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Abstract: Our results demonstrated the ability of the Free Dezert-
Smarandache (DSm) model to improve thematic classification of for-
est regeneration over the use of Dempster-Shafer Theory (DST) and
a classical Maximum Likelihood Algorithm (MLA). Overall, a classi-
fication accuracy of 82.75% was obtained with the reference method,
MLA but it was improved by 7.4% by applying the fusion method
DST (90.14%). Further improvement of 1% (to 91.13%), compared
to those from the DST, was modest but noticeable when using the
free DSm model. The study also showed the critical aspect of the
design of the mass functions of each ancillary source and the dif-
ficulty to model the associated vagueness and uncertainty. Finally,
the ability of the algorithms to take advantage of data fusion provided
an excellent tool to test various combinations. After testing series
of potential inputs, we found that drainage and surface deposit were
the two best ancillary inputs in addition to spectral information to
improve classification on the growth potential of regenerating forest
stands in Southern Québec.
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21.1 Introduction

This impetus of our work spurred from the necessity to improve map accuracy in the
regenerating forest stands of the Province of Québec in Canada to facilitate forest
management in general and more specifically field operations. Current forest inven-
tory maps divide the landscape into polygons of uniform characteristics based on
stand type, tree density and average height as delineated by an experienced photo-
interpret. The polygon dimensions are larger than 2ha and we wish to develop a
method that provides information at a finer resolution. Another limitation is the up-
date frequency of the maps: inventory cycles imply production of a new map every 8
years. We wish to develop a method that can provide information between inventory
update.

The Maximum Likelihood Algorithm (MLA) is commonly used in forest mapping
context [5, 14] and thus can be used as a reference result for the fusion algorithms.
The limitation of the MLA for thematic classification lies with its incapacity to deal
with heterogeneous data (nominal and ordinal data). Thus, only satellite imagery
is usually used to produce such maps. We selected the Dempster-Shafer Theory
(DST) and the Dezert-Smarandache Theory (DSmT) with its free DSm model to
improve mapping accuracy of regeneration for their ability to fuse satellite imagery
with heterogeneous and complementary data but also for their ability to deal with
data uncertainty and vagueness. We therefore compared the results from the DST
and those when free DSm model was used. Results obtained in [18, 19] suggested
that free DSm model was more adapted to deal with conflicting fusion cases compared
with DST and we felt it needed to be tested further for our purpose.

The main objective of our study is to test if DST and DSmT based on the free
DSm model allow improving map accuracy for area under regeneration. In such case,
specific objectives are included to compare results with MLA and also to assess the
best supplementary input for data fusion to improve the results. This work was ex-
tracted from a study with extended objectives which will be submitted by Mora et
al. [11]. This chapter below focused only on the fusion case that provided the best
results.

21.2 Reasoning theories

21.2.1 Dempster-Shafer theory (DST)

Unlike the theory proposed by Bayes [1], the works from Dempster [4] and Shafer [17]
allows fusing sources of information. Data fusion using DST takes into account the
uncertainty and the vagueness linked to the data and the knowledge that we have
about their influence on a given purpose. The following description is a reminder of
the theoretical bases of the fusion method.
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The first step of data fusion with DST involves defining the frame of discernment
Θ that includes all the classes of the stratification:

Θ = {θ1, θi, ....θn}. (21.1)

Then a power set 2Θ is deduced from Θ including all the subsets of Θ and the
empty set ∅. For instance, for 3 singleton hypotheses we have :

2Θ = {θ1, θ2, θ3, θ1 ∪ θ2, θ1 ∪ θ3, θ2 ∪ θ3, θ1 ∪ θ2 ∪ θ3, ∅}. (21.2)

In DST, Dempster’s combination rule allows fusing information sources with mass
functions describing all states of each source. These mass functions can be equated
to a confidence level given to each focal element, i.e. each element of 2Θ with a non
null mass. Thus, the mass functions m(.) of each hypothesis of 2Θ will comply with
the following requirements, for a given source:

m: 2Θ → [0,1],

X

A∈2Θ

m(A) = 1, (21.3)

m(∅)=0.

The combination rule (21.4) combines the sources two by two according to the
mass functions defined at the previous step. If we fuse three sources, a second iteration
will fuse the third source with the results of the first combination. The same process
can be expanded to larger number of sources. The combination rule is associative
and commutative. This means that the order for which the sources are combined
is not important. Thus for two distinct sources characterized by their belief masses
m1(.) and m2(.), the combination rule is written as m(∅) = 0 and ∀C ∈ 2Θ \ {∅}:

m(C) = [m1 ⊕ m2](C) =

P

A∩B=C m1(A)m2(B)

1−PA∩B=∅ m1(A)m2(B)
. (21.4)

The denominator of (21.4), also represented by the letter K, equals zero if the sources
are completely contradictory. In such case it means that conflict between sources,
symbolized by k, equals 1 knowing that:

K = 1− k. (21.5)

Zadeh [20] showed that in the case of highly conflicting combinations, the DST can
provide counterintuitive results. Some authors proposed different solutions to solve
this problem. We decided to test the DSmT which has been designed specifically to
assess conflicting cases.
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21.2.2 Dezert-Smarandache theory (DSmT)

DSmT is a generalization of the DST for dealing with conflicts and/or paradoxical
hypotheses [18, 19]. This generalization brings a more adapted framework to take into
account conflicts existing between sources. There is a suite of DSm models available
according to the application [18, 19]. Among all the different adaptations of DSm
models we selected the free DSm model for our study because of its ability to deal
with conflicts and for its simplicity of implementation.

The classic DSm combination rule (DSmC) works with the free DSm model and
keeps the properties of commutativity and associativity of the DST. A hyper-power set
is now derived from the frame of discernment Θ. This set is built with disjunctive and
conjunctive operators ∪ and ∩. Consequently for the frame of discernment presented
in (21.1), the derived hyper-power set DΘ will be as follows:

DΘ = {θ1, θ2, θ1 ∪ θ2, θ1 ∩ θ2, ∅}. (21.6)

The requirements to build mass functions for each focal element of DΘ are iden-
tical to what was presented for the DST. The DSmC rule of combination for two
distinct sources is defined as m(∅) = 0 and ∀C ∈ DΘ \ {∅}:

m(C) = [m1 ⊕ m2](C) =
X

A,B∈DΘ,A∩B=C

m1(A)m2(B). (21.7)

As we can see in (21.7), the parameter k representing the conflict in the DST
combination rule (21.4) disappeared. Now the conflict (or the paradox) is represented
by every composed class resulting in the intersection of two singleton hypothesis.

21.2.3 Decision rule

Various decision rules are proposed in the literature. The most common are the
maximum credibility and maximum plausibility and the pignistic probability. For
our study we choose to deal only with two singletons hypotheses. Consequently, the
maximum credibility decision rule was chosen for its simplicity of implementation.
Indeed in this case, all the other common decision rules cited above will provide the
same decision. For a hypothesis A, it is computed as:

Cr(A) =
X

B⊆A

m(B). (21.8)

21.3 Information used in this work

21.3.1 Study area

The study area is located in the Watopeka forest located in Southern Québec, Canada
with a center latitude and longitude at 45◦35’00” N 71◦46’00” W. The study area can
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be delimited by a square of 50km2 in which 2.5km2 is occupied by regenerating forest
stands. This forest is mainly composed of maple species, yellow birch and coniferous
species like balsam fir, jack pine and black spruce. Due to this species composition,
this forest is dedicated to wood production for a paper factory. The local climate can
be defined as ”continental, sub-humid”. The mean altitude of the area varies from
250 to 400m above see level. The growth season varies from 170 to 190 days per year
and the cumulative number of day degrees varies from 2400 to 3400◦C.

21.3.2 Satellite imagery

We used a multispectral SPOT-5 HRG image taken on September 9 2002 and covering
the study area. The image was orthorectified using a DEM (Digital Elevation Map
which was interpolated with the Spline method applied to contour lines (1:20 000)
extracted from the Québec topographic database. The SPOT-5 image was composed
of pixels with 10m spatial resolution. Such spatial resolution is a good compromise
between the lower resolution provided by Landsat images at 30m and the very high
spatial resolution images (e.g. QuickBird, IKONOS) ranging from 0.6 to 4m. Land-
sat images do not provide sufficient spatial resolution to identify efficiently spatial
patterns of regenerating forest often in stripes. In contrast, very high spatial reso-
lution satellite images at the level of 1 to 4m provide a sufficient level of details but
are far more complex to process. In addition to supplying with a suitable spatial
resolution to identify regeneration areas, multispectral SPOT-5 image also offers a
good compromise between cost and total surface covered.

21.3.3 Sample plots

We collected field sample plots for the three classes of stand regeneration: Decidu-
ous commercial species, Non commercial, Conifers. The main commercial deciduous
found in the study area were maple sugar and yellow birch. Non commercial species
included shrubs, ferns and typical species from humid sites like lycopods, horsetails.
The conifer class included balsam fir, jack pine and black spruce. For each of the
three classes, plot localization was chosen at random inside known areas having re-
generating stands in the study area. During the field visit, a GPS reference value was
taken at the center of each sample plot for location and the following attributes were
recorded as an average considering all trees in the plot: species composition, density,
age, and height, approximate radius of stand homogeneity from the center. Sample
plots diameter could vary depending on the homogeneity of the species distribution.
This did not add any difficulty in the analysis as we did not need to compare these
plot diameter and all plots had a minimum radius of 12m which allowed all plots to
be used in the analysis. We superimposed the satellite image over the sample plots
to assigned pixels that corresponded to each plots. Table 21.1 provides the number
of sample plots and their associated number of pixels obtained for each class.
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Commercial deciduous Non Commercial Conifers
Sample plots 61 53 36
Pixels 334 168 164

Table 21.1: Numerical description of each class of the stratification.

The spectral separability of the three classes was evaluated by using the pixel
radiometric values at the location of each plot. We first applied the Jarque-Bera
test [9] which examined the normality of radiometric values of each class. Each
class was evaluated for each of the four bands of the satellite image. Half of the
combinations were proved to be normal. The others were rejected with an alpha
coefficient of 5 or 1%. Then we computed the Bhattacharrya distance to examine the
separability of the class distributions. Results provided a good separability between
classes from 1.31 to 1.46 (Table 21.2) knowing that a perfect separability is equal to 2.
According to these tests we decided to use the maximum likelihood algorithm (MLA)
as the first reference test to compare its results from those of the fusion algorithms.
We divided randomly the datasets into two parts in order to obtain first a dataset
for the training of the MLA (66% of the sample plots) and second another dataset to
evaluate the results of the classification (34% remaining).

Commercial deciduous Non Commercial
Non Commercial 1.43 /
Conifers 1.31 1.46

Table 21.2: Bhattacharrya distance on the sample plots distributions.

21.3.4 Drainage and surface deposit

In our first series of tests to map regeneration of forest stands, we only considered
two pedological attributes, surface deposit and drainage, among all the potential
biophysical parameters involved in the growth potential of forest stands. The value
of these two attributes will be added to the spectral values as input of the classification
methods using evidential reasoning. We focused on these two pedological attributes
because they have been identified in the scientific and professional literature as the
major explanatory variables for the stand growth for ecosystems. Roy et al. [15,
16], Gagnon and Roy [6], Robitaille [13] and MRNQ [12] provide more details on the
importance of surface deposit and drainage on the spatial distribution of the species
in Eastern Canada. Both attributes were available from the maps published by the
provincial government of Québec which served as a base for forest inventory. These
maps are produced from the interpretation of aerial photography taken at a scale of
1 : 15000.
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21.4 Methods

A flowchart of the steps required to apply our method is given in Figure 21.1. Before
applying the classification methods we identified the areas with regenerating stands
from the interpreted provincial forest inventory and created a spatial mask to apply
the analysis over that area only. Then we processed to image classification using
the MLA. The result of this reference method allowed mapping the coniferous areas
in the regenerating stands. We therefore identified pixels of the image and in the
regeneration stands that were dominated by conifer trees. These pixels can therefore
be treated separately in the analysis. Once the delimitation of regeneration area
is completed, we start the analysis for belief assignment, i.e., we defined the mass
functions for the two remaining classes: Commercial deciduous and Non commercial.
Then we processed the data fusion according to the DST and DSmT with the decision
rule of the maximum credibility. The results are validated by comparing with a
reference method (MLA) or with the validation plots.

Figure 21.1: Flowchart of the methodology.
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21.4.1 Reference methods

The first step of the process consisted in pre-identifying the regenerating stands with
the provincial forest inventory. This allowed reducing the number of classes including
only the regeneration stands to be considered in the study area. Then we were able to
mask the satellite image only on these areas which were relevant for the analysis. We
applied the MLA on the masked image by using the training sample plots. The results
were not only used as a reference to evaluate the performance of the fusion methods
but were also used to identify the coniferous pixels in the regenerating stands.

21.4.2 Data fusion methods

We were not able to define mass functions for the conifer class of the stratification
because of a lack of references leading to support mass function values. Therefore
the fusion process was applied only to pixels of the two other remaining parts of the
regenerating stands identified as ”Commercial deciduous” or ”Non commercial”.

The belief assignment was processed according two specific ways, one for the
satellite image and one for the ancillary sources. We used the Fuzzy Statistical Ex-
pectation Maximization algorithm (FSEM) [7] to define the mass functions for the
satellite image. This supervised multi-iterative method is based on Gaussian distri-
bution classes and compute posterior probabilities. The use of the FSEM requires
having strictly independent sources. Consequently we used as data input the first
two principal components (90% of the variance) of a principal component analysis
(PCA) applied to the four spectral bands of the satellite imagery. The FSEM has
the ability to produce fuzzy classes. This automatic way to design the mass func-
tions was only applied to the satellite image because it was not possible to obtain
normal distributions with the other two ancillary sources of input: surface deposit
and drainage.

We designed the mass functions of the two ancillary sources manually according
to the references and some expert interviews. Corgne [3] and Cayuela et al. [2]
also adopted this way to define mass functions of their models. Firstly, the references
indicated in what way each source had a positive influence on the growth development
of the deciduous species of interest. This focuses mostly on the sugar maple, the most
common species of interest in the area. Secondly, we designed the mass functions so
that the sum of all masses of pure classes was equal to 1. A normalization occurred
later in order to integrate the mass of fuzzy classes to follow the rule defined by (21.3).
Thus, at this step we have the following relationship for two pure classes:

m(θ2) = 1− m(θ1). (21.9)

In the case of our study, we can replace the class name ”Deciduous species” by θ1

and ”Non commercial species” by θ2. At this point we had values for mass functions
only for pure classes. However the next step impose that we define new masses for
union classes or fuzzy classes and that we renormalize with these new mass values.
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We defined the mass functions for fuzzy classes in the discounting framework
[10, 17]. This helps also to weaken the bba’s associated with sources believed to be
less reliable or of lesser importance for the fusion procedure. The discounting method
is defined in our 2D case as follows:

m′(θ1) = α · m(θ1), (21.10)

m′(θ2) = α · m(θ2),

m′(θ1 ∪ θ2) = (1− α) + α · m(θ1 ∪ θ2). (21.11)

Given the vagueness and uncertainty related to the sources (scale digitization,
quality of the manufacturing process), we fixed the coefficient α to a value of 0.5
empirically. According to (21.11), this is equivalent to considering the mass of the
fuzzy class as the mean of the masses of the pure classes before the normalization.
On the one hand this choice appeared as the best compromise to model the vagueness
and the uncertainty of the sources. On the other hand, we were not able to define
the masses of the fuzzy class manually on a scientific basis. Then we applied a linear
normalization to follow the requirement of (21.3).

References from the scientific literature provided the necessary information to
define the influence of each state of the sources on the growth development of the
deciduous species. In other words, we were able to design the general shape of the
mass functions. Then, we had to interpret numerically the specific influence of each
sources when the reference did not provide such information. This was done empiri-
cally so we applied a sensitivity analysis to assess the influence of the variation of the
mass values on the quality of the fusion.

• Drainage

Roy et al. [16] established a curve linking the drainage with dieback rate of forty
deciduous forest stands in Southern Québec. We used this curve to quantify
the influence of soil drainage on growth development of the sugar maple (see
Table 21.3). We noticed that the two levels ’Excessive’ and ’Fast’ were not
found in our study area. The codes of Table 21.3 correspond to the provincial
forest inventory standards.

• Surface deposit

According to Roy et al. [15, 16], Gagnon and Roy [6], Robitaille [13] and MRNQ
[12] and also to expert interviews, we translated the influence of the amount of
clay and the thickness of the soils on the growth of sugar maple as indicated
in Table 21.4. These codes also corresponded to the Québec provincial forest
inventory standards.

• Data fusion

As motivated above, the fusion model did not consider conifer pixels. Iden-
tification of conifer pixels was accomplished with the MLA. When applying
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Level Code Mass of θ1 Mass of θ2

Excessive 0 0 1
Fast 1 0.69 0.31
Good 2 0.77 0.23

Moderate 3 0.77 0.23
Imperfect 4 0.60 0.40

Bad 5 0 1
Very poor 6 0 1

Table 21.3: Mass values for the drainage.

Type Code Mass of θ1 Mass of θ2

Thin organic deposits 7T 0.15 0.85
Thin glacial deposits 1aM 0.3 0.7

Medium thickness glacial deposits 1aY 0.4 0.6
Thick glacial deposits 1a 0.5 0.5
Juxtaglacial deposits, 2A,
Proglacial deposits, 2B, 0.7 0.3

Ancient fluviatil deposits 3AN
Glaciolacustral deposits 4GS 0.9 0.1

Table 21.4: Mass values for the surface deposit.

the DST algorithm we tested the possible combinations of the results of the
PCA from the SPOT-5 image with one and two ancillary sources. The results
from data fusion using the DST were compared with those from the reference
method (MLA).

We applied a Hill-Smith test [8] to study the link between the masses, the
quality of the result obtained by the DST and the conflict level (Figures 21.2
and 21.3). The result shows a positive correlation between the conflict and the
misclassified pixels which justified the use of DSmT with the free DSm model
to fuse the sources. In the application of the free DSm model we followed the
same procedure as the DST fusion process. Here, we fused the sources with a
total transfer of fuzzy masses to the paradoxical class as in Corgne [3].
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Figure 21.2: Histogram of the conflict for the best source combination.

Figure 21.3: Correlation circle of the Hill-Smith test on the best DST fusion
parameters. The prefix ”Res” means ”Result”, ”NCom” refers to the Non
commercial class and ”ComD” refers to the Commercial deciduous class.
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21.5 Results and their interpretation

21.5.1 Results based on the maximum likelihood algorithm

Table 21.5 presents the correct classification results obtained using the MLA with
the three classes of the original stratification and those obtained after adding the
conifers to the mask. These results served as a base of comparison for those that
were obtained with the fusion algorithms. The ”two classes” case provided better
results (82.75%) than the ”three classes” case (70.03%). This can be explained by
the reduction of the confusion produced by the removal of the Conifers class. For
the ”two class” case both classes were well classified; above 90% for the Commercial
deciduous class and above 70% for the Non commercial class. Such good results were
expected in view of the normality of spectral values within the sample plots and the
Bhattacharrya distance obtained for the classes (Table 21.2).

ComD NCom Conifers Mean
”three classes” case 85% 40.96% 81.48% 70.03%
”two classes” case 90.83% 71.08% / 82.75%

Table 21.5: Results of the MLA with according to the number of classes.
”NCom” refers to the Non commercial class and ”ComD” refers to the Com-
mercial deciduous class.

21.5.2 Results based on the fusion in DST framework

Comparison of results obtained with the MLA with those obtained with the FSEM
(Table 21.6), shows that the FSEM was less efficient than the MLA to classify the
satellite image. Consequently we decided to stop the FSEM after one iteration in
order to obtain a fuzzy MLA classification. In fact the first iteration of the FSEM fixed
the prior probabilities for each of the n classes at 1/n which is equivalent to applying
the MLA. When compared to the FSEM (Table 21.6), the fuzzy MLA provided an
improvement of 6.4% on the overall accuracy. The result provided by the MLA used
as a reference result was lower than the one obtained with the fuzzy MLA by about
1%. This can be explained by the fact that the last method computed the masses for
a third class (the fuzzy class). This induced a new distribution of mass values which
led to a new hierarchy between the singleton classes. Moreover when using the fuzzy
MLA, the input data were not the spectral bands but the bands provided by a PCA.
Therefore this can lead to a slight difference in the results from the MLA applied to
the spectral bands of the satellite image.
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Commercial deciduous Non commercial Mean
MLA 90.83% 71.08% 82.75%
FSEM 96.67% 49.40% 77.34%
Fuzzy MLA 85% 81.93% 83.74%

Table 21.6: Results obtained by the MLA and the FSEM.

Table 21.7 presents the results obtained when the satellite image was fused with
one and both ancillary sources. The fusion of the satellite image with the Surface
deposit or the Drainage provided better results compared with those from the MLA
and the fuzzy MLA, respectively by +3.94% and +3.45%. The best results were
obtained with the fusion of Surface deposit with the PCA values of the SPOT-5
image. Adding the second ancillary source (Drainage) to the combination provided
a small but noticeable improvement of +2.46% on the overall accuracy.

Commercial deciduous Non commercial Mean
Drainage 95% 75.90% 87.19%
Surface deposit 90% 84.34% 87.68%
Drainage /
Surface deposit 95.83% 81.93% 90.14%

Table 21.7: Results obtained using DST framework.

Table 21.8 provides information about the conflict level for the whole area and
within the validation sample plots for the fusion of the satellite image and both
ancillary sources. As shown in Figure 21.2 the mean conflict level in the image is not
high (0.27) but some pixels have high values (until 0.89). The Hill-Smith test showed
a positive correlation between the conflict level and the misclassified pixels. From
the table we noticed that the validation sample plots were not within the highest
conflicting areas (maximum conflict value of 0.42). Nonetheless, the fusion with
DSmT and the free DSm model remains relevant. Next section presents the results
obtained with this fusion method.

Minimum Mean Standard deviation Maximum
Whole area 0 0.27% 0.1 0.89
Validation

sample plots 0 0.24% 0.07 0.42

Table 21.8: Conflict levels for the fusion with both ancillary sources.
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21.5.3 Results based on the fusion in DSmT framework

Table 21.9 presents the results obtained for the fusion of the satellite image with the
ancillary sources. The use of the free DSm model induced a small improvement of
0.49% of the overall accuracy for the DST fusion using the combination of the satellite
image with the Drainage. Applying the free DSm model using only Surface deposit
with the PCA bands provided worse results for the Commercial deciduous class and
also induced a slight decrease of the overall accuracy by 0.49%. The best results were
obtained with the combination of the PCA values of satellite image with the Drainage
and the Surface deposit. It induced an improvement of 1% on the overall accuracy
compared to the DST.

Commercial deciduous Non commercial Mean
Drainage 93.33% 79.51% 87.68%
Surface deposit 89.16% 84.33% 87.19%
Drainage /

Surface deposit
95% 85.54% 91.13%

Table 21.9: Best results obtained using DST framework and the free DSm
model.

21.6 Sensitivity analysis

21.6.1 Mass functions of the ancillary sources

Because some mass function values were determined empirically, we decided to apply
sensitivity tests. This analysis implied varying the mass values through their potential
range to study the impact of the initial choice. We aimed at preserving the shape
of the curves which represents the hierarchy between the state values of the source.
Figure 21.4 represents the evolution of the overall accuracy according to the mass
variations. Note that the mass variation displayed in the x-axis is the variation of the
Commercial deciduous class. When the mass values of one hypothesis are increased,
this automatically leads to an improvement of the overall accuracy of the class, and a
decrease in the other one. Figure 21.4 also shows that the initial mass values provided
the best overall accuracy which is the best compromise for the quality of the detection
of both classes.

21.6.2 Discounting coefficient

Previously we justified why we chose to fix the α coefficient at a value of 0.5. Nonethe-
less we studied the variation of this parameter that could influence the overall accu-
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Figure 21.4: Evolution of the overall accuracy according to the variation of the
masses for the combination with two ancillary sources.

racy. Figure 21.5 represents the evolution of the results according to the variation
of this coefficient. A zero value for α means that the discounted mass functions will
be equivalent to a Bayesian belief structure and will be very specific whereas a value
equals to 1 will transform the mass functions to a non-informative belief structure.
It shows the small influence of the discounting coefficient on the overall accuracy.
Only a slight improvement is obtained with the highest values (α = 0.8 and 0.9) of
the coefficient. With a value of α = 0.8, the identification of the Non commercial
class is improved by 1.35%. With a value of α = 0.9, the identification of the Non
commercial class is improved by 4% and the ability to identify Commercial deciduous
decreased by a value of -0.82%. Thus we realized the small impact of the discounting
coefficient on the overall results for our study.
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Figure 21.5: Evolution of the overall accuracy according to the value of α for
the combination with two ancillary sources.

21.7 Discussion

From our preliminary runs of the algorithms we quickly realized that results from
multiple iteration of the FSEM were not as useful as using only the first iteration
(which is equivalent to the fuzzy MLA). It seems to be an interesting way to com-
pute automatically the masses of the spectral bands of a satellite image. We think
that this automatic way is preferable than an empirical one. However the normality
of the spectral information within the training samples has to be considered. Also,
the classification resulting from the fuzzy MLA gave an interesting overall accuracy
(83.74%) and balanced results for each class (both above 80%). This also confirmed
the interest of the fuzzy MLA.

Our study also showed the difficulty to establish the mass functions of the ancil-
lary sources. This is due to the lack of scientific knowledge about the influence of
the attributes on the growth potential of regenerating forest stands. Moreover the
sensitivity tests showed the high sensitivity of the results to the design of the mass
functions. We also showed the low influence of the discounting coefficient on the
global quality of the fusion but we still think the way we used the discounting frame
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by fixing α at a value of 0.5 is a best way to deal with the lack of knowledge we
have about the influence of each ancillary source and their quality. This value is a
compromise because it equals the mean of the masses of the pure hypotheses before
the linear normalization that considers the mass of the fuzzy class. Nonetheless, we
advise to test different α values for each source to be fused according to its quality
and the uncertainty about the design of the mass functions. For example the scale of
each source could be considered for this. We could not test this in our study because
all the sources had the same scale.

Note that for this first study about the regenerating forest stands, we only con-
sidered pedological attributes. Some references and experts, also cite topographic
and hydrographical information as attributes of interest for our purpose. Thus, in
order to improve the results, we should review all potential sources of information.
Also, on a technical point of view, a way to improve the results may be to condi-
tion the transfer of the fuzzy mass to the ”intersection class” according to conflict
level encountered during the DST fusion. Lastly we benefited in our study from only
modest improvements while applying the free DSm model. This might be partially
due to the fact that validation plots were not taken in high conflict areas (see Table
21.8). This situation shows the importance of plot distribution to make sure they are
also present in areas presenting high conflict. Therefore, the level of conflict should
always be tested as a prior indication to choose the most relevant fusion method.

21.8 Conclusion

Our study showed the ability of DSmT and the free DSm model to improve the clas-
sification results (91.14%) compared to those from DST (90.14%) and a also those
from reference method like MLA that is typically used in forestry (82.75%). DSmT
using the free DSm model gave better results than the DST but only with a small
improvement of 1% which indicates that the DST provided most of the improvements
in accuracy that was expected for the purpose of mapping stand regeneration. Tradi-
tional methods like MLA use satellite image as their only source of information. Data
fusion methods proposed in DST and DSmT allow the inclusion of other parameters
that are known to explain forest regeneration. In our case it allowed to model the
influence of surface deposit and drainage which are both known by forester to influ-
ence the growth potential of regenerating forest stands in Southern Québec. As a
continuation of this contribution, further studies should focus on the mass function
structuring prior to the fusion. This is a recurring issue for any project wishing to
adopt DST model framework. An adapted uncertainty to each source should provide
better results. This would be done according to the quality of the data (statistics
about its accuracy, the scale . . . ).
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