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Abstract

Monte Carlo methods are essential tools for Bayesian inference. Gibbs sampling is
a well-known Markov chain Monte Carlo (MCMC) algorithm, extensively used in signal
processing, machine learning, and statistics, employed to draw samples from complicated
high-dimensional posterior distributions. The key point for the successful application of the
Gibbs sampler is the ability to draw efficiently samples from the full-conditional probability
density functions. Since in the general case this is not possible, in order to speed up the
convergence of the chain, it is required to generate auxiliary samples whose information is
eventually disregarded. In this work, we show that these auxiliary samples can be recycled
within the Gibbs estimators, improving their efficiency with no extra cost. This novel scheme
arises naturally after pointing out the relationship between the standard Gibbs sampler
and the chain rule used for sampling purposes. Numerical simulations involving simple
and real inference problems confirm the excellent performance of the proposed scheme in
terms of accuracy and computational efficiency. In particular we give empirical evidence of
performance in a toy example, inference of Gaussian processes hyperparameters, and learning
dependence graphs through regression.

Keywords: Bayesian inference, Markov Chain Monte Carlo (MCMC), Gibbs sampling,
Metropolis within Gibbs, Gaussian Processes (GP), automatic relevance determination
(ARD).

1 Introduction

‘Reduce, Reuse, Recycle’
The Greenpeace motto

Monte Carlo algorithms have become very popular over the last decades [31, 45]. Many
practical problems in statistical signal processing, machine learning and statistics, demand fast
and accurate procedures for drawing samples from probability distributions that exhibit arbitrary,
non-standard forms [1, 10, 43], [2, Chapter 11]. One of the most popular Monte Carlo methods
are the families of Markov chain Monte Carlo (MCMC) algorithms [1, 45] and particle filters [4, 9].



The MCMC techniques generate a Markov chain (i.e., a sequence of correlated samples) with a
pre-established target probability density function (pdf) as invariant density [31, 30].

The Gibbs sampling technique is a well-known MCMC algorithm, extensively used in the
literature in order to generate samples from multivariate target densities, drawing each component
of the samples from the full-conditional densities [7, 27, 28, 18, 32, 51].1 In order to draw samples
from a multivariate target distribution, the key point for the successful application of the standard
Gibbs sampler is the ability to draw efficiently from the univariate conditional pdfs [31, 45].
The best scenario for Gibbs sampling occurs when specific direct samplers are available for each
full-conditional, e.g. inversion method or, more generally, some transformation of a random
variable [8, 45]. Otherwise, other Monte Carlo techniques, such as rejection sampling (RS) and
different flavors of the Metropolis-Hastings (MH) algorithms, are typically used within the Gibbs
sampler to draw from the complicated full-conditionals. The performance of the resulting Gibbs
sampler depends on the employed internal technique, as pointed out for instance in [6, 14, 38, 39].

In this context, some authors have suggested to use more steps of the MH method within the
Gibbs sampler [41, 12, 11]. Moreover, other different algorithms have been proposed as alternatives
to the MH technique [6, 27, 47]. For instance, several automatic and self-tuning samplers have been
designed to be used primarily within-Gibbs: the adaptive rejection sampling (ARS) [13, 16], the
griddy Gibbs sampler [44], the FUSS sampler [39], the Adaptive Rejection Metropolis Sampling
(ARMS) method [14, 15, 40, 51], and the Independent Doubly Adaptive Rejection Metropolis
Sampling (IA2RMS) technique [38], just to name a few.

Most of the previous solutions require performing several MCMC steps for each full-conditional
in order to improve the performance, although only one of them is considered to produce the
resulting Markov chain because the rest of samples play the mere role of auxiliary variables.
Strikingly, they require an increase in the computational cost that is not completely paid off:
several samples are drawn from the full-conditionals, but only a subset of these generated samples
is employed in the final estimators. In this work, we show that the rest of generated samples can
be directly incorporated within the corresponding Gibbs estimator. We call this approach the
Recycling Gibbs (RG) sampler since all the samples drawn from each full-conditional can be used
also to provide a better estimation, instead of discarding them.

The consistency of the proposed RG estimators is guaranteed, as will be noted after considering
the connection between the Gibbs scheme and the chain rule for sampling purposes [8, 45]. In
particular, we show that the standard Gibbs approach is equivalent (after the burn-in period)
to the standard chain rule, whereas RG is equivalent to an alternative version of the chain
rule presented in this work as well. RG fits particularly well combined with adaptive MCMC
schemes where different internal steps are performed also for adapting the proposal density, see
e.g. [14, 38, 40, 51]. The novel RG scheme allows us to obtain better performance without adding

1In general these full-conditionals are univariate. Nevertheless, block-wise Gibbs sampling approaches where
several random variables are updated simultaneously, have been proposed to speed up the convergence of the Gibbs
sampler [46]. However, unless direct sampling from the multi-variate full-conditionals is feasible, these approaches
still result in an increased difficulty of drawing samples and a higher computational cost per iteration. Furthermore,
the performance of the overall algorithm can decrease if the blocks are not properly chosen, especially when direct
sampling from the multivariate full-conditionals is unfeasible [31, 30, 45]. The novel recycling scheme can also be
used in the block approach.
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any extra computational cost. This will be shown through intensive numerical simulations.
First, we test RG in a simple toy example with a bimodal bivariate target. We also include
experiments for hyper-parameter estimation in Gaussian Processes (GPs) regression problems
with the so-called automatic relevance determination (ARD) kernel function [2]. Finally, we apply
the novel scheme in real-life geoscience problems of dependence estimation among bio-geo-physical
variables from satellite sensory data. The MATLAB code of the numerical examples is provided
at http://isp.uv.es/code/RG.zip.

The remainder of the paper is organized as follows. Section 2 fixes notation and recalls the
problem statement of Bayesian inference. The standard Gibbs sampler and the chain rule for
sampling purposes are summarized in Section 3, highlighting their connections. In the same
section, we then introduce an alternative chain rule approach, which is useful for describing the
novel scheme. The RG technique proposed here is formalized in Section 4. Sections 5 provides
empirical evidence of the benefits of the proposed scheme, considering different multivariate
posterior distributions. Finally, Section 6 concludes and outlines further work.

2 Bayesian inference

Machine learning, statistics, and signal processing often face the problem of inference through
density sampling of potentially complex multivariate distributions. In particular, Bayesian
inference is concerned about doing inference about a variable of interest exploiting the Bayes’
theorem to update the probability estimates according to the available information. Specifically,
in many applications, the goal is to infer a variable of interest, x = [x1, . . . , xD] ∈ RD, given a set
of observations or measurements, y ∈ RP . In Bayesian inference all the statistical information is
summarized by means of the posterior pdf, i.e.,

π̄(x) = p(x|y) =
`(y|x)g(x)

Z(y)
, (1)

where `(y|x) is the likelihood function, g(x) is the prior pdf and Z(y) is the marginal likelihood
(a.k.a., Bayesian evidence). In general, Z(y) is unknown and difficult to estimate in general, so
we assume to be able to evaluate the unnormalized target function,

π(x) = `(y|x)g(x). (2)

The analytical study of the posterior density π̄(x) ∝ π(x) is often unfeasible and integrals involving
π̄(x) are typically intractable. For instance, one might be interested in the estimation of

I =

∫
RD
f(x)π̄(x)dx, (3)

where f(x) is a squared integrable function (with respect to π̄). In order to compute the integral I
numerical approximations are typically required. Our goal here is to approximate this integral by
using Monte Carlo (MC) quadrature [31, 45]. Namely, considering T independent samples from
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Table 1: Main notation and acronyms of the work.

D Dimension of the inference problem, x ∈ RD.
T Total number of iterations of the Gibbs scheme.
M Total number of iterations of the MCMC method inside the Gibbs scheme.
tb Length of the burn-in period.

x Variable of interest; parameters to be inferred, x = [x1, . . . , xD].
y Collected data: observations or measurements.

x¬d x without the d-th component, i.e., [x1, . . . , xd−1, xd+1, . . . , xD].
xa:b The vector xa:b = [xa, xa+1, xa+2, . . . , xb] with b > a > 0.

π̄(x) Normalized posterior pdf π̄(x) = p(x|y).
π(x) Posterior function proportional to the posterior pdf, π̄(x) ∝ π(x).

π̄d(xd|x¬d) d-th full-conditional pdf. pd(xd) d-th marginal pdf.

SG Standard Gibbs. TRG Trivial Recycling Gibbs.
MH Metropolis-Hastings. MRG Multiple Recycling Gibbs.

the posterior target pdf, i.e., x(1), . . . ,x(T ) ∼ π̄(x), we can write

ÎT =
1

T

T∑
t=1

f(x(t))
p−→ I. (4)

This means that for the weak law of large numbers, ÎT converges in probability to I: that is, for
any positive number ε > 0, we have limT→∞ Pr(|ÎT − I| > ε) = 0. In general, a direct method for
drawing independent samples from π̄(x) is not available, and alternative approaches, e.g., MCMC
algorithms, are needed. An MCMC method generates an ergodic Markov chain with invariant
density π̄(x) (a.k.a., stationary pdf). Even though, the generated samples {x(1), . . . ,x(T )} are

then correlated in this case, ÎT is still a consistent estimator.
Within the MCMC framework, we can consider a block approach working directly into the

D-dimensional space, e.g., using a Metropolis-Hastings (MH) algorithm [45], or a component-
wise approach [20, 26, 29] working iteratively in different uni-dimensional slices of the entire
space, e.g., using a Gibbs sampler [31, 30].2 In many applications, and for different reasons, the
component-wise approach is the preferred choice. For instance, this is the case when the full-
conditional distributions are directly provided or when the probability of accepting a new state
with a complete block approach becomes negligible as the dimension of the problem D increases.
In the following section, we outline the standard Gibbs approach, and remark its connection with
the chain rule method. The main notation and acronyms of the work are summarized in Table 1.

2There also exist intermediate strategies where the same subset of variables are jointly updated, which is often
called the Blocked Gibbs Sampler.
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3 Gibbs sampling and the chain rule method

This section reviews the fundamentals about the standard Gibbs sampler, reviews the recent
literature on Gibbs sampling when complicated full-conditional pdfs are involved, and points out
the connection between GS and the chain rule. A variant of the chain rule is also described, which
is related to the novel scheme introduced in the next section.

3.1 The Standard Gibbs (SG) sampler

The Gibbs sampler is perhaps the most widely used algorithm for inference in statistics and
machine learning [7, 27, 18, 45]. Let us define x¬d := [x1, . . . , xd−1, xd+1, . . . , xD] and introduce
the following equivalent notations

π̄d(xd|x1, . . . , xd−1, xd+1, . . . , xD) = π̄d(xd|x1:d−1, xd+1:D) = π̄d(xd|x¬d).

In order to denote the unidimensional full-conditional pdf of the component xd ∈ R, d ∈
{1, . . . , D}, given the rest of variables x¬d, i.e.

π̄d(xd|x¬d) =
π̄(x)

π̄¬d(x¬d)
=

π̄(x)∫
R π̄(x)dxd

. (5)

The density π̄¬d(x¬d) =
∫
R π̄(x)dxd is the joint pdf of all variables but xd. The Gibbs algorithm

generates a sequence of T samples, and is formed by the steps in Algorithm 1. Note that the
main assumption for the application of Gibbs sampling is being able to draw efficiently from these
univariate full-conditional pdfs π̄d. However, in general, we are not able to draw directly from any
arbitrary full-conditional pdf. Thus, other Monte Carlo techniques are needed for drawing from
all the π̄d.

Algorithm 1 The Standard Gibbs (SG) algorithm.

1: Fix T , D
2: for t = 1, . . . , T do
3: for d = 1, . . . , D do
4: Draw x

(t)
d ∼ π̄d(xd|x(t)1:d−1, x

(t−1)
d+1:D).

5: end for
6: Set x(t) = [x

(t)
1 , x

(t)
2 , . . . , x

(t)
D ].

7: end for

3.2 Monte Carlo-within-Gibbs sampling schemes

In many cases, drawing directly from the full-conditional pdf is not possible, hence the use of
another Monte Carlo scheme is needed. Figure 1 summarizes the main techniques proposed in
literature for this purpose. In some specific situations, rejection samplers [5, 22, 23, 33, 49] and
their adaptive version, as the adaptive rejection sampler (ARS) [16], are employed to generate one
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sample from each π̄d per iteration. Since the standard ARS can be applied only to log-concave
densities, several extensions have been introduced [21, 17, 37]. Other variants or improvements
of the standard ARS scheme can be found [34, 36]. The ARS algorithms are very appealing
techniques since they construct a non-parametric proposal to mimic the shape of the target pdf,
yielding in general excellent performance (i.e., independent samples from π̄d with a high acceptance
rate).

Martino et al.

IS ARS MCMC

stand. MH automatic adaptive
(Gilks and Wild, 1992) (Gilks et al., 1995)

(Hörmann, 1995a) (Ritter and Tanner, 1992) (Haario et al., 2005)
(Koch, 2007) (Evans and Swartz, 1998) (Gelfand and Lee, 1993) (Shao et al., 2013) (Levine et al., 2005)

(Görür and Teh, 2011) (Martino et al., 2015b) (Meyer et al., 2008)
(Martino and Mı́guez, 2011) (Cai et al., 2008)

(Martino et al., 2015a)

samplers (Ca↵o et al., 2002; Hörmann, 2002; Hörmann et al., 2007; Marrelec and Benali,
2004; Tanizaki, 1999) and their adaptive version, as the adaptive rejection sampler (ARS)
Gilks and Wild (1992), are employed to generate one sample from each ⇡̄d per iteration.
Since the standard ARS can be applied only to lo-concave densities, several extensions have
been introduced Hörmann (1995a); Görür and Teh (2011); Martino and Mı́guez (2011).
The ARS algorithms are very appealing techniques since they construct a non-parametric
proposal to mimic the shape of the target pdf, yielding in general excellent performance
(i.e., independent samples from ⇡̄d with a high acceptance rate). However, their range of
application is limited to some specific classes of densities (Evans and Swartz, 1998; Hörmann,
1995b; Hörmann et al., 2003).

MCMC: v
(t)
D,1, . . . , v

(t)
D,M

MCMC: v
(t)
1,1, . . . , v

(t)
1,M

x
(t)
1 = v

(t)
1,M

MCMC: v
(t)
2,1, . . . , v

(t)
2,M

x
(t)
2 = v

(t)
2,M

x
(t)
D = v

(t)
D,M

t
�

t
+

1

Gibbs scheme

Figure 1: Graphical representation of a generic MCMC-within-Gibbs scheme, where M
steps of the internal MCMC algorithm are applied for each full-conditional pdf
(see Algorithm 2). Di↵erent internal MCMC methods have been proposed in lit-
erature. Me mola mucho esta figura! Se podria poner alguna(s) al lado indicando
los distintos MCMC con su referencia? o seria demasiado liarla?

In general, it is not possible to draw samples directly from a full-conditional pdf ⇡̄d, and
a rejection sampler can be applied neither. Other approaches are required. For instance in
(Koch, 2007) an approximated strategy is used, considering the application of the impor-
tance sampling (IS) within the Gibbs sampler. A more common approach is to apply an
additional MCMC sampler to draw samples from ⇡̄d (Gelfand and Lee, 1993). Therefore, in
many practical scenarios, we have an MCMC (e.g., an MH sampler) inside another MCMC
scheme (i.e., the Gibbs sampler) as shown in Figure 1. In the so-called MH-within-Gibbs
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Figure 1: Summary of the main Monte Carlo algorithms which have been employed within the
Gibbs sampling technique.

However, the range of application of the ARS samplers is limited to some specific classes of
densities. Thus, in general, other approaches are required. For instance in [27] an approximated
strategy is used, considering the application of the importance sampling (IS) scheme within the
Gibbs sampler. A more common approach is to apply an additional MCMC sampler to draw
samples from π̄d [12]. Therefore, in many practical scenarios, we have an MCMC (e.g., an MH
sampler) inside another MCMC scheme (i.e., the Gibbs sampler) as shown in Figures 1-2. In
the so-called MH-within-Gibbs approach3, only one MH step is often performed within each Gibbs
iteration to draw samples from each full-conditional. This hybrid approach preserves the ergodicity
of the Gibbs sampler [45, Chapter 10], and provides good performance in many cases. However,
several authors have noted that using a single MH step for the internal MCMC is not always the
best solution in terms of performance, c.f. [3].

Using a larger number of iterations of the MH algorithm within-Gibbs can improve the
performance [41, 12, 11]. This is the scenario graphically represented in Figure 2. Moreover,
different more sophisticated MCMC algorithms to be applied within-Gibbs have been proposed [14,
6, 20, 44]. Some of these techniques employ an automatic construction of the proposal density
tailored to the specific full-conditional [44, 47, 39]. Other methods use an adaptive parametric
proposal pdf [20, 29], while other ones employ adaptive non-parametric proposals [14, 40, 38, 35],
in the same fashion of the ARS schemes. It is important to remark here that performing more
steps of an adaptive MH method within a Gibbs sampler can provide better results than a longer
Gibbs chain applying only one step of a standard MH method [14]. Algorithm 2 describes a generic
MCMC-within-Gibbs sampler considering M steps of the internal MCMC at each Gibbs iteration.

While these algorithms are specifically designed to be applied “within-Gibbs” and provide very
good performance, they still require an increase in the computational cost that is not completely
exploited: several samples are drawn from the full-conditionals and used to adapt the proposal pdf,

3Sometimes MH-within-Gibbs is also referred as to the Single Component MH algorithm [20] or the
Componentwise MH algorithm [29].
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Gibbs scheme

Figure 2: Graphical representation of a generic MCMC-within-Gibbs scheme, where M steps of
the internal MCMC algorithm are applied for each full-conditional pdf (see Algorithm 2). Different
internal MCMC methods have been proposed in literature.

Algorithm 2 Generic MCMC-within-SG sampler.

1: Choose [x
(0)
1 , . . . , x

(0)
D ].

2: for t = 1, . . . , T do
3: for d = 1, . . . , D do
4: Perform M steps of an MCMC algorithm with initial state v

(t)
d,0 = x

(t−1)
d , and target pdf

π̄d(xd|x(t)1:d−1, x
(t−1)
d+1:D), yielding the sequence of samples v

(t)
d,1, . . . , v

(t)
d,M .

5: Set x
(t)
d = v

(t)
d,M .

6: end for
7: Set x(t) = x

(t)
1:D = [x

(t)
1 , x

(t)
2 , . . . , x

(t)
D ].

8: end for
9: Return {x(1), . . . ,x(T )}

but only a subset of them is employed within the resulting Gibbs estimator. In this work, we show
how they can be incorporated within the corresponding Gibbs estimator to improve performance
without jeopardizing its consistency. In the following, we show the relationships between the
standard Gibbs scheme and the chain rule. Then, we describe an alternative formulation of the
chain rule useful for introducing the novel Gibbs approach described in Section 4.

3.3 Chain rule and the connection with Gibbs sampling

Let us highlight an important consideration for the derivation of the novel Gibbs approach we will
introduce in the following section. For the sake of simplicity, let us consider a bivariate target pdf
that can be factorized according to the chain rule,

π̄(x1, x2) = π̄2(x2|x1)p1(x1)
= π̄1(x1|x2)p2(x2),
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where we have denoted with p1, p2, the marginal pdfs of x1 and π̄2, π̄1, are the conditional pdfs.
Let us consider the first equality. Clearly, if we are able to draw from the marginal pdf p1(x1) and
from the conditional pdf π̄2(x2|x1), we can draw samples from π̄(x1, x2) following the chain rule

procedure in Algorithm 3. Note that, consequently, the T independent random vectors [x
(t)
1 , x

(t)
2 ],

with t = 1, . . . , T , are all distributed as π̄(x1, x2).

Algorithm 3 Chain rule method

1: for t = 1, . . . , T do
2: Draw x

(t)
1 ∼ p1(x1) and x

(t)
2 ∼ π̄2(x2|x(t)1 )

3: end for

3.3.1 Standard Gibbs sampler as the chain rule

Let us consider again the previous bivariate case where the target pdf is factorized as π̄(x) =
π̄(x1, x2). The standard Gibbs sampler in this bivariate case consists of the steps in Algorithm 4.
After the burn-in period, the chain converges to the target pdf, i.e., x(t) ∼ π̄(x). Therefore,
recalling that π̄(x1, x2) = π̄2(x2|x1)p1(x1) = π̄1(x1|x2)p2(x2) for t ≥ tb, each component of the

vector x(t) = [x
(t)
1 , x

(t)
2 ] is distributed as the corresponding marginal pdf, i.e., x

(t)
1 ∼ p1(x1) and

x
(t)
2 ∼ p2(x2). Therefore, after tb iterations, the standard Gibbs sampler can be interpreted as

the application of the chain rule procedure in Algorithm 3. Namely, for t ≥ tb, Algorithm 4 is
equivalent to generate x

(t)
1 ∼ p1(x1), and then draw x

(t)
2 ∼ π̄1(x2|x(t)1 ).

Algorithm 4 The standard Gibbs sampler for a bivariate target pdf.

1: for t = 1, . . . , T do
2: Draw x

(t)
2 ∼ π̄2(x2|x(t−1)1 ).

3: Draw x
(t)
1 ∼ π̄1(x1|x(t)2 ).

4: Set x(t) = [x
(t)
1 , x

(t)
2 ].

5: end for

3.3.2 Alternative chain rule procedure

An alternative procedure is shown in Algorithm 5. This chain rule draws M samples from the full
conditional π̄2(x2|x1) at each t-th iteration, and generates samples from the joint pdf π̄(x1, x2).

Algorithm 5 An alternative chain rule procedure.

1: for t = 1, . . . , T do
2: Draw x

(t)
1 ∼ p1(x1).

3: Draw x
(t)
2,m ∼ π̄2(x2|x(t)1 ), with m = 1, . . . .M .

4: end for

Note that all the TM vectors, [x
(t)
1 , x

(t)
2,m], with t = 1, . . . , T and m = 1, . . . ,M , are samples

from π̄(x1, x2). This scheme is valid and, in some cases, can present some benefits w.r.t. the
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(a) Standard sampling (b) Alternative sampling
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Figure 3: Graphical representation of the (a) standard chain rule sampling (M = 1), and (b) the
alternative chain rule sampling (M = 4). In both cases, N = 3. The total number of drawn

vectors [x
(t)
1 , x

(t)
2,m] ∼ π̄(x1, x2) = π̄2(x2|x1)p1(x1) is NM = 3 and NM = 12, respectively.

traditional scheme in terms of performance, depending on some characteristics contained in the
joint pdf π̄(x1, x2). For instance, the correlation between variables x1 and x2, and the variances of
the marginal pdfs p1(x1) and p2(x2). Figure 3 shows the graphical representation of the standard
chain rule sampling scheme (with T = 3 and M = 1), and the alternative chain rule sampling
procedure described before (with T = 3, M = 4).

At this point, a natural question arises: is it possible to design a Gibbs sampling scheme
equivalent to the alternative chain rule scheme described before? In the next section, we introduce
the Multiple Recycling Gibbs Sampler (MRG), which corresponds to the alternative chain rule
procedure, as summarized in Fig. 4.

Chain Rule
Alternative

Chain Rule

Multiple

Recycling Gibbs

(MRG)

Standard Gibbs

(SG)

Equivalence (t � tb)

Figure 4: Graphical representation of the relationships between chain rules and Gibbs schemes.
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4 The Recycling Gibbs sampler

The previous considerations suggest that we can benefit from some previous intermediate points
produced in the Gibbs procedure. More specifically, let us consider the following Trivial Recycling
Gibbs (TRG) procedure in Algorithm 6.

Algorithm 6 Trivial Recycling Gibbs (TRG) procedure.

1: for t = 1, . . . , T do
2: for d = 1, . . . , D do
3: Draw x

(t)
d ∼ π̄d(xd|x(t)1:d−1, x

(t−1)
d+1:D).

4: Set x
(t)
d = [x

(t)
1:d−1, x

(t)
d , x

(t−1)
d+1:D] = [x

(t)
1:d, x

(t−1)
d+1:D].

5: end for
6: end for
7: return Return {x(t)

d } for all d and t.

The procedure generates DT samples x
(t)
d , with d = 1, . . . , D and t = 1, . . . , T , shown in

Figure 5(b) with circles and squares. Note that if we consider only the subset of generated vectors

x
(t)
D , t = 1, . . . , T,

by setting d = D, we obtain the outputs of the standard Gibbs (SG) sampler approach in
Algorithm 1. Namely, the samples generated by a SG procedure can be obtained by subsampling
the samples obtained by the proposed RG. Figure 5(a) depicts with circles T + 1 vectors
(considering also the starting point) corresponding to a run of SG with T = 4. Figure 5(b)
shows with squares the additional points used in TRG.

Let us consider the estimation by SG and TRG of a generic moment, i.e., given a function
f(xd), of d-th marginal density, i.e., pd(xd) =

∫
RD−1 π̄(x)dx¬d. After a closer inspection, we note

that both estimators corresponding to the SG and TRG coincide:∫
RD
f(xd)π̄(x)dx =

∫
R
f(xd)pd(xd)dxd ≈

1

DT

T∑
t=1

D∑
d=1

f(x
(t)
d ) =

1

T

T∑
t=1

f(x
(t)
D ), (6)

where for the last equality we are assuming (for the sake of simplicity) that the d-th component
is the second variable in the Gibbs scan and T = kD, k ∈ N. This is due to the fact that, in
TRG, each component x

(t)
d is repeated exactly D times (inside different consecutive samples) and

we have D times more samples in TRG than in a standard SG. Hence, in such situation, there are
no apparent advantages of using TRG w.r.t. a SG approach. Namely, TRG and SG are equivalent
schemes in the approximation of the marginal densities (we remark that the expression above is
valid only for marginal moments). The advantages of a RG strategy appear clear when more than
one sample is drawn from the full-conditional, M > 1, as discussed below.

Based on the previous considerations, we design the Multiple Recycling Gibbs (MRG) sampler
which draws M > 1 samples from each full conditional pdf, as shown in Algorithm 7. Figure 5(c)
shows all the samples (denoted with circles, squares and diamonds) used in the MRG estimators.

10



(a) SG (b) TRG (c) MRG

−4 −2 0 2 4
−2

−1

0

1

2

3

4

x1

x 2

−4 −2 0 2 4
−2

−1

0

1

2

3

4

x1

x 2

−4 −2 0 2 4
−2

−1

0

1

2

3

4

x1

x 2

Figure 5: We consider T = 4 iterations of a Gibbs sampler and M = 5 iterations of the MH
for drawing from each full-conditional pdfs. (a) With the circles we denote the T + 1 points
(considering the starting point) used in the standard Gibbs estimators. (b) The vectors (denoted
with circles and squares) used in the TRG estimators. (c) The vectors (denoted with circles,
squares and diamonds) used in the MRG estimators.

Thus, given a specific function f(x) in the integral in Eq. (3), the MRG estimator is eventually
formed by TDM samples, without removing any burn-in period,

ÎT =
1

TDM

T∑
t=1

D∑
d=1

M∑
m=1

f(x
(t)
d,m). (7)

Observe that in order to go forward to sampling from the next full-conditional, we only consider
the last generated component, i.e., z

(t)
d = x

(t)
d,M . However, an alternative to step 8 of Algorithm 7

is: (a) draw j ∼ U(1, . . . ,M) and (b) set z
(t)
d = x

(t)
d,j. Note that choosing the last sample x

(t)
d,M is

more convenient for an MCMC-within-MRG scheme.

Algorithm 7 Multiple Recycling Gibbs (MRG) sampler.

1: Choose a starting point [z
(0)
1 , . . . , z

(0)
D ].

2: for t = 1, . . . , T do
3: for d = 1, . . . , D do
4: for m = 1, . . . ,M do
5: Draw x

(t)
d,m ∼ π̄d(xd|z(t)1:d−1, z

(t−1)
d+1:D).

6: Set x
(t)
d,m = [z

(t)
1:d−1, x

(t)
d,m, z

(t−1)
d+1:D].

7: end for
8: Set z

(t)
d = x

(t)
d,M .

9: end for
10: end for
11: return Return {x(t)

d,m} for all d, m and t.

As shown in Figure 4, MRG is equivalent to the alternative chain rule scheme described in the
previous section, so that the consistency of the MRG estimators is guaranteed. The ergodicity
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of the generated chain is also ensured since the dynamics of the MRG scheme is identical to the
dynamics of the SG sampler (they differ in the construction of final estimators). Note that with
M = 1, we go back to the TRG scheme.

The MRG approach is convenient in terms of accuracy and computational efficiency, as also
confirmed by the numerical results in Section 5. MRG is particularly advisable if an adaptive
MCMC is employed to draw from the full-conditional pdfs, i.e., when several MCMC steps are
performed for sampling from each full-conditional and adapting the proposal. We can use all
the sequence of samples generated by the internal MCMC algorithm in the resulting estimator.
Algorithm 8 shows the detailed steps of an MCMC-within-MRG algorithm, when a direct method
for sampling the full-conditionals is not available.

Algorithm 8 Generic MCMC-within-MRG sampler.

1: Choose a starting point [z
(0)
1 , . . . , z

(0)
D ].

2: for t = 1, . . . , T do
3: for d = 1, . . . , D do
4: Perform M steps of an MCMC algorithm with target pdf π̄d(xd|x(t)1:d−1, x

(t−1)
d+1:D), yielding

the sequence of samples x
(t)
d,1, . . . , x

(t)
d,M , with initial state x

(t)
d,0 = x

(t−1)
d .

5: Set x
(t)
d,m = [z

(t)
1:d−1, x

(t)
d,m, z

(t−1)
d+1:D], for m = 1, . . . ,M .

6: Set z
(t)
d = x

(t)
d,M .

7: end for
8: end for
9: return Return {x(t)

d,m} for all d, m and t.

Figure 6(a) depicts the random vectors obtained with one run of an MH-within-Gibbs
procedure, with T = 103 and M = 5. Figure 6(b) illustrates all the outputs of the previous run,
including all the auxiliary samples generated by the MH algorithm. Hence, these vectors are the
samples obtained with a MH-within-MRG approach. The histogram of the samples in Figure 6(b)
is depicted Figure 6(c). Note that the histogram of the MH-within-MRG samples reproduces
adequately the shape of the target pdf shown in Figure 5. This histogram was obtained with one
run of MH-within-MRG fixing T = 104 and M = 5.

5 Experimental Results

This section gives experimental evidence of performance of the proposed scheme. First of all, we
study the efficiency of the proposed scheme in three bi-dimensional toy examples with different
target densities: a unimodal Gaussian target presenting linear correlation among the variables, a
bimodal target (see Fig. 5) and an “elliptical” target which presents a strong nonlinear correlation
between the variables, as shown in Fig. 12(b). Then, we show its use in a hyper-parameter
estimation problem using Gaussian process (GP) regression [42] with a kernel function usually
employed for automatic relevance determination (ARD) of the input features, considering different
dimension of the inference problem. Results show the advantages of the MRG scheme in all the

12
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Figure 6: (a) Outputs of one MH-within-Gibbs run with T = 103 and M = 5, considering the
target with contour plot shown in Fig. 5. (b) Outputs of one MH-within-MRG run with T = 103

and M = 5. (c) Histograms obtained using all the points in Figure (b), i.e., the MRG outputs
with T = 104 and M = 5.

experiments. Furthermore, we apply MRG in a dependence detection problem using both real
and simulated remote sensing data. For the sake of reproducibility, the interested reader may find
related source codes in http://isp.uv.es/code/RG.zip.

5.1 Experiment 1: A first analysis of the efficiency

Let us consider two Gaussian full-conditional densities,

π̄1(x1|x2) ∝ exp

(
−(x1 − 0.5x2)

2

2δ2

)
, (8)

π̄2(x2|x1) ∝ exp

(
−(x2 − 0.5x1)

2

2δ2

)
, (9)

with δ = 1. The joint target pdf π̄(x1, x2) = N (x1, x2|µ,Σ) is a bivariate Gaussian pdf with mean
vector µ = [0, 0]> and covariance matrix Σ = [1.33 066; 0.66 1.33]. Hence, note that x1 and x2
are linearly correlated. We apply a Gibbs sampler with T iterations to estimate both the mean
and the covariance matrix of the joint target pdf. Then, we estimate 5 values (2 for the mean µ
and 3 for the covariance matrix Σ ) and takes the average Mean Square Error (MSE). The results
are averaged over 2000 independent runs.

In this toy example, it is possible to draw directly from the conditional pdfs in Eq. (8) since they
are both Gaussian densities. Thus, we can show the performance of the two ideal Gibbs schemes:
the Ideal SG method (see Alg. 1) and the Ideal MRG technique (see Alg. 7). Furthermore, we test
a standard MH method and an Adaptive MH (AMH) technique [19] within SG and MRG. For both

MH and AMH, we use a Gaussian random walk proposal, q(x
(t)
d,m|x

(t)
d,m−1) ∝ exp

(
− (x

(t)
d,m−x

(t)
d,m−1)

2

2σ2

)
,

for d ∈ {1, 2}, 1 ≤ m ≤ M and 1 ≤ t ≤ T .4 We test different values of the scale parameter

4We have also tried the use of a t-Student’s density as proposal pdf. Clearly, depending on the proposal

13

http://isp.uv.es/code/RG.zip


σ ∈ {0.5, 1}. At each iteration, AMH adapts the value of σ as m grows, using the generated
samples from the corresponding full-conditional.

First, we set T = 1000 and vary M . The results are given in Figure 7(a). Then, we keep fixed
M = 20 and vary T , as shown Figure 7(b). In both figures, all the MRG schemes are depicted with
solid lines whereas all the SG methods are shown with dashed lines. We can observe that the MRG
schemes always provide smaller MSE values. The performance of the MH-within-Gibbs methods
depends sensibly on the choice of σ, showing the importance of using an adaptive technique.
Obviously, the MSE of Ideal SG is constant in Figure 7(a) (as function of M), and the Ideal MRG
give a considerable improvement in both scenarios (varying M or T ). Note that, in Figure 7(b),
the difference between the Ideal SG and Ideal MRG techniques increases as T grows. As expected,
in both figures we can observe that the MH-within-Gibbs methods need to increase M in order
to approach the performance of the corresponding Ideal Gibbs schemes.

In Figure 8(a), we show the MSE of AMH as function of the number of target evaluation per
full-conditional E = MT .5 AMH adapts the scale parameter σ as M grows (starting with σ = 1).
We consider M = 1 and M = 10 and vary T in order to provide the same value of E. Clearly,
the chain corresponding to AMH-within-Gibbs with M = 10 is always shorter than the chain of
AMH-within-Gibbs with M = 1. We can see that AMH with M = 10 takes advantage of the
adaptation and provides smaller MSE value. Furthermore, with a Matlab implementation, the use
of a Gibbs sampler with a greater M and smaller T seems a faster solution, as shown in Figure
8(b).

5.2 Experiment 2: A second analysis of the efficiency

We test the new MRG scheme in a simple numerical simulation involving a bi-modal, bi-
dimensional target pdf:

π̄(x1, x2) ∝ exp

(
−(x21 − µ1)

2

2δ21
− (x2 − µ2)

2

2δ22

)
,

with µ1 = 4, µ2 = 1, δ1 =
√

5
2

and δ2 = 1. Figure 5 shows the contour plot of π̄(x1, x2)

and Figures 5(a)-(b) depicts some generated samples by MH-within-SG and MH-within-MRG,
respectively. Figure 5(c) the corresponding histogram obtained by the MRG samples. Our goal
is to approximate via Monte Carlo the expected value, E[X] where X = [X1, X2] ∼ π̄(x1, x2). We
test different Gibbs techniques: the MH [45] and IA2RMS [38] algorithms within Standard Gibbs
(SG) and within MRG sampling schemes. For the MH method, we use a Gaussian random walk
proposal,

q(x
(t)
d,m|x

(t)
d,m−1) ∝ exp

(
−

(x
(t)
d,m − x

(t)
d,m−1)

2

2σ2

)
,

parameter employed, the MSE values change, in general. However, the comparison among the different Monte
Carlo schemes is not affected by the use of a different proposal density.

5 The total number of target evaluations for all the tested algorithms is E = DMT (D = 2 in this case). Since
the factor D (dimension of the problem and number of the full-conditionals) is common for all the samplers, we
consider E = MT .
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(a) MSE as function of M (T = 1000).

200 400 600 800 1000

10−2

10−1

100

T

 

 

MH−SG (σ=1)
MH−MRG (σ=1)
Ideal SG
Ideal MRG
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Figure 7: Exp. Section 5.1- (a) MSE (log-scale) as function of M for Ideal Gibbs techniques
and different MCMC-within-Gibbs schemes (we fix T = 1000). (b) MSE (log-scale) as function
of T keeping fixed M = 20. Note that in both Figures (a) and (b), all the MRG methods are
depicted with solid lines whereas all the SG schemes with dashed lines.

for d ∈ {1, 2}, 1 ≤ m ≤ M and 1 ≤ t ≤ T . We test different values of the σ parameter. For
IA2RMS, we start with the set of support points S0 = {−10,−6,−2, 2, 6, 10}, see [38] for further
details. We averaged the Mean Square Error (MSE) over 105 independent runs for each Gibbs
scheme.

Figure 9(a) shows the MSE (in log-scale) of the MH-within-SG scheme as function of the
standard deviation σ of the proposal pdf (we set M = 1 and T = 1000, in this case). The
performance of the Gibbs samplers depends strongly on the choice of σ of the internal MH method.
The optimal value is approximately σ∗ ≈ 3. The use of an adaptive proposal pdf is a possible
solution, as shown in Figure 10(a). Figure 9(b) depicts the MSE (in log-scale) as function of T
with M = 1 and M = 20 (for MH-within-SG we also show the case σ = 1 and σ = 3). Again
we observe the importance of using the optimal value σ∗ ≈ 3 and, as a consequence, using an
adaptive proposal pdf is recommended, see e.g. [19]. Moreover, the use M = 20 improves the
results even without employing all the points in the estimators (i.e., in a SG scheme) since, as
M increases, we improve the convergence of the internal chain. Moreover, the MH-within-MRG
technique provides the smallest MSE values.

We can thus assert that recycling the internal samples provides more efficient estimators, as
confirmed by Figure 10(a) (represented again in log-scale). Here we fix T = 1000 and vary M .
As M increases, the MSE becomes smaller when the MRG technique is employed. When a (SG)
sampler is used, the curves show an horizontal asymptote since the internal chains converge after
a certain value M ≥ M∗, and there is not a great benefit from increasing M (recall that in SG
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(a) MSE as function of E = MT .
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(b) Normalized spent time as function of E = MT .

Figure 8: Exp. Section 5.1- (a) MSE (log-scale) as function of the number of target evaluations
per full-conditional E = MT , for an Adaptive MH-within-Gibbs schemes with M = 1 and M = 10.
Clearly, for the technique with M = 10, we use a shorter chain (smaller T ) than for the technique
with M = 1, in order to ensure the same number of evaluations E. (b) Normalized spent time
(log-scale) as function of E = MT , normalized with respect to the time spent by AMH-SG, with
M = 1 and T = 1000.

we do not recycle the internal samples). Within an MRG scheme, the increase of M yields lower
MSE since now we recycle the internal samples. Clearly, the benefit of using MRG w.r.t. SG
increases as M grows. Figure 10(a) also shows the advantage of using an adaptive MCMC scheme
(in this case IA2RMS [38]). The advantage is clearer when the MH and IA2RMS schemes are
used within MRG. More specifically note that, as the MH method employed the optimal scale
σ∗ ≈ 3, Figure 10(a) shows the importance of a non-parametric construction of the proposal pdf
employed in IA2RMS. Actually, such construction allows adaptation of the entire shape of the
proposal, which becomes closer and closer to the target. The performance of IA2RMS and MH
within Gibbs becomes more similar as M increases. This is due to the fact that, in this case,
with a high enough value of M , the MH chain is able to exceed its burn-in period and eventually
converges. Finally, note that the adaptation speeds up the convergence of the chain generated by
IA2RMS. The advantage of using the adaptation is more evident for intermediate values of M ,
e.g., 10 < M < 30, where the difference with the use of a standard MH is higher. As M increases
and the chain generated by MH converges, the difference between IA2RMS and MH is reduced.

In Figure 10(b), we compare the performance of IA2RMS-within-MRG scheme, setting M = 20
and varying T , with MH-within-a standard Gibbs scheme (i.e., M = 1) with a longer chain, i.e.,
a higher value of T ′ > T . In order to provide a comparison as fair as possible, we use the
optimal scale parameter σ∗ ≈ 3 for the MH method. For each value of T and T ′, the MSE
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Figure 9: Exp. Section 5.2- (a) MSE (log-scale) as function of σ for MH-within-SG (M = 1
and T = 1000). (b) MSE (log-scale) as function of T for MH-within-SG and MH-within-MRG
schemes. We have tested M ∈ {1, 20} and σ = {1, 3} (we recall that σ = 3 is the optimal scale
parameter for MH; see Figure (a)).

and computational time (in seconds) is given.6 We can observe that, for a fixed time, IA2RMS-
within-MRG outperforms in MSE the standard MH-within-Gibbs scheme with a longer chain.
These observations confirm the computational and estimation advantages of the proposed MRG
approach.

5.3 Experiment 3: A third analysis of the efficiency

In this section, we consider a bi-dimensional target density which presents a strong nonlinear
dependence between the variable x1 and x2, i.e.,

π̄(x1, x2) ∝ exp

(
−(x21 +Bx22 − A)2

4

)
, (10)

with A = 10 and B = 0.1. Figure 12(b) depicts the contour-plot of π̄(x1, x2). Note that the
difference scale in the first and second axis. We use different Monte Carlo techniques in order to
approximate the expected values (groundtruth µ1 = 0 and µ2 = 0) and the standard deviations
of the marginal pdfs (groundtruth δ1 ≈

√
5 and δ2 ≈

√
51). We compute the average MSE in the

estimation of these 4 values (also averaged over 2000 independent runs).
We compare two schemes, MH-within-SG and MH-within-MRG, considering again a random

walk proposal pdf q(x
(t)
d,m|x

(t)
d,m−1) ∝ exp

(
− (x

(t)
d,m−x

(t)
d,m−1)

2

2σ2

)
, for d ∈ {1, 2}, 1 ≤ m ≤ M and

6The computational times are obtained in a Mac processor 2.8 GHz Intel Core i5.
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Figure 10: Exp. Section 5.2- (a) MSE (log-scale) as function of M for different MCMC-within-
Gibbs schemes (we fix T = 1000). (b) MSE (log-scale) as function of the spent computational
time (seconds). For IA2RMS-within-MRG, we fix M = 20 and vary T , computing the MSE in
estimation and the corresponding spent computational time. For MH-within-SG, we set σ = 3,
M = 1, and vary T ′ (longer than T ) and again we compute MSE and the spent time.

1 ≤ t ≤ T . First of all, we set T = 200, σ = 10 and vary M , as shown in Figure 11(a). Then,
in Figure 11(b), we set M = 100, σ = 10 and vary T . In Figure 12(a), we keep fixed M = 100,
T = 200 and change σ. The MRG schemes are depicted with solid lines whereas all the SG methods
are shown with dashed lines. We can observe that the MH-within-MRG scheme always provides
the best results. Figure 12(a) shows again that performance of the Gibbs schemes depends on the
scale parameter of the proposal. In all cases, MRG provides smaller MSE values and the benefit
w.r.t. SG is more evident when a good choice of σ is employed.

5.4 Experiment 4: Learning Hyperparameters in Gaussian Processes

Gaussian processes (GPs) are Bayesian state-of-the-art tools for function approximation and
regression [42]. As for any kernel method, selecting the covariance function and learning its
hyperparameters is the key to attain significant performance. We here evaluate the proposed
approach for the estimation of hyperparameters of the Automatic Relevance Determination (ARD)
covariance [2, Chapter 6]. Notationally, let us assume observed data pairs {yj, zj}Pj=1, with yj ∈ R
and

zj = [zj,1, zj,2, . . . , zj,L]> ∈ RL,

where L is the dimension of the input features. We also denote the corresponding P × 1 output
vector as y = [y1, . . . , yP ]> and the L×P input matrix Z = [z1, . . . , zP ]. We address the regression
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Figure 11: Exp. Section 5.3- (a) MSE (log-scale) as function of M for MH-within-SG and
MH-within-MRG schemes with σ = 10 (we fix T = 200). (b) MSE (log-scale) as function of T
keeping fixed M = 100 and σ = 10. Note that in both Figures (a) and (b),the MRG schemes are
depicted with solid lines whereas all the SG schemes with dashed lines.
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Figure 12: Exp. Section 5.3- (a) MSE (log-scale) as function of different values of σ (keeping
fixed M = 100 and T = 200). (b) Contour-plot of the donut target pdf π̄.
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problem of inferring the unknown function f which links the variable y and z. Thus, the assumed
model is

y = f(z) + e, (11)

where e ∼ N(e; 0, σ2), and that f(z) is a realization of a Gaussian Process (GP) [42]. Hence
f(z) ∼ GP(µ(z), κ(z, r)) where µ(z) = 0, z, r ∈ RL, and we consider the ARD kernel function

κ(z, r) = exp

(
−

L∑
`=1

(z` − r`)2
2δ2`

)
, with δ` > 0, ` = 1, . . . , L. (12)

Note that we have a different hyper-parameter δ` for each input component z`, hence we also
define δ = δ1:L = [δ1, . . . , δL]. Using ARD allows us to infer the relative importance of different
components of inputs: a small value of δ` means that a variation of the `-component z` impacts
the output more, while a high value of δ` shows virtually independence between the `-component
and the output.

Given these assumptions, the vector f = [f(z1), . . . , f(zP )]> is distributed as

p(f |Z, δ, κ) = N (f ; 0,K), (13)

where 0 is a P × 1 null vector, and Kij := κ(zi, zj), for all i, j = 1, . . . , P , is a P × P matrix.
Note that, in Eq. (13), we have expressed explicitly the dependence on the input matrix Z, on
the vector δ and on the choice of the kernel family κ. Therefore, the vector containing all the
hyper-parameters of the model is

θ = [θ1:L = δ1:L, θL+1 = σ],

θ = [δ, σ] ∈ RL+1,

i.e., all the parameters of the kernel function in Eq. (12) and standard deviation σ of the
observation noise. Considering the filtering scenario and the tuning of the parameters (i.e.,
inferring the vectors f and θ), the full Bayesian solution addresses the study of the full posterior
pdf involving f and θ,

p(f ,θ|y,Z, κ) =
p(y|f ,Z,θ, κ)p(f |z,θ, κ)p(θ)

p(y|Z, κ)
, (14)

where p(y|f ,Z,θ, κ) = N (y; 0, σ2I) given the observation model in Eq. (11), p(f |z,θ, κ) is given
in Eq. (13), and p(θ) is the prior over the hyper-parameters. We assume p(θ) =

∏L+1
`=1

1

θβ`
Iθ` where

β = 1.3 and Iv = 1 if v > 0, and Iv = 0 if v ≤ 0. Note that the posterior in Eq. (14) is analytically
intractable but, given a fixed vector θ′, the marginal posterior of p(f |y,Z,θ′, κ) = N (f ;µp,Σp)
is known in closed-form: it is Gaussian with mean µp = K(K + σ2I)−1y and covariance matrix
Σp = K −K(K + σ2I)−1K [42]. For the sake of simplicity, in this experiment we focus on the
marginal posterior density of the hyperparameters,

p(θ|y,Z, κ) =

∫
p(f ,θ|y,Z, κ)df ∝ p(y|θ,Z, κ)p(θ),
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which can be evaluated analytically. Actually, since p(y|θ,Z, κ) = N (y; 0,K + σ2I) and
p(θ|y,Z, κ) ∝ p(y|θ,Z, κ)p(θ), we have

log [p(θ|y,Z, κ)] ∝ −1

2
y>(K + σ2I)−1y − 1

2
log
[
det
[
K + σ2I

]]
− β

L+1∑
`=1

log θ`, (15)

with θ` > 0, where clearly K depends on θ1:L = δ1:L and recall that θL+1 = σ [42]. However,
the moments of this marginal posterior cannot be computed analytically. Then, in order to
compute the Minimum Mean Square Error (MMSE) estimator, i.e., the expected value E[Θ] with
Θ ∼ p(θ|y,Z, κ), we approximate E[Θ] via Monte Carlo quadrature. More specifically, we apply
a Gibbs-type samplers to draw from π(θ) ∝ p(θ|y,Z, κ). Note that dimension of the problem is
D = L+ 1 since θ ∈ RD.

We generated the P = 500 pairs of data, {yj, zj}Pj=1, drawing zj ∼ U([0, 10]L) and yj according
to the model in Eq. (11), considered L ∈ {1, 3} so that D ∈ {2, 4}, and set σ∗ = 1

2
for both cases,

δ∗ = 1 and δ∗ = [1, 3, 1], respectively (recall that θ∗ = [δ∗, σ∗]). Keeping fixed the generated data
for each scenario, we then computed the ground-truths using an exhaustive and costly Monte
Carlo approximation, in order to be able to compare the different techniques.

We tested the standard MH within SG and MRG (with a random walk Gaussian proposal

q(x
(t)
d,m|x

(t)
d,m−1) ∝ exp

(
− (x

(t)
d,m−x

(t)
d,m−1)

2

2σ2

)
, as in the previous examples, with σ = 2), and also the

Single Component Adaptive Metropolis (SCAM) algorithm [20] within SG and MRG. SCAM is
a component-wise version of the adaptive MH method [19] where the covariance matrix of the
proposal is automatically adapted. In SCAM, the covariance matrix of the proposal is diagonal
and each element is adapted considering only the corresponding component: that is, the variances
of the marginal densities of the target pdf are estimated and used as a scale parameter of the
proposal pdf in the corresponding component.7 We averaged the results using 103 independent
runs. Figure 13(a) shows the MSE curves (in log-scale) of the different schemes as function of
M ∈ {1, 10, 20, 30, 40}, while keeping fixed T = 100 (in this case, D = 2). Figure 13(b) depicts
the MSE curves (D = 4) as function of T considering in one case M = 1 and M = 10 for the rest.
In both figures, we notice that (1) using an M > 1 is advantageous in any case (SG or MRG), (2)
using a procedure to adapt the proposal improves the results, and (3) MRG, i.e., recycling all the
generated samples, always outperforms the SG schemes.

Figure 14(a) compares the MH-within-SG with the MH-within-MRG, showing the MSE as
function of the total number of target evaluations E = MT per full-conditional. We set M = 5,
T ∈ {3, 5, 10, 20, 40, 60, 100} for MH-within-MRG, whereas we have M = 1 and T ∈ {10, 50,
100, 200, 300, 500} for MH-within-SG. Namely, we used a longer Gibbs chain for MH-within-SG.
Note that the MH-within-MRG provides always smaller MSEs, considering the same total number
of evaluations E of the target density. Figure 14(b) depicts the histograms of the samples θ(t)

drawn from the posterior p(θ|y,Z, κ) in a specific run, with D = 4, generated using MH-within-
MRG with M = 5 and T = 2000. The dashed line represents the mean of the samples (recall

7More specifically, we have implemented an accelerated version of SCAM which takes more advantage of the
MRG scheme, since the variance is also adjusted online during the sampling of the considered full-conditional (for
more details, see the code at http://isp.uv.es/code/RG.zip).
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that δ∗1 = 1, δ∗2 = 3, δ∗3 = 1 and (σ∗)2 = 0.5). Note that all the samples θ(t) can be employed
for approximating the full Bayesian solution of the GP which involves the joint posterior pdf in
Eq. (14).

We recall that the results in Figure 13(b) and Figures 14 corresponds to D = 4. We have also
tested SG and MRG in higher dimensions as shown in Table 5.4. In order to obtain these results
(averaged over 103 runs), we generate P = 500 pairs of data (as described above; we keep them
fixed in all the runs), considering again σ∗ = 1

2
and δ` = 2 for all ` = 1, . . . , L, with L ∈ {5, 7, 9}.

Hence, θ∗ = [δ∗, σ∗] has dimension D ∈ {6, 8, 10}. We test MH-within-SG and MH-within-MRG
with the random walk Gaussian proposal described above (σ = 2), M = 10 and T = 2000.
Observing Table 5.4, we see that the MRG provides the best results for all the dimension D of
the inference problem.

Table 2: MSE as function of the dimension D (with M = 10 and T = 2000).

Method D = 6 D = 8 D = 10
MH-within-SG 0.1247 0.3816 2.0720

MH-within-MRG 0.0681 0.1759 1.4681

0 10 20 30 4010−5

10−4

10−3

10−2

M

 

 

MH−SG
SCAM−SG
MH−MRG
SCAM−MRG

(a) MSE as function of M (T = 100).
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(b) MSE as function of T .

Figure 13: Exp. 2- (a) MSE (log-scale) as function of M (starting with M = 1) for different
MCMC-within-Gibbs schemes (T = 100 and D = 2). (b) MSE (log-scale) as function of T for
different techniques (in this case, D = 4), with M = 1 for the MH-within-SG method depicted
with a solid line and circles, whereas M = 10 for the remaining curves. Note that, in both figures,
the MRG approaches, shown with dashed lines, always outperform the corresponding standard
Gibbs (SG) schemes, shown with solid lines.
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(a) MSE versus the number of target evaluations E.
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(b) Histograms of the generated samples.

Figure 14: Exp. 2- (a) MSE (log-scale) as function of the total number of target evaluations
E = MT , per full-conditional (D = 4). Namely, for MH-within-SG we have M = 1
and T ∈ {10, 50, 100, 200, 300, 500}, whereas for MH-within-MRG we have M = 5 and T ∈
{3, 5, 10, 20, 40, 60, 100}. (b) Histograms of the samples drawn from the posterior p(θ|y,Z, κ) in
a specific run, with θ = [δ1, δ2, δ3, σ], i.e., D = 4, generated using MH-within-MRG with M = 5
and T = 2000.

5.5 Experiment 5: Learning Dependencies in Remote Sensing
Variables

We now consider the application of the MRG scheme to study the dependence among different
geophysical variables (considering real data). Specifically, we consider the case of temperature
estimation from thermal infrared (TIR) remotely sensed data. In this scenario, land surface
temperature (Ts) and emissivity (ε) are the two main geo-biophysical variables to be retrieved
from TIR data, since most of the energy detected by the sensor in this spectral region is directly
emitted by the land surface. The atmosphere status can be considered as a mediating variable
in the relations between the satellite measured T and Ts, and is here summarized by the integral
of the water vapour W through the whole atmospheric column. Both variables Ts and ε are
coupled and constitute a typical problem in remote sensing referred as to the “temperature and
emissivity separation problem”. On the one hand, models for estimating land temperature Ts
typically involve simple parametrizations of at-sensor brightness temperatures T , the mean and/or
differential emissivities (ε̄ and ∆ε), and the total atmospheric water vapour content W . On the
other hand, a plethora of models for estimating ε have been devised [25].

Here we focus on the application of the MRG sampler to infer the statistical dependencies
between the observed variables. We aim to obtain the dependence graph between the considered
geophysical variables, X1 = Ts, X2 = W , X3 = ε and X4 = T . To assess such relations, we
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considered synthetic data simulating ASTER sensor conditions [48]. A total of 6588 data points
was available. For simplicity, we focused on band 10 (∼ 8.3µm) for T and ε, and subsampled the
dataset to finally work with 220 data points. The data was subsequently standardized.

5.5.1 Main procedure

We study the 12 possible regression models of type

Xi = fj,i(Xj) + Ej,i. i, j ∈ {1, 2, 3, 4}, with i 6= j,

where Ej,i ∼ N (0, σ2
i,j) and fj,i(xj) is a realization of a Gaussian Process (GP) [42], with zero mean

and kernel function defined in Eq. (12) (note that in this case L = 1). For each regression problem,
we trained the corresponding GP model using SCAM-within-MRG with T = 200 and M = 10. We
analyze the empirical distributions of corresponding hyper-parameters θi,j = [δi,j, σ

2
i,j] obtained by

Monte Carlo. We focus mainly on the distribution of δi,j, i.e., the hyper-parameter of the kernel
in Eq. (12). Hyper-parameter δi,j will tend to be higher and its distribution will exhibit heavier
right tail if the Signal-Noise-Ratio (SNR) is low and if Xi and Xj are close to independence.
However, the spread of δi,j also depends on the noise power in the system, the unknown mapping
(deterministic or stochastic) linking Xi and Xj, and the asymmetry of the regression functions,
i.e. in general fi,j 6= fj,i. Hypothesis testing comes into play to determine the significance of the
association between all pairs of variables Xi and Xj.

5.5.2 Hypothesis testing and surrogate data

In order to find significance levels and thresholds about the existence of any possible dependence
(strong or weak), we perform an hypothesis test with the null-hypothesis “H0: independence
between Xi and Xj”. We build the sampling distribution of H0 by the surrogate data method
in [50]. Under the null-hypothesis H0 of independence, some proper surrogate data can be
generated by shuffling the output values (i.e., we permute the outputs keeping fixed the inputs)
while keeping fixed the input features. This way we have new data points sharing the same input
and output values with the true data, but breaking any structure which links the inputs with the
outputs. Clearly, this procedure considers different values for each pair of indices i and j (i.e.,
each variables Xi and Xj).

Given a set of surrogate data, we applied SCAM-within-MRG with T = 200 and M = 10
and obtain the empirical distribution of the hyper-parameter δi,j. We repeated this procedure 500
times, generating different surrogate data at each run. We computed different empirical moments
of the distribution of the hyper-parameter δi,j, as mean, median and variance from the empirical
distributions obtained via Monte Carlo with the true data and the surrogate data. Averaged
results over 500 runs are shown in Table 3. We show mean E[δ], median δ̄0.5 and standard
deviation

√
var[δ], obtained analyzing the true data, and the p-values obtained comparing the

estimated statistics with the corresponding distributions acquired by the surrogate data method.
Figure 15 shows the undirected graphs with significance level set to α = 0.1. The width of the

lines represents the significance of the link according to the estimated p-values. If one of the two
p-values corresponding the two possible regressions between the variable Xi and Xj is greater than
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0.1 the link is depicted in dashed line. The obtained graphs are consistent with a priori physical
knowledge about the problem. In particular, it is common sense that the surface temperature
Ts and ε depend on W and T . After all, remote sensing data processing mainly deals with the
estimation of the surface parameters from the acquired satellite brightness temperatures (T ) and
the atmosphere status (W )8. In addition, while emissivity ε is generally used for retrieving Ts,
some simpler methods using only T are successfully used [24]. It is also worth noting that the
used data considered only natural surfaces, hence the database was biased towards high values of
ε, thus explaining why the relationship between Ts and ε was not captured.

Table 3: Exp. 3- Results for the mean E[δ], the median δ̄0.5 and the std
√

var[δ].

Link In Out Mean (E[δ]) p-value Median (δ̄0.5) p-value Std (
√

var[δ]) p-value

Ts −W Ts W 0.68 0.004 0.67 0.002 0.15 0.001
W Ts 0.32 0.001 0.32 0.002 0.15 0.001

Ts − ε Ts ε 11.85 0.22 5.61 0.20 33.16 0.56
ε Ts 11.58 0.23 5.67 0.23 47.36 0.68

Ts − T Ts T 2.56 0.03 2.53 0.08 0.66 0.006
T Ts 1.83 0.02 1.76 0.03 0.48 0.002

W − T W T 0.33 0.001 0.34 0.001 0.14 0.001
T W 0.40 0.001 0.39 0.004 0.14 0.001

W − ε W ε 11.77 0.22 4.04 0.09 32.76 0.54
ε W 11.20 0.21 4.48 0.13 47.97 0.71

T − ε T ε 5.22 0.06 3.34 0.09 6.88 0.10
ε T 6.32 0.09 3.95 0.10 10.24 0.14

W

Ts

T

✏

(a) Mean.

W

Ts

T

✏

(b) Median.

W

Ts

T

✏

(c) std.

Figure 15: Exp. 3- Undirected graphs with significant level α = 0.1. The width of the lines
represents the significance of the link, shown in Table 3. If one of the two p-values corresponding
the two possible regressions is greater than 0.1 the link is depicted in dashed line. The graphs
are obtained considering (a) the mean, (b) the median and (c) the standard deviation of the
distribution of δ.

8While one could be tempted to infer causal relations, the proposed approach cannot cope with asymmetries in
the pdfs of variables through GP hyperparameter estimation.
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6 Conclusions

The Gibbs sampling method is a well-known Markov chain Monte Carlo (MCMC) algorithm,
extensively applied in statistics, signal processing and machine learning, in order to obtain samples
from complicated a posteriori distributions. A Gibbs sampling approach is particularly useful in
high-dimensional inference problems, since the generated samples are constructed component by
component. In this sense, it can be considered the MCMC counterpart of the particle filtering
methods, for static (i.e., non-sequential inference) and batch (i.e., all the data are processed jointly)
frameworks. The key point for the successful application of the SG sampler is the ability to draw
efficiently from each the full-conditional densities. However, in real-world applications, drawing
from complicated full-conditionals is required, and no direct methods are available in these cases.
For solving this issue, several specifically-designed MCMC algorithms has been proposed to be
employed within the SG sampler. Most of them require the generation of auxiliary samples that
are not included in the resulting estimators. The use of more auxiliary samples accelerates the
convergence of the generated Gibbs chain and improves the performance, at the expense of an
additional computational effort.

In this work, we have shown that these auxiliary samples can be included within the Gibbs
estimators improving their efficiency without any extra computational cost. The consistency of
the resulting estimators is ensured since the novel MRG scheme is equivalent to an alternative
formulation of the well-known chain rule method. This alternative chain rule procedure has been
also described and discussed in this work. Numerical simulations have confirmed the benefits
of the novel scheme. First, we have compared the SG and MRG schemes in a toy example,
considering the use of several parameter values and the application of different internal MCMC
algorithms. MRG yielded clear improvements of the performance w.r.t. the SG approach. Then,
we tested the SG and MRG schemes in a hyperparameter estimation problem for GP regression,
considering a kernel for automatic relevance determination (ARD). The MRG approach provided
the smallest MSEs in estimation of the hyperparameters in all cases. Finally, we studied the
application of the proposed MRG sampler to unveil the dependence between different geophysical
variables considering remote sensing satellite data.

As future lines, we plan to investigate the use of different number of samples M1,..., Md

to be drawn from full-conditionals, and the possible design of an automatic tuning strategy for
adapting the number of samples to improve the performance given a specific posterior distribution.
This will imply efforts in parallel MRG samplers for scalable learning. We also plan to extend
the numerical study with remote sensing data using the MRG scheme in order to infer causal
dependences among the geophysical variables, and for that we will consider applying the MRG in
(conditional) independence estimation schemes.

Acknowledgements
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[28] J. Kotecha and Petar M. Djurić. Gibbs sampling approach for generation of truncated
multivariate Gaussian random variables. Proceedings of Acoustics, Speech, and Signal
Processing, (ICASSP), 1999.

[29] R. A. Levine, Z. Yu, W. G. Hanley, and J. J. Nitao. Implementing component-wise Hastings
algorithms. Computational Statistics and Data Analysis, 48(2):363–389, 2005.

28



[30] F. Liang, C. Liu, and R. Caroll. Advanced Markov Chain Monte Carlo Methods: Learning
from Past Samples. Wiley Series in Computational Statistics, England, 2010.

[31] J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer-Verlag, 2004.

[32] F. Lucka. Fast Gibbs sampling for high-dimensional Bayesian inversion. arXiv:1602.08595,
2016.

[33] G. Marrelec and H. Benali. Automated rejection sampling from product of distributions.
Computational Statistics, 19(2):301–315, May 2004.

[34] L. Martino. Parsimonious adaptive rejection sampling. IET Electronics Letters, 53(16):1115–
1117, 2017.

[35] L. Martino, R. Casarin, F. Leisen, and D. Luengo. Adaptive independent sticky MCMC
algorithms. (to appear) EURASIP Journal on Advances in Signal Processing, pages 1–32,
2017.

[36] L. Martino and F. Louzada. Adaptive rejection sampling with fixed number of
nodes. (To appear) Communications in Statistics - Simulation and Computation (DOI:
10.1080/03610918.2017.1395039), pages 1–11, 2017.

[37] L. Martino and J. Mı́guez. A generalization of the adaptive rejection sampling algorithm.
Statistics and Computing, 21(4):633–647, October 2011.

[38] L. Martino, J. Read, and D. Luengo. Independent doubly adaptive rejection Metropolis
sampling within Gibbs sampling. IEEE Transactions on Signal Processing, 63(12):3123–3138,
June 2015.

[39] L. Martino, H. Yang, D. Luengo, J. Kanniainen, and J. Corander. A fast universal self-tuned
sampler within Gibbs sampling. Digital Signal Processing, 47:68 – 83, 2015.

[40] R. Meyer, B. Cai, and F. Perron. Adaptive rejection Metropolis sampling using Lagrange
interpolation polynomials of degree 2. Computational Statistics and Data Analysis,
52(7):3408–3423, March 2008.

[41] P. Müller. A generic approach to posterior integration and Gibbs sampling. Technical Report
91-09, Department of Statistics of Purdue University, 1991.

[42] C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. MIT Press,
2006.

[43] J. Read, L. Martino, and D. Luengo. Efficient Monte Carlo methods for multi-dimensional
learning with classifier chains. Pattern Recognition, 47(3):1535 – 1546, 2014.

[44] C. Ritter and M. A. Tanner. Facilitating the Gibbs sampler: The Gibbs stopper and the
griddy-Gibbs sampler. Journal of the American Statistical Association, 87(419):861–868,
1992.

29



[45] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, 2004.

[46] G. O. Roberts and S. K. Sahu. Updating schemes, correlation structure, blocking and
parameterization for the Gibbs sampler. Journal of the Royal Statistical Society: Series
B, 59(2):291–317, 1997.

[47] W. Shao, G. Guo, F. Meng, and S. Jia. An efficient proposal distribution for Metropolis-
Hastings using a b-splines technique. Computational Statistics and Data Analysis, 53:465–478,
2013.
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