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Abstract: It is almost universally supposed, that “Quantum Correlations”, as discussed in connection with Bell’s 
Inequality Theorem, cannot be produced by any classical, macroscopic system. Nevertheless, this paper 
demonstrates the actual construction of just such a system. It then discusses why this peculiar type of classical 
system, unlike any other, behaves in this “weird” fashion. The reason illuminates the Physics Community’s 
profound misunderstanding of exactly what a single, classical “bit” is, in the context of Shannon’s Information 
Theory, and the resulting misinterpretation of the Heisenberg Uncertainty Principle and the EPR paradox. 

Summary:  The two figures shown below, depict the 
“quantum correlations”, computed between randomized 
pairs of polarity measurements, made on two sets of 
images of “entangled coins”, that have polarized, noisy, 
band-limited, surface features. Each set consists of 
500,000 pairs, of oppositely-polarized (entangled) coin 
images. Figure 1 (red) depicts the observed correlations 
obtained, when the surface noise on each coin is low 
enough to enable several bits of information to be 
extracted from each image. In both figures, the blue curve 
is the idealized “quantum correlation”. 
 Figure 2 (red) depicts the same correlations, when the 
surface noise on each coin is increased enough to enable 
only a single bit of information to be extracted from each 
image. Figure 1, is exactly as expected for a classical 
system . Figure 2 is not. Yet the only significant 1

difference in generating the two figures, is that one set of 

images had a significantly higher, but carefully selected, 
level of noise, than the other, along with resulting 
“missed-detections”. These critical differences elucidate a 
common, but profound misunderstanding of  the nature of 
a “bit” of information, within the physics community. 
 When only a single bit of information exists within any 
received “message”, such as a physical particle or image, 
then only a single independent measurement, can ever be 
made on that “message”. Every subsequent attempt at 
another measurement, even of a supposedly independent 
variable, must be correlated with the first measurement, 
unlike the ubiquitous cases in which more than a single 
bit of information exists. The so-called “quantum 
correlations” are nothing more than single-bit 
correlations, whereas “classical correlations” result from 
multi-bit correlations. But true, single-bit entities, are 
extremely rare in the classical realm and thus unfamiliar.  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 The previous two figures were 
p r o d u c e d b y t h e  a p p e n d e d 
M AT L A B  s i m u l a t i o n . To 2

understand the nature of the 
phenomenon being produced, 
consider the two figures depicted 
above. Figure 3 depicts one of the 
1,000,000 coin images, used to 
generate Figure 1. It shows the 
surface of the coin, polarized such 
that the top half has a value of -1 
and the bottom half has a value of 
+1. The “entangled coin” has the 
opposite polarity. A small amount of 
random noise has been added. Each 
coin is identical, except for the 
added noise. Figure 4 depicts the 
same coin, after it has been lowpass 
filtered, to blur the image, and thus 
reduce its information content, using 
the two-dimensional, filter shown in 
F i g u r e 5 . T h e f i l t e r i n g i s 
accomplished by performing a two 
dimensional convolution of each 
coin image with the lowpass filter. 
 In accordance with Shannon’s 
Capacity Theorem, the information 
content of each image can be 
controlled by adjusting the added 
noise level and the bandwidth of the 
lowpass filter.  
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 It is important to recognize, that unlike the more 
familiar cases of communication channels and 
measurement theory, the noise and bandwidth being 
simulated, are not properties of either the channel or 
measurement process. Instead, they are intrinsic to the 
surface of each coin. In other words, the coins have 
irregular surfaces. Hence, the limitations imposed by the 
noise and bandwidth (limited information content), 
cannot be altered by any measurement process. 
 The figure on the right, depicts an unfiltered coin, with 
the higher noise level, used to produce Figure 2. Note that  
due to the noise, the polarization is not obvious. The four 
figures below depict four typical, lowpass-filtered coin 
images. The polarization is apparent, but too noisy to 
enable any polarization measurements, with more 
accuracy than approximately one, significant bit. It is this 
property, which results in the “quantum correlations”.  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 The polarization is measured by multiplying each coin’s 
image, by an angle-randomized “matched filter”, such as 
that depicted in figure 11, then integrating over the 
resultant image. In other words, each pixel in the coin’s 
image, is multiplied by the corresponding pixel in the 
matched filter, then all the pixels are summed together 
and the polarization is declared to be +1, if the sum is 
positive, and -1 if the sum is negative. In the simulation, 
there are 360 precomputed matched filters, corresponding 
to one degree phase increments in the polarization. 
 The phase difference between the pair of randomly 
selected matched filters, used to determine the polarity of 
each coin within an “entangled” pair, is then computed. 
Next, histograms are computed, for each possible 
entangled-pair polarity outcome (+ +, + -, - -, - +) versus 
the phase difference. The histograms are then used to 
compute the correlation versus phase difference, shown in 
Figures 1 and 2. The correlation at each angle, a, is 
computed by: 

N=HistUU(a)+HistDD(a)+HistDU(a)+HistUD(a) 
Corr(a)=(HistUU(a)+HistDD(a)-HistDU(a)-HistUD(a))/N   

 
“D” and “U” refer to Down and UP polarizations respectively. 
  
 Note that Figure 1 was computed with a “Detection-
Threshold” of 0.0, resulting in a “Detection-Efficiency” 
of 100%, whereas Figure 2 had a Threshold of 1000 and 
an Efficiency of about 72%. Figure 12 depicts the same 
noise level as figure 2, but with the Threshold=0 and a 
100% Efficiency. The significance of these parameters is 
as follows: 
 In any real experiment, the detectors will not be able to 
detect the existence of every particle or coin-image. 
Hence, the Detection-Efficiency will be less than 100%. 
In the simulation, it is possible to detect every particle; 
that is what is depicted in Figures 1 and 12. However, 
when only a single bit of information can ever be 
extracted from a received particle/image, the detection of 
the particle/image existence, cannot be separated from the 
detection of its polarity; they are one and the same thing. 
At polarity detection angles of 90 and 270 degrees, the 
correlation is zero. That means there is no “Signal” to 
detect. There is only “Noise”. 
 Consequently, if a threshold is set, such that the absolute 
value of the correlation, as measured by the matched 
filters, must exceed the threshold, for both images in an 
entangled pair, then the Detection-Efficiency will drop 
below 100%. But contrary to popular belief, there is no 
“Fair Sampling ”; The apparatus will systematically fail 3

to detect only those entities with near zero correlation (no 
signal), which contribute nothing but noise variance, to 
the numerator in the detection correlation equation given 
above, but reduces the denominator in that equation, since 
that is simply equal to the number of detected entities. 
 Thus, when all the coins are detected (Threshold=0), 
“bit errors” are made, which lower the correlation peaks 
to values below +1 and -1. But the thresholding 
effectively renormalizes the correlations, by selectively 
failing to detect only the low correlation value polarities. 

That is the difference between Figures 2 and 12; they 
have the same noise level, but the thresholding reduces 
the denominator in the correlation computation, without 
significantly altering the numerator. The Numerator 
effects the shape of the correlation curve, but the 
denominator only effects its normalization. Hence this 
“Unfair Sampling” effect, peculiar to the one-bit 
information content of the measurements, results in the 
Classical Correlation curve reproducing the “Quantum 
Correlation” curve. 
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Shannon, Heisenberg and Bell 
 More generally, this “single bit of information” 
phenomenon, is at the heart of the correct interpretation 
of the Heisenberg Uncertainty Principle, of which the 
EPR paradox  and Bell’s Theorem are merely special 4

cases. The uncertainty principle, in turn, is merely the 
special case of Shannon’s Capacity Theorem , which 5

marks the transition from the classical to the quantum 
realm, via the transition from measurements capable of 
recovering multiple bits of information (classical realm) 
to measurements in which only a single bit of information 
can ever be recovered (quantum realm). 
 Once it is realized that some entities only contain a 
single bit of recoverable information, it becomes obvious 
why two variables, such as those appearing in the 
uncertainty principle, cannot be simultaneously 
measured; measuring two independent (uncorrelated) 
variables would require extracting at least two bits of 
information, one for each variable, from an entity that 
only contains one: a self-contradiction. 
 Shannon’s Capacity Theorem is usually discussed in 
regards to the number of states a system may have, or its 
entropy. However, there is a much simpler way to 
understand its significance. Shannon’s Capacity, states 
that there is a maximum number of bits of information 
that can ever be recovered from a continuous “signal”: 

Max number of bits of information =T B log2(1+S/N) 

where T is the signal’s duration, B is the filter bandwidth 
and S/N is the signal-to-noise ratio. 

 This limit exists, because the maximum number of 
recoverable bits of information, cannot exceed the 
number of bits of data, within a set of discrete, sample 
measurements, that is sufficient for perfectly 
reconstructing the continuous signal. That maximum 
number of bits, is simply equal to the product of the 
number of required samples (TB), multiplied by the 
number of bits per sample (log2(1+S/N)), required to 
encode all the “significant” bits, above the noise level. 
 The maximum number of samples required is limited, 
because of the limited bandwidth of the signal ; a band-6

limiting filter introduces correlations between closely-
spaced measurements, such that any more closely spaced 
measurements cannot be independent, from those 
sufficient for perfect reconstruction. Similarly, the noise 
limits the number of bits required per sample. 
 With these facts in mind, it is obvious that the limiting 
case is a signal that can be reconstructed from a single 
sample (T B = 1), with a single significant bit per sample 
(log2(1+S/N) = 1). The limiting case is thus, T B =1. This 
is the Uncertainty Principle. To see this, in the case of a 
photon, consider that: 

c ∆t = ∆x = h/∆p = ∆𝜆 = c/∆f, hence: 
∆t=1/∆f, or ∆t ∆f =1, or, in the notation above T B =1 

 In other words, the Heisenberg Uncertainty Principle 
simply states that once the bandwidth and noise intrinsic 

to the object being measured is such that only a single bit 
of information can ever be recovered from any 
measurements of the object, then all classical independent 
variables, like position and momentum and multiple spin 
components, can no longer be independent - because they 
have become correlated, as the result of the limit on the 
information content. This is the nature of the correlations 
being characterized by Bell’s Theorem. It has nothing to 
do with “spooky action at a distance”, since it is simply 
the consequence of an intrinsically limited information 
content - the defining difference between the “classical” 
and the “quantum”. 

Identical Particles 
 Line number 82 in the script is commented out. If it is 
uncommented and executed, the “Quantum Correlations” 
disappear. Even the noise is now identical, except for a 
sign, for each entangled pair; causing even the bit errors 
(bad polarity decisions) to now be perfectly correlated. 
This does not happen because no bit errors are being 
made (as in figure 1), it happens because both detectors 
now always make identical errors. In other words, in the 
(incorrect) quantum interpretation, even when the actual 
detected polarity is not even a possible state of the noise-
free wave-function (the detection was a total error) even 
the bogus detections must be perfectly correlated, and 
have nothing to do with the actual, noise-free wave-
function, in order to explain the classical result. 
 This begs the question, "What makes identical particles, 
behave as if they are identical?" They cannot have 
identical noise (actually be identical), because that will 
fail to produce the observed quantum correlations. Thus, 
they are identical if and only if, only their recoverable 
information content is identical. If the intrinsic noise is 
"too identical", then they cannot behave like identical, 
quantum particles, instead, they will behave like identical, 
classical particles. Particles with more than one identical 
bit of information, are consequently, too identical to ever 
behave as identical, quantum particles. 

Appendix A - MATLAB Simulation 
 The MATLAB script implementing the simulation 
appears in an appendix. Note that by changing the value 
of the variable “test”, on line number 24, the three cases, 
used to generate Figures 1, 2 and 12, can be executed. 
The associated file “Quantum_Correlations.txt ” contains 7

the actual script. It can be opened and viewed with any 
text editor. By changing the extension for “.txt” to “.m”, it 
can be directly opened and executed in MATLAB. 
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 See for example https://en.wikipedia.org/wiki/Bell%27s_theorem1

 http://www.mathworks.com/products/matlab/2

 https://en.wikipedia.org/wiki/Loopholes_in_Bell_test_experiments3

 https://en.wikipedia.org/wiki/EPR_paradox4

 https://en.wikipedia.org/wiki/Shannon%E2%80%93Hartley_theorem5

 https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem6

 http://fqxi.org/data/forum-attachments/Quantum_Correlations.txt7
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