinates” comes out to be mathematically New-
tonian in form, and therefore as well extinguishes all trace of gravitational time dilation. (As a matter of
fact, it of course even extinguishes relativistic speed time dilation.)

A major clue to the nature of “comoving coordinates” is that in order to accomplish the fixing of the metric
component g00 to unity, “comoving time” is defined by the clock readings of an infinite number of different
observers [5], a “coordinate” definition that is completely incompatible with Einstein’s observer/coordinate-
system paradigm.

This GR-unphysical nature of “comoving coordinates” is further underlined by the fact that the metric
tensor for the FLRW dust-ball model in “comoving coordinates” has a singularity at the particular “comoving
time” when its Newtonian-analog radially-moving “test mass” coincides in location with its Newtonian-
analog “point mass”.

That metric singularities are indeed GR-unphysical follows via Einstein’s equivalence principle from the
fact that coordinate-transformation Jacobian-matrix singularities are incompatible with the tensor contrac-
tion theorem—the tensor contraction theorem is of course indispensable to the general covariance of the
Einstein equation because the Einstein tensor is constructed from contractions of the Riemann tensor.

The incompatibility of coordinate-transformation Jacobian-matrix singularities with the tensor contrac-
tion theorem stems from the fact that the proof of the tensor contraction theorem requires the Jacobian
matrix of any candidate coordinate transformation x̄α(xµ) (and of its inverse transformation xν(x̄α)) to
satisfy the Jacobian-matrix relation [6],

(∂x̄α/∂xµ)(∂xν/∂x̄α) = δνµ, (1)

which, if each component of the Jacobian matrix ∂x̄α/∂xµ is well-defined in terms of the finite real numbers
at a given space-time point xµ, and also each component of its inverse matrix is thus well-defined in terms

∗ Retired, American Physical Society Senior Life Member, E-mail: SKKauffmann@gmail.com

1



of the finite real numbers, follows at that space-time point from the chain rule of the calculus. However,
because the right-hand side δνµ of Eq. (1) is always well-defined in terms of the finite real numbers, Eq. (1)
becomes self-inconsistent at any space-time point xµ where any component of the Jacobian matrix ∂x̄α/∂xµ

or any component of its inverse matrix fails to be a well-defined finite real number . Thus at a singularity of a
coordinate transformation’s Jacobian matrix or at a singularity of the inverse of that matrix the underpinning
of the proof of the GR-indispensable tensor contraction theorem is destroyed.

Einstein’s equivalence principle implies that a metric tensor is at each space-time point the congruence
transformation of the Minkowski metric tensor with the Jacobian matrix of some coordinate transforma-
tion [7]. Therefore given the foregoing discussion of GR-physical coordinate transformations, a metric tensor
is GR-physical only at those space-time points where both it and its inverse consist solely of components
which are well-defined finite real numbers and its signature is equal to the {+,−,−,−} signature of the
Minkowski metric tensor [8]. Thus the metric tensor of the expanding FLRW dust-ball model in “co-
moving coordinates” is clearly GR-unphysical at its particular singularity in “comoving time”, namely at
the “comoving time” when its Newtonian-analog radially-moving “test mass” coincides in location with its
Newtonian-analog “point mass”.

In a GR-physical coordinate system where g00 isn’t fixed to unity, the FLRW dust-ball model will of
course be affected by gravitational time dilation. Oppenheimer and Snyder transformed an FLRW dust-ball
model with a very particular initial condition (namely that the radial velocity of the “test mass” initially
vanishes) from GR-unphysical “comoving coordinates”—where its metric tensor is governed by the GR-
unphysical Newtonian-analogous Friedmann equation—to “standard” coordinates [9], and found that in this
GR-physical coordinate system gravitational time dilation completely blocks the Newtonian-analog radially-
moving “test mass” from ever coming as near to the Newtonian-analog “point mass” as the Schwarzschild
radius of that “point mass” [10, 11, 2], thus preventing the “comoving coordinate” metric singularity from
ever occurring in GR-physical “standard” coordinates.

The time-dilation introduced by the Oppenheimer-Snyder transformation from “comoving” to “standard”
coordinates is entirely naturally infinite at the Schwarzschild radius of the Newtonian-analog “point mass”.
That fact, however, makes the Oppenheimer-Snyder coordinate transformation a GR-unphysical singular
one. Of course it is mathematically obvious that a GR-unphysical singular metric can only be transformed
into a GR-physical nonsingular metric by a GR-unphysical singular coordinate transformation [11], such as
the one of Oppenheimer and Snyder. If the relevant Einstein equations were all analytically solvable, the
GR practitioner would have no call to ever become thus embroiled in GR-unphysical singular metrics or
coordinate transformations. For example, the GR sensible approach to the FLRW dust ball model would
be to straightaway solve its Einstein equation in a GR-physical coordinate system such as the “standard”,
“isotropic” or “harmonic” one, shunning the patently GR-unphysical g00 = 1 “comoving system” like the
proverbial plague. Unfortunately, of course, the brutal fact of the matter is that it isn’t known how to
analytically solve the Einstein equation for the dust ball in other than GR-unphysical “comoving coordi-
nates”. But the GR practitioner certainly mustn’t proceed under the delusion that the use of GR-unphysical
g00 = 1 “coordinates” produces an Einstein-equation solution which is GR-physical; indeed the resulting
very precisely Newtonian Friedmann equation for a “test mass” moving radially in the gravitational field of
a “point mass”, which is bereft of any trace of purely relativistic phenomena such as gravitational or speed
time dilation, but which does deliver a wholly GR-unphysical metric singularity , absolutely confirms the
opposite.

Therefore, if we want GR-physically legitimate analytic information about the FLRW dust ball model,
there apparently is no viable option other than to follow the Oppenheimer-Snyder lead of (singularly)
transforming the patently GR-unphysical singular “comoving” dust-ball metric to a GR-physical coordinate
system such as a “standard”, “isotropic” or “harmonic” one in which we would have analytically solved the
dust-ball Einstein equation in the first place, had we but been able to do so.

The experience of Oppenheimer and Snyder clearly shows that this coordinate-transformation course
indeed fills in GR-physically fundamental phenomena such as gravitational time dilation that are entirely
absent from the GR-unphysical “comoving metric” results. Proper understanding of gravitational time di-
lation in the dust-ball model is of considerable importance, for example, to working out the behavior of an
expanding dust ball in the distant past [11]. Gravitational time dilation can, just on its face, be expected to
reverse the intuitive Newtonian “deceleration of expansion” of any dust ball which isn’t sufficiently larger
than its Schwarzschild radius. Such implications of gravitational time dilation for dust balls are of special
interest in light of observations that the universe is undergoing “acceleration of expansion” [12, 13] (which
is most commonly modeled by ad hoc selection of a nonzero value of the “cosmological constant”, thereby
producing a space-time permeating “expansive pressure” [14], the ether-reminiscent “dark energy”).
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Therefore this article will extend the Oppenheimer-Snyder transformation from the specialized case they
treated of initially stationary dust-ball uniform energy density [15] in “comoving coordinates” to any initial
rate of change of uniform dust-ball energy density in those “coordinates”. The specialized Oppenheimer-
Snyder initial condition is guaranteed to be immediately followed by an epoch of increasing uniform energy
density of the dust ball in “comoving coordinates”, which implies a contracting dust-ball radius in GR-
physical coordinates such as “standard” coordinates. Oppenheimer and Snyder were of course intent on
zeroing in on “gravitational collapse”, for which their choice of initial condition is certainly convenient, but
here we are more interested in expanding dust balls, making Oppenheimer and Snyder’s very particular
specialization of the initial rate of change of dust energy density a counterproductive one for our purposes.

That extension to arbitrary dust energy-density initial rates of change impels a generalization of the
form of the particular Friedmann equation which was relevant for Oppenheimer and Snyder. Therefore,
before we launch into the calculation of the extended Oppenheimer-Snyder transformation itself , we shall
in the next section detail important properties of the solution of that extended Friedmann equation, which
solution is, after all, a key constituent of the GR-unphysical singular “comoving metric tensor” which is to
be (singularly) transformed to GR-physical nonsingular “standard” form.

Friedmann-equation solutions for “comoving” dust balls

In GR-unphysical “comoving coordinates” all individual dust particles always have zero three-velocity [16], so
a uniform energy-density dust ball of radius a never changes that radius in “comoving coordinates. However,
the value of the uniform energy density within the dust ball can change in GR-unphysical “comoving time”;
the Friedmann equation is a consequence of the Einstein equation in “comoving coordinates” which governs
the evolution of the dust ball’s uniform energy density and the accompanying “comoving metric tensor”
within the dust ball. The dimensionless function which the first-order Friedmann differential equation in
GR-unphysical “comoving time” describes can be conceptualized in different ways, one convenient one being
as the cube root of the reciprocal of the ratio of the dust ball’s uniform energy density to its initial uniform
energy density [17],

R(t) = (ρ(t0)/ρ(t))
1
3 , (2a)

so that R(t0) = 1. But in addition to the Eq. (2a) relationship that is satisfied by R(t), the square of R(t)
also occurs as the unique “comoving time-dependent” factor of both nontrivial components of the spherically-
symmetric “comoving metric tensor” [18].

The Friedmann equation for R(t) which follows from the Einstein equation for the uniform energy-density
dust ball in “comoving coordinates” can be conveniently written as [19],

(Ṙ(t))2 = ω2((1/R(t)) + γ), (2b)

for which, from Eq. (2a),
R(t0) = 1. (2c)

The convenient abbreviation ω2 is defined by,

ω2 def
= (8π/3)Gρ(t0)/c2, (2d)

and the dimensionless constant γ is readily seen to inherently relate to the t = t0 initial value of (Ṙ(t))2,
namely,

γ = (Ṙ(t0)/ω)2 − 1, (2e)

which implies in particular that,
γ ≥ −1. (2f)

Oppenheimer and Snyder of course specifically restricted their work to the particular case that γ = −1.
The wholly Newtonian analog of the Friedmann equation emerges upon taking the radial coordinate r(t)

of the purely radially moving “test mass” to be,

r(t)
def
= aR(t), (3a)

and the mass M of the “point mass” to be the initial effective mass of the dust ball, i.e.,

M = (4π/3)ρ(t0)a3/c2 = ω2a3/(2G), (3b)
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which implies that,
ω2 = 2GM/a3. (3c)

Inserting the Eq. (3a) and (3c) substitutions for R(t) and ω2 into the Friedmann Eq. (2b) and also into
Eq. (2e) for γ, and furthermore taking account of the Eq. (2c) initial condition yields,

1
2 (ṙ(t))2 −GM/r(t) = 1

2 (ṙ(t0))2 −GM/r(t0), (4a)

which when multiplied through by the arbitrary value m of the “test mass” yields the very familiar con-
servation of the strictly Newtonian kinetic plus gravitational potential energy of the “test mass” in the
gravitational field of the “point mass” M .

Of course when the location of the “test mass” is coincident with that of the “point mass”, namely when
r(t) = 0 (which is when R(t) = 0 in the language of the Friedmann equation), then (ṙ(t))2 is infinite (and
the same is true of (Ṙ(t))2 in Friedmann equation language). Furthermore, since (R(t))2 is the “comoving”
time-dependent factor of both nontrivial components of the “comoving metric” which applies within the
dust ball, that metric is singular when R(t) = 0.

An alternative way to write the “test mass” Eq. (4a) is readily verified to be,

(dr/dt)2 = 2GM
(
(1/r) + (γ/a)

)
, (4b)

where, of course, a = r(t0). In “standard” coordinates it turns out that the dynamically changing radius
of the dust ball obeys Eq. (4b) in the nonrelativistic limit c → ∞, but for a finite values of c, Eq. (4b) is
modified by a relativistic gravitational cum initial-speed reciprocal squared time dilation factor on its right-
hand side that makes |dr/dt| not only less than c but also linearly diminishing toward zero as r approaches
the Schwarzschild radius value rS = 2GM/c2 of the dust ball. Those results show that the GR-physical issue
with “comoving coordinates” is that they extinguish relativistic time dilation, which is, of course, exactly
what the “comoving coordinate” fixing of g00 to unity patently does in the static gravitational field limit .

The solution of the Friedmann equation can be directly expressed in terms of elementary functions only
for “parabolic” initial conditions wherein γ = 0. In that case the Friedmann equation simplifies to,

(Ṙ(t))2 = ω2/R(t) or Ṙ(t) = ±ω/(R(t))
1
2 , (5a)

which with the initial condition R(t0) = 1 yields the solution,

R(t) = (1± 3
2ω(t− t0))

2
3 , (5b)

where ± is the sign of Ṙ(t0).
Even in those cases where γ 6= 0, however, the Friedmann equation and its initial condition R(t0) = 1

can be cast into the integral form, ∫ R(t)

1
R

1
2 dR/(1 + γR)

1
2 = ±ω(t− t0). (6)

where ± is again the sign of Ṙ(t0) when Ṙ(t0) 6= 0, and equals −1 in the case that Ṙ(t0) vanishes (which is
precisely the γ = −1 case that was treated by Oppenheimer and Snyder).

In the “parabolic” γ = 0 initial-condition case, Eq. (6) quickly leads to the solution for R(t) that is given
in Eq. (5b).

In the “hyperbolic” γ > 0 initial-condition case, the change of variable R = [sinh(u)]2/γ, i.e., u =
sinh−1((γR)

1
2 ), permits evaluation of the integral on the left side of Eq. (6) in terms of elementary functions.

But the consequence of that evaluation is only an implicit algebraic expression for R(t), namely,

(R(t))
1
2 (1 + γR(t))

1
2 − (1 + γ)

1
2 + γ−

1
2 sinh−1(γ

1
2 )− γ− 1

2 sinh−1((γR(t))
1
2 ) = ±γω(t− t0). (7a)

Since sinh−1(x) = ln
(
(1 + x2)

1
2 + x

)
, we can also express Eq. (7a) in the form,

(R(t))
1
2 (1 + γR(t))

1
2 − (1 + γ)

1
2 + γ−

1
2 ln

(
(1+γ)

1
2 +γ

1
2

(1+γR(t))
1
2 +(γR(t))

1
2

)
= ±γω(t− t0). (7b)

In the “periodic” 0 > γ ≥ −1 initial-condition case, the change of variable R = −[sin(u)]2/γ, i.e.,
u = arcsin((−γR)

1
2 ), likewise permits evaluation of the integral on the left side of Eq. (6) in terms of
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elementary functions. The consequence of that evaluation is the following implicit algebraic expression for
R(t),

(R(t))
1
2 (1 + γR(t))

1
2 − (1 + γ)

1
2 + (−γ)−

1
2 arcsin((−γ)

1
2 )− (−γ)−

1
2 arcsin((−γR(t))

1
2 ) = ±γω(t− t0). (8)

We have pointed out that at the “comoving time” t when R(t) = 0 it is the case that (Ṙ(t))2 is infinite
and the “comoving” metric is singular . With Eqs. (5b), (7b) and (8) in hand, we can now explicitly write
down the value of the “comoving time” ts when R(ts) = 0, namely the value of the “comoving time” when
this singularity occurs.

In the “parabolic” initial-condition case that γ = 0 we see from Eq. (5b) that if R(ts) = 0,

ts = t0 ∓ 2
3ω
−1. (9a)

In the “hyperbolic” initial-condition case that γ > 0 we see from Eq. (7b) that if R(ts) = 0,

ts = t0 ∓ (γω)−1
[
(1 + γ)

1
2 − γ− 1

2 ln
(
(1 + γ)

1
2 + γ

1
2

)]
, (9b)

In the “periodic“ initial-condition case that 0 > γ ≥ −1 we see from Eq. (8) that if R(ts) = 0,

ts = t0 ∓ (γω)−1
[
(1 + γ)

1
2 − (−γ)−

1
2 arcsin

(
(−γ)

1
2

)]
. (9c)

Having completed this comprehensive discussion of the character of the Friedmann equation and its
solutions in the cases of “parabolic”, “hyperbolic” and “periodic” types of dust-ball initial conditions, we
now turn to the extension to all of these types of dust-ball initial conditions of the Oppenheimer-Snyder
transformation—the work of Oppenheimer and Snyder themselves was restricted to the single “periodic”
initial condition Ṙ(t0) = 0, which corresponds to the value −1 for the Friedmann-equation parameter γ.

The Oppenheimer-Snyder transformation for general initial conditions

The spherically-symmetric “comoving metric” for which the Einstein equation is solved in conjunction with
uniform dust-ball energy density ρ(t) is explicitly given by [20],

ds2 = (cdt)2 − U(r, t)dr2 − V (r, t)((dθ)2 + (sin θdφ)2), (10a)

The result of solving the Einstein equation for this metric and the uniform dust-ball energy density ρ(t)
within the dust ball of radius a (namely for r ≤ a) is [21],

V (r, t) = r2(R(t))2, U(r, t) = (R(t))2/[1 + γ(ωr/c)2], and ρ(t) = ρ(t0)/(R(t))3, (10b)

where,

ω2 def
= (8π/3)Gρ(t0)/c2, γ

def
= (Ṙ(t0)/ω)2 − 1, (10c)

and the dimensionless dynamical metric entity R(t) satisfies the Friedmann equation,

(Ṙ(t))2 = ω2((1/R(t)) + γ), (10d)

with the initial condition R(t0) = 1.
To carry out the Oppenheimer-Snyder mapping of the spherically-symmetric “comoving” coordinates (r, t)

to the spherically-symmetric “standard” coordinates (r̄, t̄) we write the invariant differential line element ds2

of Eq. (10a) in terms of the metric tensors of both coordinate systems [2, 11],

ds2 = B(r̄, t̄)(cdt̄)2 −A(r̄, t̄)(dr̄)2 − r̄2((dθ)2 + (sin θdφ)2)
= (cdt)2 − U(r, t)(dr)2 − V (r, t)((dθ)2 + (sin θdφ)2).

(11a)

Eq. (11a) constrains the mapping vector (r̄(r, t), t̄(r, t)); thus comparing the last terms on the left and
right-hand sides respectively of Eq. (11a) immediately yields,

r̄(r, t) = (V (r, t))
1
2 = rR(t), (11b)

5



where we have used the Eq. (10b) relation V (r, t) = r2(R(t))2. Next we would like to obtain t̄ as a function
of r and t, just as has been done in Eq. (11b) for r̄. Inspection of Eq. (11a), however, reveals that that task
is completely entwined with the determination of B and A as functions of r and t; moreover t̄ itself doesn’t
occur in relations that can be extracted from Eq. (11a), only its partial derivatives (∂t̄/∂t) and (c(∂t̄/∂r))
do. We are thus faced with solving both simultaneous algebraic and first-order partial differential equations
merely to obtain t̄(r, t)! These considerations give us our first small taste of the formidably long and arduous
path, so masterly pioneered by Oppenheimer and Snyder, which lies ahead.

We now present in more explicit detail the part of Eq. (11a) which still must be solved to obtain B, A
and t̄,

B[(∂t̄/∂t)(cdt) + c(∂t̄/∂r)dr]2 −A[(1/c)(∂r̄/∂t)(cdt) + (∂r̄/∂r)dr]2 = (cdt)2 − U(r, t)(dr)2. (11c)

Since the three bilinear differential forms (cdt)2, (2c dt dr) and (dr)2 are linearly independent, Eq. (11c)
produces the three simultaneous equations,

B(∂t̄/∂t)2 −A((1/c)(∂r̄/∂t))2 = 1, (12a)

B(∂t̄/∂t)(c(∂t̄/∂r))−A((1/c)(∂r̄/∂t))(∂r̄/∂r) = 0, (12b)

B(c(∂t̄/∂r))2 −A(∂r̄/∂r)2 = −U. (12c)

We begin by solving Eq. (12b) for B in terms of A, (∂t̄/∂t) and (c(∂t̄/∂r)),

B = A((1/c)(∂r̄/∂t))(∂r̄/∂r)
(∂t̄/∂t)(c(∂t̄/∂r)) . (13a)

We substitute Eq. (13a) into Eq. (12a), and solve the result for A in terms of (∂t̄/∂t) and (c(∂t̄/∂r)),

A = 1
(∂r̄/∂r)(1/c)(∂r̄/∂t)(∂t̄/∂t)/(c(∂t̄/∂r))−((1/c)(∂r̄/∂t))2 . (13b)

We now divide Eq. (12c) through by A, thus expressing it in terms of (B/A) and (1/A). Into that we insert
(B/A) obtained from Eq. (13a) and (1/A) obtained from Eq. (13b). The resulting equation in terms of
(∂t̄/∂t) and (c(∂t̄/∂r)) is,

(1/c)(∂r̄/∂t)(∂r̄/∂r)(c(∂t̄/∂r))
(∂t̄/∂t) − (∂r̄/∂r)2 + U

[
(∂r̄/∂r)(1/c)(∂r̄/∂t)(∂t̄/∂t)

(c(∂t̄/∂r)) − ((1/c)(∂r̄/∂t))2
]

= 0. (14a)

We now multiply Eq. (14a) through by the factor (∂t̄/∂t)(c(∂t̄/∂r)) to obtain the following homogeneous
bilinear equation in the two variables (∂t̄/∂t) and (c(∂t̄/∂r)),

(1/c)(∂r̄/∂t)(∂r̄/∂r)(c(∂t̄/∂r))2 − (∂r̄/∂r)2(∂t̄/∂t)(c(∂t̄/∂r))+
U [(∂r̄/∂r)(1/c)(∂r̄/∂t)(∂t̄/∂t)2 − ((1/c)(∂r̄/∂t))2(∂t̄/∂t)(c(∂t̄/∂r))] = 0.

(14b)

The structure of this homogeneous bilinear equation in the two variables (∂t̄/∂t) and (c(∂t̄/∂r)) becomes
more transparent after dividing it through by the factor U(∂r̄/∂r)((1/c)(∂r̄/∂t)) and rearranging the order
of the terms to obtain,

(∂t̄/∂t)2 −
([

((1/c)(∂r̄/∂t))
(∂r̄/∂r)

]
+
[

(∂r̄/∂r)
U((1/c)(∂r̄/∂t))

])
(∂t̄/∂t)(c(∂t̄/∂r)) +

[
1
U

]
(c(∂t̄/∂r))2 = 0. (14c)

The homogeneous bilinear form in (∂t̄/∂t) and (c(∂t̄/∂r)) on the left-hand side of Eq. (14c) can now be seen
to factor into the product of two homogeneous linear forms in (∂t̄/∂t) and (c(∂t̄/∂r)), namely,(

(∂t̄/∂t)−
[

((1/c)(∂r̄/∂t))
(∂r̄/∂r)

]
(c(∂t̄/∂r))

)(
(∂t̄/∂t)−

[
(∂r̄/∂r)

U((1/c)(∂r̄/∂t))

]
(c(∂t̄/∂r))

)
= 0. (14d)

Now the first factor on the left-hand side of Eq. (14d) turns out to also be a factor of the denominator of
the solution for A which is given by Eq. (13b). Indeed, it is readily verified from Eq. (13b) that (1/A) can
be written in the form,

(1/A) =
(

(∂t̄/∂t)−
[

((1/c)(∂r̄/∂t))
(∂r̄/∂r)

]
(c(∂t̄/∂r))

)(
((1/c)(∂r̄/∂t))(∂r̄/∂r)

(c(∂t̄/∂r)

)
,
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which implies that if the first factor on the left-hand side of Eq. (14d) vanished, then A would be infinite.
Thus to obtain a finite value for the “standard” metric component A, it must be that the second factor on
the left-hand side of Eq. (14d) vanishes, which implies the following homogeneous linear first-order partial
differential equation for t̄(r, t),

((1/c)(∂r̄/∂t))U(∂t̄/∂t) = (∂r̄/∂r)(c(∂t̄/∂r)). (15a)

Since r̄(r, t) = rR(t) from Eq. (11b) and U(r, t) = (R(t))2/(1 + γ(ωr/c)2) from Eq. (10b), the Eq. (15a)
partial differential equation for t̄(r, t) can be written,

[(r/c)/(1 + γ(ωr/c)2)](∂t̄/∂t) = [R(t)Ṙ(t)]−1(c(∂t̄/∂r)). (15b)

Now given a separable homogeneous linear first-order partial differential equation of the form,

τ(r)(∂t̄/∂t) = T (t)(c(∂t̄/∂r)), (16a)

there exists a large class of solutions for t̄(r, t). Indeed, for any differentiable dimensionless function χ(y) of
dimensionless argument, Eq. (16a) is solved by,

t̄(r, t) = t1χ
(

(1/t2)2
∫ t
t3
T (t′)dt′ + (1/c)(1/t2)2

∫ r
r0
τ(r′)dr′

)
, (16b)

where r0 is an arbitrary constant with the dimensions of length, and t1, t2 and t3 are arbitrary constants
with the dimensions of time. That the t̄(r, t) of Eq. (16b) actually solves the partial differential equation of
Eq. (16a) can be straightforwardly verified.

In the particular case of Eq. (15b), which of course is the partial differential equation of actual interest
to us, τ(r) = (r/c)/(1 +γ(ωr/c)2) and T (t) = 1/(R(t)Ṙ(t)). If we conveniently select the arbitrary constant
r0 of Eq. (16b) to be zero, then,

(1/c)
∫ r

0
[(r′/c)/(1 + γ(ωr′/c)2)]dr′ = 1

2 (γω2)−1 ln(1 + γ(ωr/c)2) = (γω2)−1 ln[(1 + γ(ωr/c)2)
1
2 ]. (16c)

Similarly, if we conveniently select the arbitrary constant t3 to be the time ts of the “comoving” metric’s
GR-unphysical singularity , namely ts is such that R(ts) = 0 (the precise value of ts is laid out in complete
detail in Eqs. (9)), then, ∫ t

ts
[R(t′)Ṙ(t′)]−1dt′ =

∫ t
ts

[R(t′)(Ṙ(t′))2]−1Ṙ(t′)dt′ =

(ω2)−1
∫ t
ts

[1 + γR(t′)]−1Ṙ(t′)dt′ = (ω2)−1
∫ R(t)

0
[1 + γR′]−1dR′ = (γω2)−1 ln(1 + γR(t)),

(16d)

where we applied, in succession, the Eq. (10d) Friedmann equation of motion (Ṙ(t))2 = ω2((1/R(t))+γ), the
change of integration variable from t′ to R′ = R(t′) (for which Ṙ(t′)dt′ = dR′), and the fact that R(ts) = 0.

We now insert the integrations performed in Eqs. (16c) and (16d) into the Eq. (16b) solution prescription,
and furthermore select the following convenient values for the two remaining arbitrary constants: t2 =
(γω2)−

1
2 and t1 = (1/ω). This yields the solution t̄(r, t) of the Eq. (15b) partial differential equation as,

t̄(r, t) = (1/ω)χ
(
ln[(1 + γ(ωr/c)2)

1
2 (1 + γR(t))]

)
, (16e)

where χ(y) is an arbitrary differentiable dimensionless function of dimensionless argument. A tidier, more
compact expression of this result is,

t̄(r, t) = (1/ω)φ(u(r, t)), (16f)

where u(r, t) is defined as,

u(r, t)
def
= (1 + γ(ωr/c)2)

1
2 (1 + γR(t)), (16g)

and φ(u) is an arbitrary differentiable dimensionless function of positive dimensionless argument. It is
well worth noting that the t̄(r, t) given by Eqs. (16f) and (16g) can straightforwardly be verified to satisfy
Eq. (15b), provided that the Friedmann equation of motion (Ṙ(t))2 = ω2((1/R(t))+γ) for R(t) is taken into
account.

In the region 0 ≤ r ≤ a we now have obtained the general form of t̄(r, t) given by Eqs. (16f) and (16g),
albeit in terms of a function of one variable φ(u) which hasn’t yet been determined , to which we can add the
Eq. (11b) fact that r̄(r, t) = rR(t). With those two pieces of information we can also obtain the “standard”
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metric component functions A and B by applying Eqs. (13b) and (13a). The results for A and B aren’t
definitive either because they involve φ′(u) which hasn’t yet been determined . Oppenheimer and Snyder
insightfully realized , however, thatA andB are in fact uniquely determined at the r = a surface of the dust ball
by the Birkhoff theorem. As a matter of fact, it turns out that A conforms to the requirement of the Birkhoff
theorem at r = a regardless of what the function φ(u) is. But that definitely isn’t the case for B; the Birkhoff-
theorem requirement for B at r = a determines |φ′(u)|, and thus completes our knowledge of the “comoving”
to “standard” time transformation t̄(r, t). Not surprisingly, however, t̄(a, t) turns out to be infinite if r̄(a, t)
isn’t larger than the dust ball’s Schwarzschild radius a(ωa/c)2 = (8π/3)Gρ(t0)a3/c4 = 2GM/c2 (since
M = (4π/3)ρ(t0)a3/c2), a singular consequence of the restoration in GR-physical “standard” coordinates
of the gravitational time dilation that simply doesn’t exist in the GR-unphysical “comoving coordinates”.
Gravitational time dilation stymies the dust ball’s access in “standard” coordinates to a radius as small or
smaller than its Schwarzschild radius, even in the arbitrarily distant past .

To calculate the “standard” metric components A and B we require the partial derivatives of t̄(r, t) and
r̄(r, t) which enter into Eqs. (13b) and (13a) for A and B respectively. We use Eqs. (16f) and (16g) for t̄(r, t)
to calculate its two partial derivatives,

(c(∂t̄/∂r)) = γ(ωr/c)(1 + γ(ωr/c)2)−
1
2 (1 + γR(t))φ′(u(r, t)), (17a)

and,
(∂t̄/∂t) = (γṘ(t)/ω)(1 + γ(ωr/c)2)

1
2φ′(u(r, t)). (17b)

We calculate the two partial derivatives of r̄(r, t) from its formula r̄(r, t) = rR(t),

(∂r̄/∂r) = R(t), (17c)

and,
((1/c)(∂r̄/∂t)) = (rṘ(t)/c), (17d)

When Eqs. (17a) through (17d) are inserted into Eq. (13b) for A, no factors of φ′(u(r, t)) survive. Indeed,
with the help of the Friedmann equation, (Ṙ(t))2 = ω2((1/R(t)) + γ), A(r, t) is seen to have the relatively
simple form,

A(r, t) = 1
1−[(ωr/c)2/R(t)] . (18a)

At the surface of the dust ball, namely at r = a, the A(a, t) implied by Eq. (18a) automatically has the
Birkhoff-theorem mandated empty-space Schwarzschild-metric A-component form as a function of r̄(a, t) =
aR(t),

A(a, t) = 1
1−[(ωa/c)2/R(t)] = 1

1−[(ω2a3)/(c2r̄(a,t))] = 1
1−[(2GM)/(c2r̄)] , (18b)

where the last equality in Eq. (18b) is the consequence of ω2 = (8π/3)Gρ(t0)/c2, which is the definition of ω2

given by Eq. (10c), together with the definition of the mass of the dust ball, namely M = (4π/3)ρ(t0)a3/c2.
The last expression on the right-hand side of Eq. (18b) is indeed the familiar classic A-component of the
empty-space Schwarzschild metric tensor , which is exactly what is mandated for A(r, t) at the r = a surface of
the dust ball by the Birkhoff theorem. Therefore the Eq. (18a) result for the A-component of the “standard”
metric tensor doesn’t provide any information about the not-yet determined function φ(u).

However when Eqs. (17a) through (17d) are inserted into Eq. (13a) for B, the result is,

B(r, t) = 1
((1/R(t))+γ)(1−[(ωr/c)2/R(t)])(γφ′(u(r,t)))2 , (18c)

which, in stark contrast with the A(r, t) of Eq. (18a), is explicitly dependent on the not-yet determined
function φ(u). The presence within the structure of the B(r, t) of Eq. (18c) of a not-yet determined function
is in fact fortunate because the Birkhoff theorem at the dust-ball’s surface mandates that,

B(a, t) = (1− [(2GM)/(c2r̄(a, t))]) = (1− [(ωa/c)2/R(t)]), (18d)

which is obliged to be be consistent with the result for B(a, t) which is implied by B(r, t) given by Eq. (18c).
We therefore equate the second expression for B(a, t) on the right-hand side of Eq. (18d) to the just discussed
result for B(a, t) which follows from the Eq. (18c) form for B(r, t), and then solve the resulting equation for
φ′(u(a, t)). It turns out to be very convenient notationally to express that result for φ′(u(a, t)) in terms of
an intermediary definition, namely,

φ′(u(a, t)) = F (R(t)), (19a)
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where,

F (s)
def
= ± s

3
2

γ(1+γs)
1
2 (s−(ωa/c)2)

. (19b)

We note from Eq. (16g) that u(a, t) is a simple inhomogeneous linear function of R(t) which is readily
inverted, namely,

R(t) = γ−1[(1 + γ(ωa/c)2)−
1
2u(a, t)− 1]. (19c)

Therefore, from Eq. (19a),

φ′(u(a, t)) = F
(
γ−1[(1 + γ(ωa/c)2)−

1
2u(a, t)− 1]

)
, (19d)

which provides us the functional form of φ′(u) as,

φ′(u) = F
(
γ−1[(1 + γ(ωa/c)2)−

1
2u− 1]

)
, (19e)

where the functional form of F (s) is, of course, given by Eq. (19b).
In order to obtain t̄(r, t), however, we see from Eq. (16f) that we need the functional form of φ(u), which

of course is,
φ(u) = φ(u0) +

∫ u
u0
du′ φ′(u′). (20a)

In Eq. (20a) we conveniently fix the arbitrary constant u0 to have the value of u(r, t) (which is defined by
Eq. (16g)) at the initial time t0 at surface of the dust ball (namely at r = a),

u0 = u(a, t0) = (1 + γ(ωa/c)2)
1
2 (1 + γR(t0)) = (1 + γ(ωa/c)2)

1
2 (1 + γ), (20b)

with the second equality following from the fact that the initial time t0 satisfies R(t0) = 1 (see immediately
below Eq. (10d)).

Of course the functional form of φ′(u′) is obtained from Eq. (19e). We insert that functional form into
Eq. (20a), which produces,

φ(u) = φ(u(a, t0)) +
∫ u
u(a,t0)

du′ F
(
γ−1[(1 + γ(ωa/c)2)−

1
2u′ − 1]

)
. (20c)

We can formally greatly simplify the integrand in Eq. (20c) by making the simple inhomogenous linear
change of the integration variable from u′ to s, where,

s = γ−1[(1 + γ(ωa/c)2)−
1
2u′ − 1], (20d)

and therefore,
u′ = [(1 + γ(ωa/c)2)

1
2 (1 + γs)] and du′ = (1 + γ(ωa/c)2)

1
2 γds. (20e)

With this change of the integration variable, Eq. (20c) becomes,

φ(u) = φ(u(a, t0)) + (1 + γ(ωa/c)2)
1
2 γ
∫ σ(u)

1
dsF (s), (20f)

where,

σ(u)
def
= γ−1[(1 + γ(ωa/c)2)−

1
2u− 1],

and we have used the fact given in Eq. (20b) that u(a, t0) = (1 + γ(ωa/c)2)
1
2 (1 + γ).

With the previously unknown function φ(u) now in hand via Eq. (20f), we recall from Eq. (16f) that the
GR-unphysical Oppenheimer-Snyder transformation t̄(r, t) from GR-unphysical “comoving space-time” to
GR-physical “standard” time is given by (1/ω)φ(u(r, t)), where u(r, t) = (1 + γ(ωr/c)2)

1
2 (1 + γR(t)) as per

Eq. (16g). Furthermore, the explicit form of the integrand F (s) in Eq. (20f) is, of course, given by Eq. (19b).
Putting all this together, we obtain,

t̄(r, t) = t̄(a, t0)±
(
(1 + γ(ωa/c)2)

1
2 /ω

) ∫ S(r,t)

1

ds s
3
2

(1+γs)
1
2 (s−(ωa/c)2)

, (20g)

where,

S(r, t)
def
= σ(u(r, t)) = γ−1

[
(1 + γR(t))

(
1+γ(ωr/c)2

1+γ(ωa/c)2

) 1
2 − 1

]
, (20h)
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and R(t) satisfies the Friedmann equation (Ṙ(t))2 = ω2((1/R(t)) + γ) with the initial condition R(t0) = 1.
Eq. (20g) is restricted to 0 ≤ r ≤ a, where a is the dust ball’s unchanging radius in “comoving coordinates”.
The parameter ω2 equals by definition (8π/3)Gρ(t0)/c2, where ρ(t0) is the initial uniform energy density
of the dust ball, while the parameter γ is defined as [(Ṙ(t0)/ω)2 − 1]; note that γ ≥ −1. The ± sign in
Eq. (20g) has the value of the sign of Ṙ(t) when Ṙ(t) 6= 0, and has the value −1 when Ṙ(t) = 0.

It is clear from Eq. (20g) that t̄(r, t) diverges to infinity whenever S(r, t) ≤ (ωa/c)2 (it is readily checked
that (ωa/c)2 is the Schwarzschild radius of the dust ball divided by its “comoving coordinate” radius a).
Thus all “comoving” space-time points (r, t) for which S(r, t) ≤ (ωa/c)2 are mapped to “standard” time
infinity , which makes all such “comoving” space-time points are inaccessible in GR-physical “standard”
coordinates.

We have pointed out that the “comoving time” ts such that R(ts) = 0 produces a singularity in the
“comoving metric” described by Eqs. (10a) through (10d). It is readily checked from Eq. (20h) that
S(r, ts) ≤ 0 < (ωa/c)2 for all r within the “comoving” dust ball, namely 0 ≤ r ≤ a. Therefore the
points of singularity of the “comoving” metric are inaccessible in GR-physical “standard” coordinates. That
is how the GR-unphysical singular Oppenheimer-Snyder transformation removes the singularity present in
the GR-unphysical “comoving” metric in the course of mapping it to the GR-physical nonsingular “standard”
metric.

In the next section we shall use the extended Oppenheimer-Snyder transformation, namely r̄(r, t) = rR(t)
along with Eq. (20g) for t̄(r, t), specialized to the surface of the dust ball, to work out in GR-physical
“standard” coordinates the equation of motion of the radial coordinate of that surface, i.e., of the dust ball’s
radius.

Can a dust ball’s radius undergo positive acceleration?

The dust ball’s surface in “comoving coordinates” is, of course, rsurf(t) = a; because dust three-velocity is
always zero everywhere in GR-unphysical “comoving coordinates” the dust ball’s surface is unchanging in
GR-unphysical “comoving time”. (However the uniform energy density of the dust within the r ≤ a dust
ball does vary in GR-unphysical “comoving time” according to ρ(r, t) = ρ(t0)/(R(t))3, while ρ(r, t) = 0 for
all r > a, namely outside the dust ball in “comoving coordinates”.)

The dust ball’s surface transformed to “standard” coordinates is,

r̄surf(t) = r̄(rsurf(t), t) = r̄(a, t) = aR(t), (21a)

where we have used the (radial) space portion r̄(r, t) = rR(t) of the extended Oppenheimer-Snyder transfor-
mation given in Eq. (11b). We see from Eq. (21a) that in “standard” coordinates the dust ball’s surface is
moving radially instead of having the unchanging radius a that it has in “comoving coordinates”. However
that motion is presented in Eq. (21a) in terms of “comoving” time t instead of in terms of the “standard”
time which obtains at that surface, namely,

t̄surf(t) = t̄(rsurf(t), t) = t̄(a, t). (21b)

Of course t̄(a, t) is readily obtained as a special case of Eq. (20g). Since we see from Eq. (20h) that
S(a, t) = R(t) we obtain from Eqs. (21b) and (20g) that,

t̄surf(t) = t̄(a, t0)±
(
(1 + γ(ωa/c)2)

1
2 /ω

) ∫ R(t)

1

ds s
3
2

(1+γs)
1
2 (s−(ωa/c)2)

. (21c)

From Eq. (21c) we see that all “comoving times” t for which R(t) ≤ (ωa/c)2) are mapped at the dust ball’s
surface to “standard” time infinity , and therefore all such “comoving times” are inaccessible at the dust
ball’s surface in GR-physical “standard” coordinates.

To work out the radial velocity of the dust ball in “standard coordinates” it will be useful to have in
hand the derivative of t̄surf(t) with respect to the “comoving time” t,

dt̄surf(t)/dt = ±((1 + γ(ωa/c)2)
1
2 /ω)

[
R(t)

3
2

(1+γR(t))
1
2 (R(t)−(ωa/c)2)

]
Ṙ(t). (21d)

It will in fact be the reciprocal of dt̄surf(t)/dt which will be directly useful for calculating the radial velocity
of the dust ball in “standard coordinates”,

(dt̄surf(t)/dt)
−1 = ±(1 + γ(ωa/c)2)−

1
2ω((1/(R(t)) + γ)

1
2 (1− [(ωa/c)2)/R(t)])/Ṙ(t). (21e)
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From the paragraph below Eq. (20h) we can see that the ± sign in Eq. (21e) is such that,

±Ṙ(t) = |Ṙ(t)|,

and the Friedmann equation (Ṙ(t))2 = ω2((1/(R(t)) + γ) of course implies that,

|Ṙ(t)| = ω((1/(R(t)) + γ)
1
2 .

Therefore Eq. (21e) simplifies to,

(dt̄surf(t)/dt)
−1 = (1 + γ(ωa/c)2)−

1
2 (1− [(ωa/c)2)/R(t)]), (21f)

which is clearly the reciprocal of the relativistic-speed cum gravitational-field time dilation factor at the dust
ball’s surface—note that (dt̄surf(t)/dt)

−1 goes to unity in the nonrelativistic limit c→∞. Eq. (21f) makes it
very clear that the GR-physical “standard” coordinates supply extremely basic relativistic effects which are
absent altogether from the GR-unphysical Newtonian-analogous “comoving coordinates”.

When using Eq. (21f) it absolutely must , of course, be borne in mind that it is only applicable for
“comoving” t such that R(t) > (ωa/c)2 because “comoving” t for which R(t) ≤ (ωa/c)2 are inaccessible in
GR-physical “standard” coordinates at the dust ball’s surface, as has been emphatically pointed out below
Eq. (21c).

Eq. (21f) permits the radial velocity of the dust ball’s surface to be calculated in GR-physical “standard”
coordinates (albeit the result is, just as for the result of r̄surf in Eq. (21a), presented in terms of “comoving
time” t) by combining the result of Eq. (21a) with Eq. (21f),

dr̄surf

dt̄surf
(t) = (dr̄surf(t)/dt)(dt̄surf(t)/dt)

−1 = aṘ(t)(1 + γ(ωa/c)2)−
1
2 (1− [(ωa/c)2)/R(t)]), (21g)

which, by using the Friedmann equation in the form |Ṙ(t)| = ω((1/R(t)) + γ)
1
2 , may also be presented as,

dr̄surf

dt̄surf
(t) = ±aω

(
(1/R(t)) + γ

1 + γ(ωa/c)2

) 1
2

(1− [(ωa/c)2)/R(t)]), (21h)

where ± is, as usual, the sign of Ṙ(t). A very interesting (and for GR physics necessary) feature of the
Eq. (21h) expression for the “standard-coordinate” radius velocity of the expanding dust ball is that so long
as we stick with those “comoving times” t which are accessible in “standard” coordinates at the dust ball’s
surface, namely those t such that R(t) > (ωa/c)2, then the magnitude of the Eq. (21h) velocity is less than
c. In fact it is readily shown that,

aω

(
(1/R(t)) + γ

1 + γ(ωa/c)2

) 1
2

< c provided that R(t) > (ωa/c)2,

which implies from Eqs. (21h) and (21a) that,

|dr̄surf/dt̄surf | < c(1− (rS/r̄surf)) provided that r̄surf > rS , (21i)

where rS = a(ωa/c)2 = 2GM/c2 is the Schwarzschild radius of the dust ball. Thus the maximum speed of the
dust ball’s radius in “standard” coordinates is actually reduced below c by the presence of the gravitational
time dilation factor (1− (rS/r̄surf)).

We of course know that the condition r̄surf > rS cannot be violated on pain of forcing t̄surf to infinity ,
as is seen from from Eqs. (21a) and (21c). Eq. (21i) points out the exact mechanism whereby r̄surf > rS
is enforced in these “standard” coordinates: because of gravitational time dilation the speed in “standard”
coordinates of the dust-ball radius r̄surf falls at least linearly toward zero as r̄surf approaches rS ; thus it takes
an infinite “standard” time t̄surf for r̄surf to “reach” rS . So it is gravitational time dilation which prevents
the “standard coordinate” radius r̄surf(t̄surf) of the dust ball from ever reaching the dust ball’s Schwarzschild
radius rS .

Slightly recasting Eq. (21h) gives us the equation of motion of the dust ball’s radius in “standard” coor-
dinates instead of a relation intermediated by “comoving time”, and that equation of motion automatically
incorporates the Eq. (21i) principle of no access to the Schwarzschild value rS for the dust ball’s radius
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r̄surf(t̄surf) in “standard” coordinates. Upon squaring both sides of Eq. (21h) and using Eq. (21a) to elimi-
nate R(t) in favor of r̄surf , we obtain the desired equation of motion for r̄surf(t̄surf),

(dr̄surf/dt̄surf)
2 = 2GM

(
(1/r̄surf) + (γ/a)

) [ (1−(rS/r̄surf ))
2

1+γ(rS/a)

]
, (21j)

where a is the initial value of r̄surf at t̄surf = t̄(a, t0). Note that in the nonrelativistic limit c → ∞, the
Schwarzschild radius rS goes to zero, so that Eq. (21j) reduces to Eq. (4b), which is the “test mass” version
of the Friedmann equation. The difference between Eq. (21j) and the Eq. (4b) “test mass” Friedmann
equation lies solely in the purely relativistic squared reciprocal time dilation factor in the square brackets on
the right-hand side of Eq. (21j). This pinpoints the fact that the GR-unphysical “comoving coordinates” of
Eq. (4b) extinguish GR-physical relativistic time dilation, which, of course, is exactly what the GR-unphysical
“comoving coordinate” fixing of g00 to unity patently does in the static gravitational field limit .

At the initial t̄surf , when r̄surf = a, we know from Eq. (21i) that β2
0 < (1− (rS/a))2, where β0 is defined

to be the initial value of (1/c)(dr̄surf/dt̄surf). With that restriction on the value of β2
0 in mind, we can use

Eq. (21j) at the initial t̄surf to determine the value of γ. The result of doing so is,

γ =
β2
0−(rS/a)(1−(rS/a))2

(rS/a)((1−(rS/a))2−β2
0)
, (21k)

where 0 ≤ β2
0 < (1 − (rS/a))2. Note that β0 = 0 produces γ = −1 (the Oppenheimer-Snyder initial

condition), while β2
0 = (rS/a)(1 − (rS/a))2 produces γ = 0 (the “parabolic” case). The 0 < γ < +∞

“hyperbolic” case corresponds to those values of β2
0 which satisfy (rS/a)(1− (rS/a))2 < β2

0 < (1− (rS/a))2.
Finally, we can obtain the second-order version of the Eq. (21j) equation of the motion of the dust ball’s

surface radius in “standard” coordinates. The left-hand side of that version refers to the acceleration of the
dust ball’s surface radius instead of to it’s speed as Eq. (21j) does. We obtain the acceleration version by
differentiating both sides of Eq. (21j) with respect to t̄surf , and then dividing both sides by 2(dr̄surf/dt̄surf).
The result comes out to be,

d2r̄surf/dt̄
2
surf = GM

[(
(−1 + 2γ(rS/a))/r̄2

surf

)
+ 3

(
rS/r̄

3
surf

)] [ 1−(rS/r̄surf )
1+γ(rS/a)

]
. (21l)

In the nonrelativistic limit that rS → 0 we can see that Eq. (21l) reduces to the well-known negative
Newtonian acceleration result for a “test mass”,

d2r̄surf/dt̄
2
surf = −GM/r̄2

surf . (21m)

On the other hand, since γ ≥ −1 and and a > rS , we can see from Eq. (21l) that there will always exist a
range of values of r̄surf > rS such that the acceleration d2r̄surf/dt̄

2
surf of the dust ball’s surface is positive.

As one example, when γ = 0 (the “parabolic” case), the acceleration d2r̄surf/dt̄
2
surf of the dust ball’s radius

is positive for rS < r̄surf < 3rS . In that case the peak speed of the dust ball’s radius occurs at the dust-ball
radius value r̄surf = 3rS , and, as we can see from Eq. (21j), that peak speed is equal to 2c/3

3
2 = 0.3849c.

But the most fascinating result of Eq. (21l) is that in sufficiently highly “hyperbolic” cases where γ ≥
1
2 (a/rS), the acceleration d2r̄surf/dt̄

2
surf of the dust ball’s radius always is positive regardless of the value

r̄surf(t̄surf) of that radius. Attempts to account for the observed acceleration of the expansion of the universe
by means of an ad hoc nonzero cosmological constant thus seem to be quite unnecessary.
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