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Abstract: This chapter presents comparative results of a model for
multiple cameras fusion, which is based on Dezert-Smarandache the-
ory of evidence. Our architecture works at the decision level to track
objects on a ground plane using predefined zones, producing useful
information for surveillance tasks such as behavior recognition. De-
cisions from cameras are generated by applying a perspective-based
basic belief assignment function, which represent uncertainty derived
from cameras perspective while tracking objects on ground plane.
Results obtained from applying our tracking model to computer-
generated-imagery (CGI) animated simulations and real sequences
are compared to the ones obtained by Bayesian fusion, and show
how DSm theory of evidence overcomes Bayesian fusion for this ap-
plication.

This chapter has been published as a paper in the Proceedings of Fusion 2008 Int. Conf.,
Cologne, Germany in July 2008.
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25.1 Introduction

Computer vision uses information from more than one camera to develop several
tasks, such as 3D reconstruction or complementing fields of view to increase surveil-
lance areas, among others. Using more than one camera has some advantages, even
if information is not fused. A simple instance might be having a multi-camera sys-
tem where it is possible to cover wider area, and at the same time is more robust to
failures where cameras overlap.

There exists a tendency, in computer vision, to work on high level tasks [5, 9,
10, 13], where moving objects position is not useful when it is given in image plane
coordinates, instead of it, it is preferred when position is described according to
predefined regions on ground plane. This sort of information can be used for behavior
recognition where people behavior is described by mean of predefined zones of interest
on scene.

In [13] a tracking system using predefined regions is used to analyze behavioral
patterns. In the same work, only one camera is used and no considerations are taken
on distortions due to camera perspective. In [10] a Hierarchical Hidden Markov Model
is used to identify activities, based on tracking people on a cell divided room. Two
static cameras cover scene, but information coming from them is used separately,
their purpose is to focus on different zones, but not to refine information.

As cameras work by transforming information from 3D space into 2D space, there
is always uncertainty involved. In order to estimate object position related to ground
plane, it is necessary to find out its position in image plane and then estimate that
position on ground plane. For surveillance tasks where objects position has to be
given according to ground plane, it is possible to apply projective transform in order
to estimate objects position on ground plane, however, this process might carry errors
from perspective.

In [4] we presented a decision level architecture to fuse information from cameras,
reducing uncertainty derived from perspective on cameras. The stage of the process-
ing at which data integration takes place allows an interpretation of information which
describes better the position of objects being observed and at the same time is useful
for high level surveillance systems. In our proposal, individual decisions are taken by
means of an axis-projection-based generalized basic belief assignment (gbba) function
and finally fused using Dezert-Smarandache (DSm) hybrid rule. In this work, we
present a theoretical and practical comparison between DSm and a Bayesian module
applied to computer-generated-imagery (CGI) and real multicamera sequences.

This chapter is organized as follows: in section 25.2, Dezert-Smarandache theory is
briefly described as mathematical framework. In section , our architecture is described
altogether with the gbba function we used. A comparison between Bayesian and
DSm hybrid combination rule is presented in section 25.4. Finally in section 25.5
conclusions are presented.
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25.2 DSm hybrid model

The DSmT defines two mathematical models used to represent and combine infor-
mation [3]: free and hybrid.

The Free DSm model, denoted as Mf (Θ), defines Θ = {θ1, . . . , θn} as a set
or frame of n non exclusive elements and an hyper-power set DΘ as the set of all
composite possibilities obtained from Θ in the following way:

1. ∅, θ1, . . . , θn ∈ DΘ

2. ∀A ∈ DΘ, B ∈ DΘ, (A ∪B) ∈ DΘ, (A ∩B) ∈ DΘ

3. DΘ is formed only by elements obtained by rules 1 or 2

Function m(A) is called general basic belief assignment or mass for A, defined as
m() : DΘ → [0, 1], and is associated to a source of evidence.
A DSm hybrid model introduces some integrity constraints on elements A ∈ DΘ when
there are known facts related to those elements in the problem under consideration.
In our work, exclusivity constraints are used to represent those regions on ground
plane which are not adjacent. The restricted elements are forced to be empty in
the hybrid model M(Θ) �= Mf (Θ) and the mass is transferred to the non restricted
elements. When DSm hybrid model is used, combination rule for two or more sources
is defined for A ∈ DΘ with these functions:

mM(Θ)(A) = φ(A) [S1(A) + S2(A) + S3(A)] (25.1)

S1(A) =
X

X1,X2,...,Xk∈DΘ

X1∩X2∩...∩Xk=A

k
Y

i=1

mi(Xi) (25.2)

S2(A) =
X

X1,X2,...,Xk∈∅

[U=A]∨[[U∈∅]∧[A=It]]

k
Y

i=1

mi(Xi) (25.3)

S3(A) =
X

X1,X2,...,Xk∈DΘ

X1∪X2∪...∪Xk=A
X1∩X2∩...∩Xk∈emptyset

k
Y

i=1

mi(Xi) (25.4)

where φ(A) is called the characteristic emptiness function of a set A (φ(A) = 1 if
A �∈ ∅ and φ(A) = 0 otherwise). ∅ = {∅M, ∅} where ∅M is the set of of all elements
of DΘ forced to be empty. U is defined as U = u(X1) ∪ u(X2) ∪ . . . ∪ u(Xk), where
u(X) is the union of all singletons θi ∈ X, while It = θ1 ∪ θ2 ∪ . . . ∪ θn.
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25.3 Multiple cameras fusion

In order to have a common space reference system, spatial alignment is required.
Homography is used to relate information from cameras. It is possible to recover
homography from a set of static points on ground plane [12] or dynamic information
in scene [2]. Correspondence between objects detected in cameras might be achieved
by features matching techniques [8] or geometric ones [1, 7].

Once the homography matrix has been calculated, it is possible to relate infor-
mation from one camera to others. While object is being tracked by a camera, its
vertical axis is obtained and its length is estimated as λ = lcos(α), where l is the
maximum length for axis when projected on ground plane and α is the angle of the
camera respect to the ground plane.

Figure 25.1: Example of vertical axis obtained by two cameras, projected on
ground plane.

Let Γ = {γ1, . . . , γn} denote ground plane partition, where each γx is a predefined
region on ground plane, which might be an special interest zone, such as corridor or
parking area.

For each moving object i, it is created a frame Θi = {θ1, . . . , θk}. Each element
θx represents a zone γy where the object i might be located, according to information
from cameras. Θi is built dynamically considering only the zones for which there
exist some belief provided by at least one camera.

Multiple cameras fusion, in the way it is used in this work, is a tool for high
level surveillance systems. Behavior recognition models might use information in the
form of beliefs, such as fuzzy logic classifiers or probabilistic models do. Therefore,
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it is allowed for the camera to assign mass to elements in DΘ in the form of θi ∩ θj ,
because this might represent an object in the border of two regions on ground plane.
For couples of hypotheses which represent non-adjacent regions of the ground plane,
it does not make sense consider such belief assignments, therefore elements in DΘ

representing non-adjacent regions of ground plane, are included to ∅M.
Each camera behaves as an expert, assigning mass to each one of the uncon-

strained elements of DΘ. The assignment function is simple, and has as its main
purpose to consider perspective influence on uncertainty. It is achieved by means of
measuring intersection area between γx and object’s vertical axis projected on ground
plane, centered on the object’s feet. The length of the axis projected on ground plane
is determined by the angle of the camera respect to the ground plane, taking object’s
ground point as the vertex to measure the angle. So if the camera were just above
the object, its axis projection would be just one pixel long, meaning no uncertainty
at all. We consider three cases to cover mass assignation showed in figure 25.2.

When projected axis is within a region of the ground plane, camera assigns full
belief to that hypothesis. When axis crosses two regions it is possible to assign to
composed hypotheses of the kind θi ∪ θj and θi ∩ θj , depending on the angle of the
camera.

Let ωc denotes the vertical axis obtained by camera c, projected on ground plane,
and |ωc| its area. Following functions are used as gbba model.

υ = |ωc|cos(αc) (25.5)

mc(θi) =
|ωc ∩ γx|
υ + |ωc|

(25.6)

mc(θi ∪ θj) =
|ωc|cos2(αc)

υ + |ωc|
(25.7)

mc(θi ∩ θj) =
υ(1− cos(αc))

υ + |ωc|
(25.8)

When axis intersects more than two regions on ground plane, functions become:

υ = |ωc|cos(αc) (25.9)

mc(θi) =
|ωc ∩ γx|
υ + |ωc|

(25.10)

mc(θi ∪ θj ∪ . . . ∪ θk) =
υ

υ + |ωc|
(25.11)

υ+ |ωc| is used as a normalizer in order to satisfy mc(.) → [0, 1] and Each camera can
provide belief to elements θx∩θy ∈ DΘ, by considering couples γi and γj (represented
by θx and θy respectively) crossed by axis projection. Elements θx ∪ . . .∪ θx can have
an associated gbba value, which represents local or global ignorance. We also restrict
elements in θx ∩ . . . ∩ θy ∈ DΘ for which there is not a direct basic assignation made
by one of the cameras, thus they are included in ∅M, and calculations are simplified.
That is possible because of the hybrid DSm model definition. Decision fusion is used
to combine the outcomes from cameras, making a final decision. We apply hybrid
DSm rule of combination over DΘ in order to achieve a final decision.
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(a) Belief is assigned to θi

(b) Belief is assigned to θi, θj , θi ∪ θj and θi ∩ θj

(c) Belief is assigned to θi, . . . , θk and θi ∪ . . . ∪ θk

Figure 25.2: Cases considered for belief assignment.
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25.4 Results and discussion

To test the proposed architecture for fusion, we used computer-generated-imagery se-
quences (figure 25.3) and real sequences from the Performance Evaluation of Tracking
and Surveillance dataset [6].

(a) Camera 1 (b) Camera 2 (c) Camera 3

Figure 25.3: Example of CGI sequences.

In CGI sequences, three cameras were simulated. We considered a squared sce-
nario with a grid of sixteen regular predefined zones. 3D modeling was done using
Blender with Yafray as rendering machine. All generated images for sequence are in
a resolution of 800x600 pixels. Examples of images generated by rendering are shown
in figure 25.3, where division lines were outlined on ground plane to have a visual
reference of zones, but they are not required for any other task.

As real sequences, PETS repository was used (figure 25.4). In this data set, two
cameras information is provided, in a resolution of 768x576 pixels in JPEG format.
Our architecture and gbba function was applied to track people, cars and bicycles.

(a) Camera 1 (b) Camera 2 (c) Ground plane

Figure 25.4: Example of real sequences from PETS.
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As part of the results, it is interesting to show the differences between DSm
and a probabilistic model to fuse decisions. For this application, hypotheses have a
geometric meaning, and we found that this has to be taken in consideration during
fusion.

25.4.1 Probabilistic fusion module

For comparison purposes, a Bayesian classifier was developed for each of the regions
on ground plane, as showed in figure 25.5. A priori probability is assumed the same
for each of the regions, while conditional probability is taken from masses generated
by cameras, being normalized.

p(γi|S1, . . . , Sn) =
p(γi)p(S1, . . . , Sn|γi)

p(S1, . . . , Sn)

p(γi|S1, . . . , Sn) ∝ p(γi)p(S1|γi)p(S2|γi)p(S3|γi) . . .

= p(γi)

n
Y

i=1

p(Si|γi)

Figure 25.5: Bayesian classifiers as fusion module.

Ignorance from cameras means that a camera does not have a good point of
view to generate its information. If a probabilistic model is applied ignorance is
not considered and that might derive wrong results. Let’s consider the following
numerical example: suppose two cameras assign following beliefs:

m1(A) = 0.35 m1(B) = 0.6 m1(A ∪B) = 0.05
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m2(A) = 0.3 m2(B) = 0.1 m2(A ∪B) = 0.6

Probabilistic model generates following decisions:

p(A) ∝ 0.5 · 0.35

0.35 + 0.6
· 0.3

0.3 + 0.1
= 0.13

p(B) ∝ 0.5 · 0.6

0.35 + 0.6
· 0.1

0.3 + 0.1
= 0.07

DSm model results:

mDSm(A) = 0.35 · 0.3 + 0.35 · 0.6 + 0.05 · 0.3 = 0.33

mDSm(B) = 0.6 · 0.1 + 0.6 · 0.6 + 0.05 · 0.1 = 0.42

In decisions generated by cameras, first sensor assign higher mass to the hypoth-
esis B, while second sensor assigns higher belief to hypothesis A. If ignorance is
considered, it is clear that as result from fusion one must have a higher value for
hypothesis B, because second sensor is in a better position. However, in probabilistic
fusion decision hypothesis A is higher. This shows how considering ignorance may
improve results from fusion applied to multi-cameras tracking.

Positions obtained by fusion of the decisions of the cameras are showed in figures
25.6 and 25.7. Graphics show how DSm gets higher decision values than Bayesian
fusion.

In tables 25.4.1 and 25.4.1 metrics TRDR (Tracker Detection Rate) and FAR
(False Alarm Rate) are showed from data collected from 2 CGI sequences and 5 real
sequences. We also propose Similarity to Truth measure, to evaluate how close in
values is the result of fusion to truth data.

TRDR and FAR are evaluated with following equations:

TRDR =
TP

TG
(25.12)

FAR =
FP

TP + FP
(25.13)

where TG is the total number of regions by each image where there are objects in
motion according to ground truth. According to this metrics, it is desirable to have
the highest value in TRDR while the lowest in FAR.

Similarity to Truth (ST) is a measure to quantify the differences between posi-
tions obtained by fusion modules compared to ground truth. When there exists belief
assigned to certain position, and also there exists an object on that position in ground
truth, the amount of belief is summed, but when there is not object in ground truth,
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Source TRDR FAR Similarity to Truth
Camera 1 99.5% 52.9% 65.2%
Camera 2 93.9% 43.0% 69.7%
Camera 3 84.4% 45.3% 23.0%
DSm 93.9% 5.6% 84.1%
Probabilistic 93.3% 5.2% 24.9%

Table 25.1: Results on CGI animations.

Source TRDR FAR Similarity to Truth
Camera 1 68.1% 21.7% 31.6%
Camera 2 71.0% 2.7% 67.5%
DSm 82.8% 10.2% 75.9%
Probabilistic 82.8% 10.2% 67.9%

Table 25.2: Results on real sequences.

this amount of belief is subtracted, and finally, the amount obtained is normalized to
be showed as percentage.

Results from tables show how DSm reduces uncertainty from perspective and
complements information where cameras lost object or fields of view do not overlap.
Bayesian fusion behaves similar to DSm, however, hybrid combination rule takes in
consideration information assigned to ignorance, which may refine information such
as in example from section 25.4.1. ST quantifies how close is belief assigned to regions
to ground truth. From ST values, one sees that DSm has higher values, closer to
ground truth.



Chapter 25: Multiple cameras fusion based on DSmT . . . 701

(a) True position.

(b) Decisions by DSm.

(c) Decisions by Bayesian fusion.

Figure 25.6: Example of positions obtained in 3D animations. Belief value is
plotted from blue to red, blue meaning low belief and red meaning 1.
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(a) True position.

(b) Decisions by DSm.

(c) Decisions by Bayesian fusion.

Figure 25.7: Example of positions obtained in real sequences. Belief value is
plotted from blue to red, blue meaning low belief and red meaning 1.
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25.5 Conclusions

Using cameras as experts at high level for processing objects position, allows to
apply Dezert-Smarandache Theory to combine beliefs. Beliefs correspond to objects
locations on ground plane, given in relation to predefined regions.

Test showed how DSm Theory of evidence generates higher values as results and a
better approximation to ground truth. In addition to this, DSmT allows belief to be
assigned to intersection of hypotheses, which might be interpreted as an object in the
border of two regions, and might be useful information for behavior recognition based
on fuzzy logic, while probabilistic approaches does not allow this kind of information
because of exclusivity constraints. For the fusion of objects position, DSmT showed
better results than Bayesian fusion.

Even good results were obtained using DSmH, it is known that when conflicting
sources are combined the masses committed to partial ignorances are increased and
after a while this ends up to get the vacuous belief assignment. It is expected that
DSm-PCR5 fusion rule yields better results.
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