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Abstract – The solution for the problem of Breakdown of Euler Equations, like the 

Millenium Problem for Navier-Stokes equations. 

§ 1 

 Motived by the 6th Millenium Problem, relative to the solution of the Navier-

Stokes equations or prove of the inexistence of solutions, obeying certain conditions, I 

wrote this paper for solve this problem substituting Navier-Stokes by Euler equations, 

since that these same questions are unsolved for Euler equations, although these last 

are not on the Clay Institute’s list of prize problems.[1] The natural sequence of this 

paper is the correspondent to Navier-Stokes equations. 

 In his famous Méchanique Analitique (1788), using the notions of total or 

complete differential and exact differential, and creating the concept of velocity-

potential, for an external force with potential (a gradient or conservative external 

force, which also can be a force equal to zero) Lagrange came to the conclusion that 

Euler´s equations could be solved only for two specific conditions: (1) for potential 

(irrotational) flows, and (2) for non-potential (rotational) but steady flows.[2],[3] In 

Lagrange[3], pp. 536-542, the pressure is represented as 𝜆, the external force 

components as 𝑋, 𝑌, 𝑍, the velocity components as 𝑝, 𝑞, 𝑟, the rectangular 

coordinates as 𝑥, 𝑦, 𝑧 and time as 𝑡. The velocity-potential is 𝜑 and the force-

potential is 𝑉. 

 The solution for pressure obtained by Lagrange for incompressible fluids in 

potential flow case was 

  𝜆 = 𝑉 +
𝑑𝜑

𝑑𝑡
+

1

2
(

𝑑𝜑

𝑑𝑥
)

2
+

1

2
(

𝑑𝜑

𝑑𝑦
)

2
+

1

2
(

𝑑𝜑

𝑑𝑧
)

2
, 

and an arbitrary function of 𝑡 could be added here because this variable is treated 

in the integration as a constant, which is nothing more nor less that the Bernouilli’s 

law, except by the signs of 𝜆 and 𝑉 (the use by Lagrange of 𝑑 is as our 𝜕, means 

partial derivative).  

 The determination of 𝜑 will depend upon equation (continuity equation, the 

incompressibility condition) 

  
𝑑𝑝

𝑑𝑥
+

𝑑𝑞

𝑑𝑦
+

𝑑𝑟

𝑑𝑧
= 0, 
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in which after substitution of the expressions 
𝑑𝜑

𝑑𝑥
,

𝑑𝜑

𝑑𝑦
,

𝑑𝜑

𝑑𝑧
 for 𝑝, 𝑞, 𝑟 becomes 

  
𝑑2𝜑

𝑑𝑥2
+

𝑑2𝜑

𝑑𝑦2
+

𝑑2𝜑

𝑑𝑧2
= 0, 

that is the Laplace’s equation.   

 Thus, conclude Lagrange, all the remaining difficulty will now lie in the 

integration of this last equation.  

 Of course that it is possible describe a fluid movement without potential 

flow and conservative forces, simply by setting the external force as  

(1.1)  𝒇 = ∇𝑝 +
𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ ∇)𝒖, 

given any pressure 𝑝 and velocity 𝑢, both differentiable functions of class 𝐶 and 𝐶2, 

respectively, velocity with potential or no, obeying the incompressibility condition 

or no, but we do not need this kind of force here. 

 In the present paper we are interested only in conservative external forces, 

i.e., with potential, including zero, and the validity of incompressible flow 

condition, which require for the solution of Euler equations a potential velocity for 

non-steady flows. 

 I think that the deduction used by Lagrange in Euler’s equations can be 

implemented also in Navier-Stokes equations, and we will come to ∇2𝒖 = 𝟎. I am 

hopeful to prove this in next article, concluding this subject. Really, today, 08-12-

2016, my answer to the problem of breakdown of Navier-Stokes equations is as 

follow: given an initial velocity 𝒖𝟎 which is potential flow and a not null and not 

conservative external force, in special both belonging to the Schwartz Space, there 

is no solution (𝒖, 𝑝) for Navier-Stokes equations, velocities 𝒖 and 𝒖𝟎 obeying the 

incompressibility condition or not, i.e., satisfying the Laplace’s equation or not, 

which is not exactly equal to the Lagrange’s proof. My prototype of external force is     

(1.2)  𝒇 = 𝝓 + [(𝒖𝟎 ∙ ∇)𝒖𝟎 − 𝜈 (∇2𝒖𝟎 +
𝟏

𝟑
∇(∇ ∙ 𝒖𝟎))] 𝑒−𝑡 , 

where 𝝓 is non gradient and decreases exponentially in the time. 

§ 2 

 When ∇ × 𝒖 = 0 then exist a potential function 𝜙 such that 𝒖 = ∇𝜙. When 

∇ × 𝒖 = 𝟎 and ∇ ∙ 𝒖 = 0 then ∇2𝜙 = 0 and ∇2𝒖 = 𝟎, therefore the Navier-Stokes 

equations are reduced to Euler’s equations and the solutions for velocity are given 

by Laplace’s equation, they are harmonic functions, i.e.,  
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(2.1)  ∇2𝒖 = ∇(∇ ∙ 𝒖) − ∇ × (∇ × 𝒖) = (∇2𝑢, ∇2𝑣, ∇2𝑤) = 𝟎 

and  

(2.2)  𝒖 = ∇𝜙 = (
𝜕𝜙

𝜕𝑥
,

𝜕𝜙

𝜕𝑦
,

𝜕𝜙

𝜕𝑧
) , ∇ ∙ 𝒖 = 0 ⟹ (

𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
+

𝜕2𝜙

𝜕𝑧2 ) = 0.  

 It is clear that there is no uniqueness solution in all cases, in special when 

the velocity is both irrotational and incompressible, even if the velocity vanishes at 

infinity. Defining 𝜙(𝑥, 𝑦, 𝑧, 𝑡) = 𝜙0(𝑥, 𝑦, 𝑧)𝑇(𝑡), 𝑇(0) = 1, 𝑇(𝑡) ≢ 1, then we have  

𝒖 = ∇𝜙 = 𝑇(𝑡)∇𝜙0 = 𝑇(𝑡)𝒖𝟎(𝑥, 𝑦, 𝑧) and so there are endless possibilities for 

constructing 𝒖 given 𝒖𝟎, because there are endless possibilities for constructing 

𝑇(𝑡) with 𝑇(0) = 1, even if lim𝑟→∞ 𝒖 = 𝑇(𝑡) lim𝑟→∞ 𝒖𝟎 = 𝟎, where 𝑟 =

√𝑥2 + 𝑦2 + 𝑧2. Exception if the initial velocity is identically null, when for the 

previous reasoning the velocity is 𝒖 = 𝟎 unique. 

 A more long way to see this is for example as follow. If ∇ ∙ 𝒖 = 0 and 

∇ × 𝒖 = 𝟎 then ∇2𝒖 = 𝟎. For 𝒖 = (𝑢1, 𝑢2, 𝑢3) and 𝒘 = (𝑤1, 𝑤2, 𝑤3), defining 

𝑤𝑖 = 𝐴(𝑡)𝑢𝑖 + 𝐵𝑖(𝑡), 1 ≤ 𝑖 ≤ 3, we will have ∇ ∙ 𝒘 = 0, ∇ × 𝒘 = 𝟎 and ∇2𝒘 = 𝟎.  

 If 𝒖 = ∇𝜙 solves the Navier-Stokes equations then, from 

(2.3.1)  ∇𝑝 +
𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ ∇)𝒖 = 𝜈∇2𝒖      

(2.3.2)  ∇𝑝 + ∇ (
𝜕𝜙

𝜕𝑡
) + (∇ × 𝒖) × 𝒖 +

1

2
∇|𝒖|2 = 

  = 𝜈(∇(∇ ∙ 𝒖) − ∇ × (∇ × 𝒖))      

(2.3.3)  ∇𝑝 + ∇ (
𝜕𝜙

𝜕𝑡
) + ∇ (

1

2
|𝒖|2) = 𝟎 

(2.3.4)  ∇ (𝑝 +
𝜕𝜙

𝜕𝑡
+

1

2
|𝒖|2) = 𝟎, 

we obtain  

(2.4)  𝑝 +
𝜕𝜙

𝜕𝑡
+

1

2
|𝒖|2 = 𝜃(𝑡), 

which is the Bernouilli’s law without external force. 

 With a gradient external force 𝒇 = ∇𝑈 we will have 

(2.5)  𝑝 +
𝜕𝜙

𝜕𝑡
+

1

2
|𝒖|2 = 𝑈 + 𝜃(𝑡). 

 For 𝒘 defined as above, substituting 𝒖 ↦ 𝒘 in the Navier-Stokes equations 

(2.3.1) comes  
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(2.6)  𝑝 +
𝜕𝜑

𝜕𝑡
+

1

2
|𝒘|2 = 𝑈 + 𝜃(𝑡), 

where 𝜑 = 𝐴(𝑡)𝜙 + 𝐵1(𝑡)𝑥 + 𝐵2(𝑡)𝑦 + 𝐵3(𝑡)𝑧, and 𝑝 is the new pressure for the 

velocity 𝒘 = 𝐴(𝑡)𝒖 + 𝑩(𝑡), 𝑩 = (𝐵1, 𝐵2, 𝐵3). 

 If 𝐴(0) = 1 and 𝐵𝑖(0) = 0, 1 ≤ 𝑖 ≤ 3, then 𝒖 and 𝒘 obey the same initial 

condition and both solve the Navier-Stokes (and Euler) equations and they are 

incompressible and potential flows. Thus, in this case, there is no uniqueness 

solution, for 𝐴(𝑡) ≢ 1 or 𝑩(𝑡) ≢ 𝟎, i.e., 𝒖 ≢ 𝒘. 

 Imposing the boundary condition at infinity 𝒖|𝑟→∞ = 𝟎, 𝑟 = √𝑥2 + 𝑦2 + 𝑧2, 

the velocity 𝒘 = 𝐴(𝑡)𝒖 obey the same boundary condition, for 𝐴(0) = 1, 𝐴(𝑡) ≢ 1 

finite for all 𝑡 ≥ 0, i.e. 𝒘(𝑥, 𝑦, 𝑧, 𝑡) = 𝐴(𝑡)𝒖(𝑥, 𝑦, 𝑧, 𝑡) and 𝒖(𝑥, 𝑦, 𝑧, 𝑡) obey the same 

initial and boundary conditions, so there is no uniqueness solutions for Navier-

Stokes (and Euler) equations in this case of incompressible and potential flows 

with velocity zero at infinity, if 𝒖 ≠ 𝟎.  

§ 3 

 Sobolev[4] (pp. 12, 13, 18, 19) is very assured to affirm that the problem of 

the motion of an incompressible fluid is equivalent to that of finding an unknown 

function 𝑉 (the velocity-potential) such that 

  𝒗 = 𝑔𝑟𝑎𝑑 𝑉, 𝑣𝑥 =
𝜕𝑉

𝜕𝑥
,   𝑣𝑦 =

𝜕𝑉

𝜕𝑦
,   𝑣𝑧 =

𝜕𝑉

𝜕𝑧
. 

Continuing his citation, substituting these expressions for the velocity components 

in the continuity equation, we get 

  𝜚 (
𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
+

𝜕2𝑉

𝜕𝑧2) = 0 

or  

  ∇2𝑉 = 0.        (1.17) 

(…) 

 Later we shall write down the complete set of equations of motion for a 

fluid and we shall show that any function  𝑉 which satisfies (1.17) does indeed 

describe a possible motion of the fluid. Thus to solve a problem of fluid motion it 

suffices to know to find the requisite solutions of equation (1.17). 

 In some circumstances, the velocity 𝒗 and so also the function  𝑉 do not 

depend on the time 𝑡; the motion is then one of steady flow.     

 (…) 
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 We can now verify what was said earlier about the potential flow of an 

incompressible fluid: namely, that 

  𝒗 = 𝑔𝑟𝑎𝑑 𝑉,  

  ∇2𝑉 = 0, 

do actually satisfy the complete set of equations (Euler equations with mass 

density coefficient 𝜚 and external force (𝑋, 𝑌, 𝑍), note mine), if the function 𝜚 is 

defined correspondingly, and if further 

  𝑋 =
𝜕𝑈

𝜕𝑥
, 𝑌 =

𝜕𝑈

𝜕𝑦
, 𝑍 =

𝜕𝑈

𝜕𝑧
, 

i.e., if the external force have a potential.     

 It suffices to show that if we take 

  𝑣𝑥 =
𝜕𝑉

𝜕𝑥
,   𝑣𝑦 =

𝜕𝑉

𝜕𝑦
,   𝑣𝑧 =

𝜕𝑉

𝜕𝑧
, 

then the equations (1.22) (the Euler equations) allow the function 𝑝 to be 

constructed. When the expressions for  𝑣𝑥, 𝑣𝑦, 𝑣𝑧 are substituted, these equations 

yield explicit expressions for  

  
𝜕𝑝

𝜕𝑥
,

𝜕𝑝

𝜕𝑦
,

𝜕𝑝

𝜕𝑧
. 

And it is known from the theory of partial differential equations of the first order 

that the equations will be compatible provided that the mixed second-order 

derivatives 

  
𝜕2𝑝

𝜕𝑥𝜕𝑦
,

𝜕2𝑝

𝜕𝑦𝜕𝑧
,

𝜕2𝑝

𝜕𝑧𝜕𝑥
 

determined from the different equations have the same values. (…) 

 Then, following Sobolev, if the external force is gradient, if it have a 

potential, the solutions for velocity in the Euler’s equations in case of 

incompressible flows are given by Laplace’s equation, the velocity is a harmonic 

function in the three orthogonal directions, not only one possibility among others, 

but in fact they are the unique possible cases of solution, only harmonic functions, 

when the external force is gradient (for example also without external force, 

𝑋 = 𝑌 = 𝑍 = 0) and the fluid is incompressible. 

 The same argument used by Sobolev for solve Euler’s equations can be used 

for solve the Navier-Stokes equations: Thus to solve a problem of fluid motion it 

suffices to know to find the requisite solutions of equation (1.17), ∇2𝑉 = 0. This is 
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like the conclusion of Lagrange, viewed in section § 1, for Euler’s equations in 

potential flow case. 

 All solution of Euler equations is solution of Navier-Stokes equations for 

potential and incompressible flows, when ∇2𝒖 = 𝟎. If 𝒖 = ∇𝜙 then ∇ × 𝒖 = 𝟎, 

because 

(3.1)  ∇ × 𝒖 = |

𝒊 𝒋 𝒌
𝜕/𝜕𝑥 𝜕/𝜕𝑦 𝜕/𝜕𝑘

𝜕𝜙

𝜕𝑥

𝜕𝜙

𝜕𝑦

𝜕𝜙

𝜕𝑧

| = 𝟎  

being  
𝜕2𝜙

𝜕𝑥𝑖𝜕𝑥𝑗
=

𝜕2𝜙

𝜕𝑥𝑗𝜕𝑥𝑖
, 1 ≤ 𝑖, 𝑗 ≤ 3. 

 If ∇ × 𝒖 = 𝟎 (potential flow) and ∇ ∙ 𝒖 = 0 (incompressible flow) then 

(3.2)  ∇2𝒖 = ∇(∇ ∙ 𝒖) − ∇ × (∇ × 𝒖) = 𝟎, 

i.e. the derivatives of second order in Navier-Stokes equations vanishes in case of 

potential and incompressible flows and the Navier-Stokes equations reduced to the 

Euler equations, whose respective solutions are harmonic functions. In this case,  

solve Euler equations implies solve Navier-Stokes equations, supposing the same 

initial and boundary conditions, and if the Navier-Stokes equations has unique 

solution at least in a small and not null time interval [0, 𝑇], with the boundary 

condition lim𝑟→∞ |𝒖| = 𝟎 , 𝑟 = √𝑥2 + 𝑦2 + 𝑧2, then this first solution in time is also 

the solution of Euler equations and the velocity satisfies the Laplace’s equation.        

§ 4 

 How the condition 

(4.1)  
𝜕𝑢𝑖

𝜕𝑥𝑗
=

𝜕𝑢𝑗

𝜕𝑥𝑖
, 1 ≤ 𝑖, 𝑗 ≤ 3, 

equivalent to ∇ × 𝒖 = 𝟎, solve the Euler equations with a null or gradient external 

force 𝒇 = ∇𝑈, so with this external force the condition of irrotational or potential 

flow is a necessary condition for solution of these equations, at least for non-steady 

flows. This has been rigorously proven by Lagrange[3], for incompressible fluids. 

Including the incompressibility condition, we have the Laplace’s equation in vector 

form, ∇2𝒖 = 𝟎 and ∇2𝒖𝟎 = 𝟎, where 𝒖𝟎 is the initial velocity, even without 

uniqueness solution, as viewed in section § 2.     

 For steady flows, where 
𝜕𝒖

𝜕𝑡
≡ 𝟎 and 𝒖 = 𝒖𝟎 for all 𝑡 ≥ 0, the condition for 

existence of solution is that 
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(4.2)  
𝜕𝑆𝑖

𝜕𝑥𝑗
=

𝜕𝑆𝑗

𝜕𝑥𝑖
  

for all pair (𝑖, 𝑗), 1 ≤ 𝑖, 𝑗 ≤ 3, defining  

(4.3)  𝑆𝑖 = 𝑓𝑖 − ∑ 𝑢𝑗
0 𝜕𝑢𝑖

0

𝜕𝑥𝑗

3
𝑗=1 ,  

where 𝒇 ≡ 𝒇𝟎 is the stationary external force. This is a common condition for 

existence of solution for a system ∇𝑝 = 𝑺, representing the stationary Euler’s 

equations, that is ∇ × 𝑺 = 𝟎.    

 Then now is possible go to the solution related to the breakdown of the 

Euler equations, corresponding to the cases (C) and (D) of [1]: without external 

force or with an external force which have a potential, 𝒇 = ∇𝑈, 𝒇 ∈ 𝑆(ℝ3 × [0, ∞)), 

𝑆 representing the Schwartz space, if the initial velocity 𝒖𝟎 ∈ ℝ3 with ∇ ∙ 𝒖𝟎 = 0 is 

not a potential flow and (considering also the steady flows) 
𝜕𝑆𝑖

𝜕𝑥𝑗
≠

𝜕𝑆𝑗

𝜕𝑥𝑖
 for any pair 

(𝑖, 𝑗) such that 1 ≤ 𝑖, 𝑗 ≤ 3, with  

(4.4)  𝑆𝑖 = 𝑓𝑖
0 − ∑ 𝑢𝑗

0 𝜕𝑢𝑖
0

𝜕𝑥𝑗

3
𝑗=1 ,  

𝑥1 ≡ 𝑥, 𝑥2 ≡ 𝑦, 𝑥3 ≡ 𝑧, 𝒇𝟎 = 𝒇(𝑥, 𝑦, 𝑧, 0), there is no solution (𝒖, 𝑝) for the Euler 

equations, belonging to 𝐶∞ or no, periodic solution or no. In special, when 

𝒖𝟎 ∈ 𝑆(ℝ3), ∇ ∙ 𝒖𝟎 = 0 and 𝒖𝟎 is not a gradient function, with 
𝜕𝑆𝑖

𝜕𝑥𝑗
≠

𝜕𝑆𝑗

𝜕𝑥𝑖
 for any 

(𝑖, 𝑗), there is no solution for Euler equations, in the mentioned conditions for 𝒇. 

Besides that the unique initial velocity 𝒖𝟎 ∈ 𝑆(ℝ3), harmonic and gradient function 

is 𝒖𝟎 = 𝟎, which provide only the trivial solution 𝒖 = 𝟎 for velocity in Schwartz 

space and infinite solutions for pressure,  𝑝 = 𝑈 + 𝜃(𝑡), 𝑝 ∈ 𝐶∞(ℝ3 × [0, ∞)).  

§ 5 

 I finish this work with a qualitative discussion of the conclusion which we 

have obtained in the previous section. Any student of physics, Gravitation or 

Electromagnetism, knows that the most well-known non trivial solution of the 

Laplace’s equation is of the form 1/𝑟, which diverges in origin and goes to zero at 

infinity. According Liouville’s Theorem[4], a harmonic function which is limited is 

constant, and equal to zero if it tends to zero at infinity. How the Millennium 

Problem requires a limited solution in all space for velocity and a limited initial 

velocity which goes to zero at infinity (in cases (A) and (C)), then we are forced to 

choose 𝒖𝟎 = 𝟎. 

 Without these requisites we can obtain other solutions for velocity, for 

example, 𝒖 = 𝑨(𝑡), as well as potential flows in general (say, harmonic functions 

for incompressible flows), including spatially periodic functions of unitary period 
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without singularities in the cube [0,1]3, which refers to case (B). Initial velocities 

spatially periodic but non potential flows lead to case (D) if the external force is 

null or gradient and 
𝜕𝑆𝑖

𝜕𝑥𝑗
≠

𝜕𝑆𝑗

𝜕𝑥𝑖
 in 𝑡 = 0 for any (𝑖, 𝑗), 𝑆𝑖 defined by (4.4), such as 

occurs in the case (C).  

 Specifically, without preoccupations with unbounded velocity in some 

region, the solution of Euler’s (and Navier-Stokes) equations for incompressible, 

non-steady and potential flows with gradient external force is 

(5.1)  𝒖 = 𝐴(𝑡)𝒖𝟎 + 𝑩(𝑡), 

where 𝐴(0) = 1, 𝑩(0) = 𝟎, ∇ ∙ 𝒖𝟎 = 0, 𝒖𝟎 = ∇𝜙(𝑡 = 0) and 𝒖𝟎 is the initial 

velocity, without uniqueness solution due to possibility of 𝐴(𝑡) ≢ 1 or 𝑩(𝑡) ≢ 𝟎, 

and the pressure is given by Bernouilli’s law, 

(5.2)  𝑝 +
𝜕𝜙

𝜕𝑡
+

1

2
|𝒖|2 = 𝑈 + 𝜃(𝑡), 

𝒇 = ∇𝑈, also without uniqueness solution due to 𝜃(𝑡) and 𝒖.  

 As pointed by Lagrange and Sobolev, the solution of Laplace’s equation is 

essential in the solution of Euler’s equations. According Courant[5] (p.241), for 

𝑛 = 2 the “general solution” of the potential equation (or Laplace’s equation) is the 

real part of any analytic function of the complex variable 𝑥 + 𝑖𝑦. For 𝑛 = 3 one can 

also easily obtain solutions which depend on arbitrary functions. For example, let 

𝑓(𝑤, 𝑡) be analytic in the complex variable 𝑤 for fixed real 𝑡. Then, for arbitrary 

values of 𝑡, both the real and imaginary parts of the function 

  𝑢 = 𝑓(𝑧 + 𝑖𝑥 cos 𝑡 + 𝑖𝑦 sin 𝑡 , 𝑡) 

of the real variables 𝑥, 𝑦, 𝑧 are solutions of the equation ∇2𝑢 = 0. Further solutions 

may be obtained by superposition: 

  𝑢 = ∫ 𝑓(𝑧 + 𝑖𝑥 cos 𝑡 + 𝑖𝑦 sin 𝑡 , 𝑡)𝑑𝑡
𝑏

𝑎
.    

 For example, if we set 

  𝑓(𝑤, 𝑡) = 𝑤𝑛𝑒𝑖ℎ𝑡 , 

where 𝑛 and ℎ are integers, and integrate from – 𝜋 to +𝜋, we get homogeneous 

polynomials 

  𝑢 = ∫ (𝑧 + 𝑖𝑥 cos 𝑡 + 𝑖𝑦 sin 𝑡)𝑛𝜋

−𝜋
𝑒𝑖ℎ𝑡𝑑𝑡 

in 𝑥, 𝑦, 𝑧, following example given by Courant. Introducing polar coordinates 

𝑧 = 𝑟 cos 𝜃, 𝑥 = 𝑟 sin 𝜃 cos 𝜙, 𝑦 = 𝑟 sin 𝜃 sin 𝜙 , we obtain 
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  𝑢 = 2𝑟𝑛𝑒𝑖ℎ𝜙 ∫ (cos 𝜃 + 𝑖 sin 𝜃 cos 𝑡)𝑛 cos ℎ𝑡  𝑑𝑡
𝜋

0
  

                 = 𝑟𝑛𝑒𝑖ℎ𝜙𝑃𝑛,ℎ(cos 𝜃),   

where 𝑃𝑛,ℎ(cos 𝜃) are the associated Legendre functions.   

 

A musician must make music,  
an artist must paint,  

a poet must write,  
if he is to be ultimately happy.  

What a man can be, he must be. 

This need we may call self-actualization. 
It refers to the desire for self-fulfillment,  

namely, to the tendency for him  

to become actualized in what he is potentially. 

Abraham H. Maslow 

(in “A Theory of Human Motivation”) 

 

Um músico deve compor, 

um artista deve pintar, 

um poeta deve escrever, 

caso pretendam ser felizes. 

O que um homem pode ser, ele deve ser. 

 

A essa necessidade podemos 

dar o nome de autorrealização. 

Refere-se ao desejo de autopreenchimento,  

isto é, à tendência que ele apresenta 

de se tornar, em realidade, 

o que já é em potencial. 

Abraham H. Maslow 

(em “Uma Teoria da Motivação Humana”) 
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