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N -scales are a generalization of time-scales that has been put forward to unify continuous and
discrete analyses to higher dimensions. In this paper we investigate massive scalar field theory
on n-scales. In a specific case of a regular 2-scale, we find that the IR energy spectrum is almost
unmodified when there are enough spatial points. This is regarded as a good sign because the model
reproduces the known results in the continuum approximation. Then we give field equation on a
general n-scale. It has been seen that the field equation can only be solved via computer simulations.
Lastly, we propose that n-scales might be a good way to model singularities encountered in the
general theory of relativity.

I. INTRODUCTION

In the Planck scale, it is believed that the spacetime
has a granular structure. In order to explain the Planck
scale physics, theoreticians put forward various theo-
ries. For example the causal dynamical triangulations
approach triangulates the spacetime with filled-in cells,
in the loop quantum gravity approach the spacetime it-
self is discrete.

Apart from the discussions of quantum gravity, math-
ematicians have been working on the concept of “time-
scale.” A time-scale is an arbitrary closed subset of R
in the usual topology. For example the sets [0, 1], Z, N
or [0, 1] ∪ Z are all time scales. Time scale was devel-
oped in [1–3]. Time-scale calculus unify the discrete and
continuous analyses. For a general overview one may
see [7]. However a time-scale is one dimensional and its
multi-dimensional counterparts are in the form of prod-
uct spaces [4]. This inadequacy in covering the real world
applications, which may require non-product spaces, the
concept of n-cale has been developed [5]. The definition
of an n-scale resembles that of a time scale: an n-Scale
is an arbitrary closed subset of Rn.

Here is the organization of the paper. In Section II we
give the Lagrangian and Euler-Lagrange equations for
the field, in Section III we give an analytical solution of
field equation for massive scalar field theory on a regular
2-scale, in Section IV we give the general theory of mas-
sive scalar field theory on n-scales, and in SectionV we
conclude the paper.

II. SCALAR FIELD THEORY ON AN N-SCALE

In this section we give the Lagrangian density and de-
rive the Euler-Lagrange equation using the n-scale cal-
culus. The Lagrangian density for a massive scalar field
reads as follows:
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L =
1

2
ηµν∆µφ∆νφ−

1

2
m2φ2, (1)

where ∆µ = ∂/∆xµ is the partial ∆-derivative with re-
spect to xµ and the inverse metric is ηµν = (+,−,−, · · · ).
The action is then given by the following ∆-integral:

S =

∫ n−1∏
i=0

∆xiL. (2)

For a definiton of the integral see [5]. The Euler-
Lagrange equation is obtained by extremizing the ac-
tion with respect to variations of the field and its ∆-
derivatives. Using the integration by pars technique one
can obtain the equation of motion (supposing that δφ
vanishes on the boundary or at infinity):

∂L
∂φ
−∆µ

∂L
∂∆µφ

= 0. (3)

In the specific case of a massive scalar field theory,
equation 3 is as follows:

∆µ∆µφ+m2φ = 0. (4)

In Cartesian coordinates, the modes are given by the
exponential function on n-scales:

n−1∏
j=0

eikj (xj), (5)

with the condition that ω2 − ~k2 = m2 where ω = k0.
For definition of the function e·(·) see [7]. This type of
solution is valid for an n-scale in the product form of
T1 ⊗ T2 ⊗ · · ·Tn where each Ti are unbounded 1-scales.
If one or many of the 1-scales are bounded, either from
below or above or both, then boundary conditions should
be imposed to find the mode solutions as superposition
of Equation 5.

All of the n-scale may not be covered by a single co-
ordinate chart. Then, solutions in each chart are found
then glued together on the boundaries of each region.
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FIG. 1. Part of a 2-scale in the form of aZ ⊗ bZ is depicted.
Lattice spacing in the horiziontal direction is b, whereas it is
a in the vertical direction. Arrows show the neighborhood
structure of the 2-scale.

III. MASSIVE SCALAR FIELD THEORY ON A
REGULAR 2-SCALE

In this section we consider a specific 2-Scale, aZ ⊗ bZ
where a denotes the time-spacing and b denotes the
space-spacing. See Figure 1. Now, we can easily make a
change of variable t = ap, x = bq where p, q are integers.
In this case the mode solution given in Cartesian coordi-
nates (see equation 5) is eiω(t)eik(x). When the 2-scale
exponential functions are evaluated, mode solutions are:

(1 + iωa)p(1 + ikb)q. (6)

When the space is finite, say it consists of n+1 points,
we choose a boundary condition on the field that one
must have φ(x = 0) = φ(x = nb) = 0. Therefore the
spatial part of the field must be (1 + ikb)q − (1 − ikb)q
for the mode to vanish at x = 0. Imposing the boundary
condition on x = nb we obtain:

(1 + ikb)n − (1− ikb)n = 0. (7)

The solution of this polynomial equation are found [6]
as:

krb = tan(rπ/n), r = 0, 1, . . . , n− 1 (8)

As is seen there are finitely many solutions (When n
is even we disregard kn/2 = ∞ because the polynomial
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FIG. 2. For n = 30, k values obtained from the model and the
square well are compared. Blue points denote the the values
for discrete space model, whereas the orange points stand for
the steadily increasing values of k in quantum square well.

equation becomes degree of n − 1). This makes sense
because it should not have infinitely many solutions as
in the case of quantum well because UV wavelengths has
no meaning in this model. However, as a caution one
must note that this model exhibits wavelengths shorter
than b. However these modes do not have arbitrarily
short wavelentghs. The structure of the 2-scale provides
a barrier for UV modes.

The wavenumbers of this model almost matches with
that of the quantum well (which is krb = rπ/n) in the
limit n� 1. This is a good sign showing that the discrete
model gives the energy spectrum of quantum well of the
same size when there are many lattice points.

There is another point to consider, which is that the
maximum of kb increases with increasing n. If n → ∞,
this maximum approaches infinity as well. Therefore the
2-scale structure of spacetime in this model manifests
itself best when n is smaller.

In Figure 2 we compare the k values of discrete model
and quantum well. As one sees there is a maximum value
for k in the discrete model corresponding to the maxi-
mum energy.

As the last step of this section, let us normalize the
mode solutions. We have

ψ =
A(1 + iωa)p

|1 + iωa|p
[(1 + ikb)q − (1− ikb)q] , (9)

for some A ∈ R. We requre
∫ nb
0

∆x|ψ|2 = 1. First of
all the temporal part can be taken out of the integral, so
only the phase of the temporal part will remain in the
normalized ψ. It is

exp(p log(1 + iωa)). (10)

The spatial part requires more care:

|A|2
∫ nb

0

∆x
∣∣∣(1 + ikb)x/b − (1− ikb)x/b

∣∣∣2 . (11)

This integral is equal to the following sum:

|A|2
n−1∑
q=0

|(1 + ikb)q − (1− ikb)q|2 . (12)

All in all the mode solutions are found as:
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FIG. 3. Part of a general 2-scale is depicted. Note that the
neighborhood structure is that of a rectangular lattice.

ψ = A exp(p log(1+iωa)) [(1 + ikb)q − (1− ikb)q] , (13)

where 1/A2 =
∑n−1
q=0 |(1 + ikb)q − (1− ikb)q|2.

Notice that the in the limit a→ 0 the temporal part in
Equation 13 approaches exp(iωt). In the limit b→ 0, the
spatial part becomes proportional to sin(kx) as required.

IV. MASSIVE SCALAR FIELD THEORY ON
N-SCALE

When considering n-scales in physics applications, we
think of neighborhood structure of a rectangular lattice.
This makes the metric well defined. If the symmetry re-
quirements of the system requires non-rectangular neigh-
borhood structure, one can embed n-scale in a higher di-
mensional Minkowski spacetime. In Figure 3 part of a
general 2-scale is shown.

The metric tensor on an n-scale is calculated similar
to its counterpart on manifolds, using the basis vectors.
However, in this case the basis vectors are found using the
neighborhood structure and the forward jump operators.
At the point p, the metric tensor is given as follows:

gµν = [σµ(p)− p] · [σν(p)− p], (14)

where the forward jump operator σµ(p) is the µ’th
neighbor of the point p where it can be reached in the di-
rection of a suitable arrow emanating from p. The metric
tensor is not defined for points not lying on the n-scale.

FIG. 4. A simple 2-scale is given. It shows that n-scales can
be used to handle the big bang singularity or any other type
of singularity. The single point at the bottom is the big bang
singularity. In this case, it seems that space and time are the
same thing, all coming into existence at once.

On the other hand, the ∆-derivative at the point p
becomes:

∆µφ|p =
∂φ

∆xµ
|p =

φ(σµ(p))− φ(p)

|σµ(p)− p|
, (15)

where norms are evaluated using the Minkowski met-
ric and the coordinate xµ increases along the points con-
nected with the same neighborhood value of µ.

In general the field equation (4) is quite involved. Only
under specific symmetry conditions can it be solved an-
alytically. In general the solutions should be found via
computer simulations.

Despite the hardness of finding analytical solutions, n-
scales are very useful is that they can model singularities
in spacetime. In Figure 4 a simple 2-scale is given that
shows how to handle singularities in the n-scale approach.

V. CONCLUSION

In this paper we investigated massive scalar field the-
ory on n-scales. In a specific case of a regular 2-scale,
we found that the IR energy spectrum was almost un-
modified when there are enough spatial points. This is
regarded as a good sign because the model reproduced
the known results in the continuum approximation.

Then field equation on a general n-scale were given. It
has been seen that the field equation can only be solved
via computer simulations.

Although we have considered n-scales with rectangular
neighborhood structures, other neighborhood structures
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such as triangular or hexagonal or irregular structures
can be considered as well. However those cases are harder
to handle because both they require more complex solu-
tions and it is mode likely that the field equation will be

over-determined. Lastly, we propose that n-scales might
be a good way to model singularities encountered in the
general theory of relativity.

[1] B. Aulbach and S. Hilger. Linear dynamic processes with
inhomogeneous time scale. Non-Linear Dynamics and
Quantum Dynamical Systems, 59:9–20, 1990.

[2] M. Bohner and A. Peterson. Dynamic Equations on Time
Scales An Introduction With Applications. Birkhauser,
2001.

[3] M. Bohner and A. Peterson. Advances in Dynamic Equa-
tions on Time Scales. Birkhauser, 2003.

[4] Martin Bohner and GS Guseino. Multiple integra-
tion on time scales. Dynamic systems and applications,
14(3/4):579, 2005.

[5] Furkan Semih Dündar. The theory of n-scales.
viXra:1606.0324.

[6] The authors thank Ali Nesin in this regard.
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