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Abstract: We propose a new methodology for multiple imputation when faced 
with missing data in multi-environmental trials with genotype-by-environment 
interaction, based on the imputation system developed by Krzanowski that uses 
the singular value decomposition (SVD) of a matrix. Several different iterative 
variants are described; differential weights can also be included in each variant 
to represent the influence of different components of SVD in the imputation 
process. The methods are compared through a simulation study based on three 
real data matrices that have values deleted randomly at different percentages, 
using as measure of overall accuracy a combination of the variance between 
imputations and their mean square deviations relative to the deleted values. 
The best results are shown by two of the iterative schemes that use weights 
belonging to the interval [0.75, 1]. These schemes provide imputations that 
have higher quality when compared with other multiple imputation methods 
based on the Krzanowski method. 
Key words: Singular value decomposition, weights, missing data, genotype-by-
environment interaction, plant breeding.
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INTRODUCTION

In plant breeding, multi-environment trials are important in order to test 
the general and specific adaptation of cultivars. A cultivar which grows in 
different environments will show significant fluctuations of performance in 
production relative to other cultivars. These changes are influenced by different 
environmental conditions; and in crop science literature they are commonly 
referred to as genotype-by-environment interactions, or G×E. Some useful 
references can be found in Arciniegas-Alarcón et al. (2013).   

Although G×E trials are planned to be balanced, missing values occur for 
various reasons, such as removal of underperforming genotypes, inclusion of 
new genotypes, human errors or natural causes. For instance, plants might be 
destroyed by animals, by floods, or during the harvest, while yield measurements 
may be erroneously carried out or incorrectly entered into the data base 
(Rodrigues et al. 2011). 

Hence, the result is usually an unbalanced trial which cannot be directly 
analyzed by recommended and efficient methods based on the AMMI model 
or on the biplot (Yan et al. 2007, Yang et al. 2009, Gauch 2013). The principal 
difficulty is that these methods involve the calculation of the singular value 
decomposition (SVD) of a matrix, which does not exist for matrices with missing 
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values (Gabriel 2002, Arciniegas-Alarcón et al. 2014a). 

Possible ways of analysing G×E trials containing missing values are: i) extracting a balanced subset of data, by deleting 
those genotypes or environments which contain any missing values (Ceccarelli et al. 2007, Yan et al. 2011); ii) filling the 
missing cells with environmental means; or iii) filling the missing cells with values estimated from fitted multiplicative 
or mixed linear models (Arciniegas-Alarcón et al. 2011, Kumar et al. 2012). Some researchers prefer to use either the 
mixed linear model based on the statistical method of Restricted Maximum Likelihood/Best Linear Unbiased Prediction 
(REML/BLUP) or Bayesian approaches. For a description of these methodologies see, e.g., Fritsche-Neto et al. (2010), 
Crossa et al. (2011), Josse et al. (2014) and Omer et al. (2015).

These strategies may overcome the lack of balance in the data, but none of them is simple and effective (Yan 2013). 
The first strategy does not make use of all the available information; the second one may have problems when too many 
values are missing; and the third one involves multiple steps and complicated procedures. See Yan (2013) for details. 

Krzanowski (1988) proposed a perfectly general imputation scheme free of any distributional and structural 
constraints, which uses SVD to impute missing values. The scheme can be used on any data set that can be arranged 
in matrix form and, therefore, can be applied in G×E trials. The procedure provides simple imputation; however, Josse 
and Husson (2012) and van Buuren (2012) have warned that such methods do not take into account the uncertainty 
produced by the imputation. Moreover, if parameters are subsequently estimated from the imputed values, then the 
standard errors will be underestimated, which means that confidence intervals and tests will not be valid, even if the 
imputation model is correct. 

In order to solve this problem, multiple imputation (MI) (Rubin 1987, Harel and Zhou 2007, Allison 2012, Rässler 
et al. 2013) can be used. This involves three distinct steps: i) Imputation: The missing values are estimated M times, 
generating M completed data sets (observed+imputed); ii) Analysis: The M completed data sets are analyzed using 
appropriate statistical procedures for the problem at hand; iii) Combination: The M separate sets of results are combined 
into one single inference.

The literature and the associated statistical software provide several alternatives of MI, such as the parametric 
regression, the propensity score method, or the Markov chain Monte Carlo (MCMC) method (Zhang 2003, Yuan 2011). 
However, these methodologies require that certain assumptions are met. The assumption in all three methods is that 
the missing data depend on observed variables, which means that there is a missing at random mechanism (MAR), as 
defined by Little and Rubin (2002). Also, parametric regression and MCMC depend on the assumption of multivariate 
normality.

In this paper, a method is proposed for the first step of MI that does not make any distributional or structural 
assumptions in G×E experiments, by modifying the algorithm presented by Krzanowski (1988), and taking related 
literature into account.

MATERIAL AND METHODS

In order to describe the Krzanowski method, consider a matrix Y (n×p) with elements yij (i = 1,...n; j=1...p) and n 
> p (if n < p, the matrix should be first transposed). First, suppose there is just one missing value yij in Y. Then, delete 
the i-th row from Y and calculate the SVD for the ((n – 1)×p) resulting matrix Y(–i) as Y(–i) = U D VT , U =(ush), V =(vsh), D = 
(d1,...,dp). For the next step, delete the j-th column from Y in order to obtain the SVD for the (n×(p – 1)) matrix Y(–j) as Y(–j)  
= ~U ~D ~VT, ~U =(~ush), 

~V =(~vsh) , 
~D = (~d1,...,

~dp–1) . The matrices U, V, ~U and ~V are orthonormal, while ~D and D are diagonal.  
Afterwards, combine the two SVDs, Y(–i) and Y(–j), and the imputed value will be given by

( )( )∑
=

=
H

h
hjhhihij dvduy

1

~~ˆ          (1)

where H = min{n – 1, p – 1}. When there is more than one missing value, an iterative scheme is required as follows.  
Initially replace all missing values by their respective column means, giving a completed matrix Y, and then standardize 
the columns by subtracting mj and dividing the result by sj (where mj and sj represent the mean and the standard 
deviation of the j-th column calculated only from the observed values).  Using the standardized matrix, recalculate the 

ij ih jh
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imputation for each missing value using the equation (1). Finally, return the matrix Y to its original scale, yij  = mj + sjŷ
 
ij. 

Then iterate the process until stability is achieved in the imputations.  In order to avoid convergence problems, a parity 

check should be done in each iteration by matching the sign of ( )( )hjhhih dvdu ~~  in (1) to the sign of uihdhvjh obtained 
from the SVD of the Y matrix for each h = 1,...,H (Eastment and Krzanowski 1982).

It is possible to avoid the parity check by using an alternative expression for (1) following the results of Bro et al. 
(2008).  The authors suggest updating the missing yij by the corresponding element of the matrix 

S = (~U(~U)+)Y(V(V)+)T            (2)

where (•)+ represents the Moore-Penrose generalized inverse.  It is noted that for each missing observation a different 
S matrix will be calculated; the inclusion of (2) in the algorithm makes the imputation be basically an expectation 
maximization (EM) operation (Bro et al. 2008).

On the other hand, to obtain MI from the Krzanowski method, Bergamo et al. (2008) proposed a generalization to 
the exponents of ~dh and dh, replacing equation (1) by

( )( )∑
=

−=
H

h

a
hjh

a
hihij dvduy

1

1~~ˆ          (3)

where a is the weight in the interval [0,1] given to Y(–j). Specification of a automatically determines the weight for Y(–i).  
For example, a weight a=0.4 for Y(–j) gives the weight 1-a=0.6 for Y(–i). Bergamo et al. (2008) assert that 5 imputations 
for each missing value is enough to ensure variability among imputations. For this reason, the authors suggest using 
weights a=0.4, 0.45. 0.50, 0.55 and 0.60 in turn for Y(–j), each value of a providing a different imputation.  

Recently, Arciniegas-Alarcón et al. (2014b) have used a small modification for equation (3). They included two 
constants to eliminate the bias produced by the systematic underestimation of ~D and D in relation to D (Louwerse et 
al. 1999), using the expression 

( )( ) ( )( )∑
=

−
−−=
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1
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11~~ˆ     (4)

In (4), the number of components H needs first to be specified. Krzanowski (1988) and Bergamo et al. (2008) used 
H = min{n–1, p–1} with the objective of using the maximum available information in the matrix. However, this choice 
can produce low efficiency of imputation in multi-environment trials (Arciniegas-Alarcón and Dias 2009) and lead to 
convergence problems (Hedderley and Wakeling 1995).  For these reasons, the authors obtained better results by 

choosing H = min{A,B}, where A is such that 
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To propose an alternative methodology of MI based on the Krzanowski method, it is suggested that a multiplicative 
weight wt ϵ [0,1] is included in equation (1). Thus the following expression is used:

( )( )∑
=

=
H

h
hjhhihtij dvduwy

1

~~ˆ     (5)

with t=1,...,M , where M represents the number of imputations, so that the inclusion of different weights will produce 
different imputations for each missing value. Again, M=5 can be used, since this number produces good statistical 
efficiency in many practical applications (van Buuren 2012).  Each weight wt can be interpreted as the influence placed 
on the SVD components in the final imputation, similar to that in the iterative scheme using mj + sjŷ

 
ij. For instance, if the 

weight wt is low, the imputation will depend more on the column means, which are updated in each iteration.  Similarly, 
the weight wt can also be included in equation (2) to obtain another MI form 

St = wt(
~U(~U)+)Y(V(V)+)T       (6)

The influence of the SVD in the imputation was defined in terms of percentage. Thus, the interval between 0 and 1 
was used for wt, and seven groups of values were considered: Group1 = 0, 0.05, 0.1, 0.15, 0.2; Group2 = 0.25, 0.3, 0.35, 
0.4, 0.45; Group3 = 0.5, 0.55, 0.60, 0.65, 0.7; Group4 = 0.75, 0.8, 0.85, 0.9, 0.95; Group5 = 0.96, 0.97, 0.98, 0.99, 1; Group 
6: 0.2, 0.4, 0.6, 0.8, 1; and Group7 contains 5 random numbers from the uniform distribution, i.e.,wt ~U[0,1]. The groups 
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were empirically defined following the work of Arciniegas-Alarcón et al. (2014a), which proposed MI in incomplete two-
way tables through a variation in the exponents of the diagonal matrix elements obtained in the calculation of a SVD.  

With the seven groups for wt, and the two new proposed equations for imputation, there are in total 14 possible 
variations of MI under the Krzanowski system. These variations are denoted “SVDi+PC” and “SVDi+EM”, with i =1,...,7. 
Here, “SVDi+PC” indicates the iterative scheme with parity check using equation (5) and group i for the values of wt, while 
“SVDi+EM” indicates the iterative scheme with EM imputation using the equation (6) and group i for the values of wt.  

 These 14 variations were assessed against the iterative scheme with parity check that uses equation (4) for imputation. 
This latter method was treated as the standard method (or “gold standard”), and was denoted “MIK-Adjusted”. An 
extension of “MIK-Adjusted” was also included by assuming that the exponent a can be chosen randomly, and a~U[0,1]; 
this extension was called “Unif-MIK-Adjusted”. Both “MIK-Adjusted” versions and the variations described above need the 
value of H (i.e. the number of components of SVD to be retained) to be previously determined.  This value was obtained 
using the cv.SVDImpute function of the imputation package from R, which carries out cross-validation in incomplete 
matrices (Wong 2013, García-Peña et al. 2014, Arciniegas-Alarcón et al. 2014b).

To evaluate the imputation systems, the methodology proposed by Yan (2013) was used, by taking complete real multi-
environmental matrices, randomly deleting observations from them at different percentages, applying the algorithms, 
and then using appropriate summary statistics to compare the imputations with the real data. Molale et al. (2013) 
describe some of these performance measures, such as: the Root Mean Square Error (RMSE), the Mean Absolute Error 
(MAE), the Relative Absolute Error (RAE), and the Root Relative Squared Error (RRSE). These statistics serve to evaluate 
any imputation system; however, to assess new MI methods, it would be more appropriate to use statistics involving 
the variability between imputations. For this, Penny and Jolliffe (1999) introduced the Tacc statistics, which will be used 
in this study and which is described below.

Three data sets from G×E trials were considered, which had been previously used by Lavoranti et al. (2007), Yang 
(2007) and Rad et al. (2013), respectively. The first data set (Rad et al. 2013) consists of a 36×6 matrix for 36 wheat 
genotypes assessed in six environments under normal and drought stress conditions, at an experimental farm of the 
University of Putra, Malaysia. The studied variable was the mean plant grain yield (gr). The second data set (Lavoranti 
et al. 2007) comprises a 20×7 matrix, for 20 Eucalyptus grandis progenies assessed in seven locations in the south and 
southeast regions of Brazil, and the studied variable was mean tree height (m). Lastly, the third data set (Yang 2007) 
is a 6×18 matrix, corresponding to six barley genotypes assessed in 18 environments in Alberta, Canada. The studied 
variable was yield (Mg ha-1). 

Table 1 shows the results from a preliminary study on the choice of the number of multiplicative components (to 
explain the G×E interaction) of the AMMI model that can be used for each selected data set, on which  a simulation 
study is described below. The method of cross-validation “leave-one-out” by eigenvector (Bro et al. 2008, Gauch 2013) 
was used to select each model, and the best model was the one which has the lowest PRESS statistics. It can be seen 
that AMMI3 is an appropriate model for the wheat matrix; AMMI1 is appropriate for the barley matrix; and AMMI2 is 
appropriate for the eucalyptus matrix. Therefore, these three data sets represent a wide range of data sizes and structures 
typically found in G×E trials, and thus provide good basis for drawing general conclusions for such trials.

Each original data matrix (wheat, eucalyptus and barley) 
was submitted to random deletion of values at the three 
rates 10%, 20%, and 35%, since according to Yan (2013), 
in G×E trials, generally, the number of missing values is 
lower that 40%. The process was repeated in each data 
set replicated 1000 times for each percentage of missing 
values, giving a total of 3000 different matrices with missing 
values. Altogether, therefore, 9000 incomplete data sets 
were available, and for each one, the missing values were 
imputed with the 16 MI algorithms, using computational 
code in R (R Core Team 2014).

Table 1. Values of Predicted REsidual Sum of Squares (PRESS) us-
ing cross validation by eigenvector in choosing the AMMI model 
to explain the interaction in the original (complete) data matrices  

PRESS
Model Wheat Barley Eucalyptus
AMMI1 101.9163 5.2715       75.1109
AMMI2 25.5996 5.6601       73.8176
AMMI3 0.0016 12.105     100.3585
AMMI4 0.0037 60.497     134.3914
AMMI5 0.0617 721.725     575.0878
AMMI6   56146.3357
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The random deletion process for a matrix Y(n×p) was carried out as follows. Random numbers between 0 and 1 were 
generated in the R software with the runif function. For a fixed r value (0< r <1), if the (pi + j)-th random number was 
lower than r, then the element in the (i+1, j) position of the matrix was deleted (i =0,1,...,n–1; j =1,...,p). The expected 
proportion of missing values in the matrix will be r (Krzanowski 1988, Arciniegas-Alarcón et al. 2013). This technique 
was used with r = 0.1, 0.2 and 0.35.

The imputation accuracy was assessed with the Tacc statistics, proposed by Penny and Jolliffe (1999), which has 
been recently used by Bergamo et al. (2008) and Arciniegas-Alarcón et al. (2014a). Tacc is a measure of overall accuracy 
formed from the sum of the pooled variance between imputation within positions (VE) and the mean squared bias 
between the imputations mean and the original value deleted in the simulation study (VQM). Thus: Tacc = VE+VQM, 

where 
( )( )

∑
∑
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; in which “na” is the total number of 

deleted values from the G×E matrix.  Each deleted value l has the corresponding position (i, j) in the matrix, that is, in 
the i-th row and the j-th column. M is the number of imputations for the missing value l; ŷ 

ij(m) is the m-th imputation for 
that value according to the proposed methods; Yl is the imputations mean produced for the missing value l; and VOl is 
the original value l in the complete original data set. 

According to Penny and Jolliffe (1999), a good MI method will be that with small values for VE and VQM, which implies 
low values of Tacc. Thus, since “MIK-Adjusted” was treated as the standard method, any method having values for Tacc 
lower than those for “MIK-Adjusted” was considered as a good imputation method. It is worth pointing out that only 
having a reduced value of VE does not imply good imputation quality, since the method can be biased. 

RESULTS 

Wheat data
Table 2 shows the means and medians of Tacc, at the different percentages of values deleted randomly (10, 20 and 

35%) for the wheat data set. The best results at each imputation percentage (minimizing the mean and median of Tacc) 
were obtained by SVD4+EM and SVD5+EM.  At 35% imputation, SVD4+PC and SVD5+PC were also better than any of the 
MIK methods. These results indicate that the weights of wt should be chosen in the interval [0.75;1]. However, the values 

Table 2. Means and medians of Tacc at different percentage levels for the wheat data

Method 10% 20% 35%
 Mean Median Mean Median Mean Median

MIK-Adjusted 0.8134 0.7405 1.1033 0.9066 2.0940 2.0973
Unif-MIK-Adjusted 0.8162 0.7397 1.1078 0.9100 2.1257 2.1052
SVD1+EM 3.8823 3.7468 3.9793 3.9349 4.2070 4.1778
SVD2+EM 2.4126 2.3176 2.6866 2.5963 3.2988 3.2952
SVD3+EM 1.3213 1.2417 1.6496 1.5215 2.5055 2.5268
SVD4+EM 0.6867 0.6477 0.9704 0.8123 1.9740 2.0524
SVD5+EM 0.5677 0.5319 0.8362 0.6781 1.9511 1.9913
SVD6+EM 1.6024 1.5292 1.8847 1.7768 2.7013 2.7187
SVD7+EM 1.9681 1.8278 2.2205 2.0956 2.9165 2.9321
SVD1+PC 3.9073 3.7755 3.9881 3.9506 4.1932 4.1669
SVD2+PC 2.4975 2.3961 2.7339 2.6276 3.2761 3.2582
SVD3+PC 1.4725 1.3911 1.7536 1.6124 2.4960 2.5258
SVD4+PC 0.9010 0.8361 1.1628 1.0035 2.0045 2.0862
SVD5+PC 0.8086 0.7371 1.0855 0.9024 2.0285 2.0471
SVD6+PC 1.7500 1.6724 2.0014 1.8781 2.7045 2.7380
SVD7+PC 2.1132 1.9294 2.3123 2.1814 2.9151 2.9143

na na
VO
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of Tacc in all the remaining 11 imputation systems were higher than for MIK-Adjusted. Therefore, the least recommended 
algorithms are those with wt in the interval [0;0.45], namely SVDi+PC and SVDi+EM, with i=1,2.

The algorithms that assumed a uniform distribution for a in the case of Unif-MIK-Adjusted; for wt, in the case of 
SVD7+EM and SVD7+PC deserve special comment. The mean and the median values of Unif-MIK-Adjusted are very close 
to those of MIK-Adjusted, but never lower, and as the percentage of imputation increases, differences remained the same 
or even increased.  The performances of SVD3+EM and SVD3+PC are better than those of SVD7+EM and SVD7+PC at 
all the percentages, which means that the insertion of a random component did not improve the imputation efficiency. 

One of the initial intentions of the simulation study for wheat data was to determine a set of algorithms that were 
better than MIK-Ajusted, and this is clearly achieved by SVD4+EM, SVD5+EM, SVD4+PC and SVD5+PC. Thus, the results 
will be considered consistent if at least one of the four imputation systems minimizes Tacc in the other multi-environmental 
data matrices. 

Eucalyptus data 
Table 3 shows the means and medians of Tacc, at the different percentages of values deleted randomly (10, 20 and 

35%) for the eucalyptus data set. Similar behaviour was found to that described in the wheat data.  For instance, i) 
Unif-MIK-Adjusted never beats the gold standard MIK-Adjusted, ii) SVD3+EM and SVD3+PC always perform better than 
SVD7+EM and SVD7+PC, respectively, and iii) the least recommended systems are SVDi+PC and SVDi+EM, with i=1,2, 
(i.e., the imputations less influenced by SVD due to the chosen weight), since they have the worst performance among 
the proposed methodologies.  

SVD4+PC, SVD5+PC and SVD4+EM beat MIK-Adjusted in all the imputation percentages.  It is worth mentioning that 
the means and medians of Tacc for SVD4+PC are lower than those of SVD4+EM, i.e., a method that involves a parity check 
beats an imputation of type EM – which is a different result from those found in wheat data. While in the wheat matrix 
SVD5+EM was better than MIK-Adjusted, here the opposite occurs. 

Barley data
Table 4 shows the means and medians of Tacc, at the different percentages of values deleted randomly (10, 20 and 

35%) for the barley data set.  In this case, only SVD5+EM presents better results than MIK-Adjusted, while SVD4+EM, 
SVD4+PC and SVD5+PC exhibit higher values of Tacc than for the standard algorithm. The other 11 variations of the 
Krzanowski method presented the same behaviour of the wheat and eucalyptus data.

Table 3. Means and medians of Tacc at different percentage levels for the eucalyptus data

Method 10% 20% 35%
 Mean Median Mean Median Mean Median

MIK-Adjusted 0.9543 0.9079 0.9772 0.9586 1.0699 1.0428
Unif-MIK-Adjusted 0.9545 0.9085 0.9781 0.9606 1.0753 1.0487
SVD1+EM 1.5550 1.4860 1.5989 1.5805 1.6604 1.6564
SVD2+EM 1.2252 1.1754 1.2829 1.2545 1.3832 1.3707
SVD3+EM 1.0101 0.9675 1.0540 1.0321 1.1506 1.1362
SVD4+EM 0.9356 0.8932 0.9578 0.9369 1.0328 1.0104
SVD5+EM 0.9591 0.9120 0.9840 0.9676 1.0878 1.0568
SVD6+EM 1.0955 1.0576 1.1374 1.1170 1.2347 1.2185
SVD7+EM 1.1638 1.1203 1.1991 1.1812 1.2919 1.2787
SVD1+PC 1.5533 1.4854 1.5966 1.5780 1.6572 1.6534
SVD2+PC 1.2225 1.1735 1.2797 1.2523 1.3787 1.3670
SVD3+PC 1.0083 0.9640 1.0526 1.0305 1.1487 1.1340
SVD4+PC 0.9297 0.8877 0.9521 0.9328 1.0244 1.0054
SVD5+PC 0.9464 0.8981 0.9671 0.9502 1.0500 1.0239
SVD6+PC 1.0905 1.0542 1.1312 1.1096 1.2211 1.2062
SVD7+PC 1.1583 1.1064 1.2006 1.1652 1.2864 1.2720
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DISCUSSION 

The main conclusion is that the MI methods which have been derived from the simple imputation system of Krzanowski 
may have advantages over the current standard method for a wide range of G×E interaction structures encountered 
in practice. The four imputation systems SVDi+PC and SVDi+EM with i=4,5 showed better results than the standard 
method in simulations involving the largest matrix (216 observations), having the most complex interaction structure. 
For smaller matrices and less complex interactions, a subset of these four methods beat the standard. For the matrix 
with 140 observations and intermediate interaction structure, this subset comprised SVDi+PC and SVDj+EM for i=4,5 
and j=4, while for the smallest matrix of 108 observations and simplest interaction structure, it contained just SVD5+EM.

In the light of these results, it is clear that it is only worthwhile considering weights w in the range [0.75, 1.0] (since 
low values of w mean that the benefits of SVD are being ignored).  However, some selection must be initially carried 
out between the four sets of weights and the methods identified above as the best ones. A fast path in a practical 
case would be to test the set of four algorithms in order to determine the best one. However, a deeper analysis of the 
previous results should take into consideration the fact that each method has two parts: one related to the weight wt, 
and the other related to the iterative scheme used (i.e. iterations with parity check or of type EM). According to Tacc, 
the best result is obtained when wt belongs to group 5 in the three considered matrices, as this always outperforms 
MIK-Adjusted. On the other hand, a definitive conclusion about the iterative scheme could not be obtained. Thus, in a 
real situation of incomplete G×E matrices, it is recommended to test both systems SVD5+PC and SVD5+EM.

It is also worth commenting that in the context of cross-validation for components, Bro et al. (2008) pointed out that 
the Eastment and Krzanowski (EK) method (1982) has a problem of rotational freedom, and the parity check is a source of 
overfitting. However, in this study, it was found that, in some cases, the parity check within an iterative scheme can offer 
better predictions than the EM algorithm described by Bro et al. (2008). Thus a hypothesis to investigate in the future 
is that the influence of rotation problems and overfitting on the predictions might be minimized if EK is used iteratively.

Finally, the researcher may be interested in how to test SVD5+PC and SVD5+EM on a set of incomplete data. It is 
suggested that, starting with the observed data, some of the entries are randomly deleted (for instance, between 10% 
and 30%), the two algorithms are applied, and the Tacc statistic values are calculated. The deletion procedure is then 
repeated (for example, 100 times), and the mean and median of all the values are found. The method with the lowest 
mean or median will be the method to be used on the matrix with missing values. Another option is to choose the method 
according to the magnitude of the imputation uncertainty, using for the estimation the non-parametric methodology 
proposed by Heydarbeygie and Ahmadi (2013).

Table 4. Means and medians of Tacc at different percentage levels for the barley data

Method 10% 20% 35%
 Mean Median Mean Median Mean Median

MIK-Adjusted 0.3031 0.2804 0.3255 0.3099 0.4330 0.3704
Unif-MIK-Adjusted 0.3079 0.2829 0.3299 0.3144 0.4393 0.3773
SVD1+EM 4.7696 4.5222 4.7960 4.6668 5.0866 5.0125
SVD2+EM 2.8149 2.6233 3.0103 2.8713 3.5257 3.4083
SVD3+EM 1.3462 1.2127 1.5459 1.4359 2.0596 1.9062
SVD4+EM 0.4754 0.4273 0.5529 0.5125 0.8074 0.6968
SVD5+EM 0.2923 0.2680 0.3103 0.3020 0.3863 0.3532
SVD6+EM 1.7105 1.5745 1.8438 1.7662 2.2215 2.0994
SVD7+EM 2.2033 1.9248 2.3676 2.2095 2.7531 2.5910
SVD1+PC 4.7738 4.5268 4.7958 4.6679 5.0800 5.0108
SVD2+PC 2.8460 2.6428 3.0308 2.8929 3.5320 3.4170
SVD3+PC 1.4081 1.2563 1.6018 1.4913 2.1055 1.9644
SVD4+PC 0.5311 0.4572 0.6181 0.5566 0.8947 0.7866
SVD5+PC 0.3138 0.2860 0.3406 0.3213 0.4541 0.3946
SVD6+PC 1.7487 1.6056 1.8792 1.7874 2.2587 2.1477
SVD7+PC 2.2989 2.0552 2.3599 2.2049 2.8065 2.7264
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