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Abstract

The extended second order cones were introduced by G. Zhang and S. Z. Németh for solving mixed
complementarity problems and variational inequalities on cylinders. R. Sznajder determined the
automorphism groups and the Lyapunov or bilinearity ranks of these cones. G. Zhang and S. Z.
Németh found both necessary conditions and sufficient conditions for a linear operator to be a positive
operator of an extended second order cone. This note will give formulas for projecting onto the
extended second order cones. In the most general case the formula will depend on a piecewise linear
equation for one real variable which will be solved by using numerical methods.

Keywords: Semi-smooth equation, extended second order cone, metric projection, piecewise linear
Newton method.
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1 Introduction

The Lorentz cone is an important object in theoretical physics. Recently it has been rebranded as second
order cone and used for various application in optimization. Some robust optimization, plant location
and investment portfolio manangement problems were formulated as as a second order cone program [1].
Another good survey paper with a wide range of applications of second order cone programming is [2]. More
recent connections of second order cone programming and second order cone complementarity problem with
physics, mechanics, economics, game theory, robotics, optimization and neural networks were considered
in [3–11]. The importance of the second order cone in optimization is nowadays notorious not only in
theoretical physics, but in optimization as well.

The projection mapping plays a crucial role in solving optimization and complementarity problems.
Usually there is no closed-form expressions for projecting onto a cone. A nice property of the second order
is that it admits an explicit representation of the projection mapping onto it see [12, Proposition 3.3].
The original motivation for extending the second order cone was inspired by using iterative methods for
solving complementarity problems and variational inequalities [13,14]. These iterative methods are based
on the property that the projection onto the closed convex set defining the problem is isotone with respect
to the order defined out by a cone. Usually this is a very restrictive condition. However, cylinders and
in particular cylinders with cone base admit isotone projections onto them with respect to the extended
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second order cones. Therefore, variational inequalities on cylinders and mixed complementarity problems
can be solved by using such iterative techniques based on monotone convergence [13, 15].

Later it turned out that many of these cones could be even more useful because they have nice numerical
properties, that is, the bilinearity rank (or Lyapunov rank) [16–20] of these cones is higher than the
dimension of the underlying space. More specifically, for p > 1 this is true whenever q2− 3q+2 > 2p [21],
where p, q are from the definition of the extended second order cone (see Definition 1). Such cones are
“numerically good” cones when solving complementarity problems defined on them. The extended second
order cones are also irreducible cones [21]. But to be really usable from optimization point of view we need
easy ways of projecting onto them. This paper will show that projecting onto an extended second order
cone it is “almost possible” by using closed-form expression. We will present a set of formulas for projecting
onto an extended second order cone which is only subject to solving a piecewise linear equation with one
real variable. The method of finding these expressions is based on the special form of the complementarity
set of the extended second order cone and Moreau’s decomposition theorem [22] for projecting onto cones.

The structure of the paper is as follows:

In Section 2 we fix the notation and the terminology used throughout the paper. In Section 3 we present
the formulas for projecting onto the extended second order cone. In Section 4 we solve the piecewise linear
equation involved in these fromulas by using the semi-smooth Newton’s method, a method based on
Picard’s iteration and the bisection method. Finally, we make some remarks in the last section.

2 Preliminaries

Let ℓ,m, p, q be positive integers such that m = p+q. We identify the the vectors of Rℓ with ℓ×1 matrices
with real entries. The scalar product in R

ℓ is defined by the mapping

R
ℓ × R

ℓ ∋ (x, y) 7→ 〈x, y〉 := x⊤y ∈ R

and the corresponding norm by
R

ℓ ∋ x 7→ ‖x‖ :=
√

〈x, x〉 ∈ R.

For x, y ∈ R
ℓ denote x ⊥ y if 〈x, y〉 = 0. We identify the elements of Rp × R

q with the elements of Rm

through the correspondence
R

p × R
q ∋ (x, y) 7→ (x⊤, y⊤)⊤.

Through this identification the scalar product in R
p × R

q is defined by

〈(x, y), (u, v)〉 := 〈(x⊤, y⊤)⊤, (u⊤, v⊤)⊤〉 = 〈x, u〉+ 〈y, v〉.

A closed set K ⊂ R
ℓ with nonempty interior is called a proper cone if K +K ⊂ K, K ∩ (−K) = {0} and

λK ⊂ K, for any λ positive real number. The dual cone of a proper cone K ⊂ R
ℓ is a proper cone defined

by
K∗ = {x ∈ R

ℓ : 〈x, y〉 ≥ 0, ∀y ∈ K}.

A proper cone K ⊂ R
ℓ is called subdual if K ⊂ K∗, superdual if K∗ ⊂ K and self-dual if K∗ = K. If

K,D ⊂ R
ℓ are proper cones such that D = K∗, then D∗ = K and the cones K, D are called mutually

dual.

For a proper cone K ∈ R
ℓ denote

C(K) = {(x, y) ∈ K ×K∗ : x ⊥ y}

the complementarity set of K.
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Let C ∈ R
ℓ be a closed convex set. The projection mapping PC : Rℓ → R

ℓ onto C is the mapping
defined by

PC(x) = argmin{‖x− y‖ : y ∈ C}.

Recall the following decomposition Theorem of Moreau [22] (stated here for proper cones only):

Moreau’s Decomposition Theorem. Let K ⊂ R
ℓ be a proper cone, K∗ its dual cone and z ∈ R

ℓ.
Then, the following two statements are equivalent:

(i) z = x− y and (x, y) ∈ C(K),

(ii) x = PK(z) and y = PK∗(−z).

It can be easily seen that Moreau’s decomposition theorem implies

z = PK(z)− PK∗(−z),

with PK(z) ⊥ PK∗(−z).

For a vector z ∈ R
ℓ denote z1, . . . , zℓ its components, that is, z = (z1, . . . , zℓ)

⊤. Let ≥ denote the
component-wise order in R

ℓ, that is, the order defined by R
ℓ ∋ x ≥ y ∈ R

ℓ if and only if xi ≥ yi for
i = 1, . . . , ℓ. Denote by 0 the vector in R

ℓ with all components zero, by e the vector in R
ℓ with all

components one and by R
ℓ
+ = {x ∈ R

ℓ | x ≥ 0} the nonnegative orthant. The proper cone R
ℓ
+ is self-

dual. For a real number α ∈ R denote α+ = max(α, 0) and α+ = max(−α, 0). For a vector z ∈ R
ℓ

denote z+ = (z+1 , . . . , z
+

ℓ ), z
− = (z−1 , . . . , z

−
ℓ ) and |z| = (|z1|, . . . , |zℓ|). It is known that z+ = PRℓ(z) and

z− = PRℓ(−z).

Recall the following definition of a pair of mutually dual extended second order cones L, M :

Definition 1.

L = {(x, u) ∈ R
p × R

q : x ≥ ‖u‖e} ,

M = {(x, u) ∈ R
p × R

q : 〈x, e〉 ≥ ‖u‖, x ≥ 0} ,

where ≥ denotes the component-wise order and e is the p dimensional vector with all components 1.

It is known that both L and M are proper cones, L is subdual M is superdual and if p = 1, then both
cones reduce to the second order cone. The cones L and M are polyhedral if and only if q = 1. If we
allow q = 0 as well, then the cones L and M reduce to the nonnegative orthant. More properties of the
extended second order cones can be found in [13,15,21].

3 Projection formulas for extended second order cones

Let p, q be positive integers.

Proposition 1. Let x, y ∈ R
p and u, v ∈ R

q \ {0}. We have that (x, u, y, v) := ((x, u), (y, v)) ∈ C(L) if
and only if there exists a λ > 0 such that v = −λu, 〈y, e〉 = ‖v‖ and (x− ‖u‖e, y) ∈ C(Rp

+).

Proof. Suppose first that there exists λ > 0 such that v = −λu, 〈y, e〉 = ‖v‖ and (x− ‖u‖e, y) ∈ C(Rp
+).

Hence, (x, u) ∈ L and (y, v) ∈M . Moreover,

〈(x, u), (y, v)〉 = 〈x, y〉+ 〈u, v〉 = ‖u‖〈e, y〉 − λ‖u‖2 = ‖u‖‖v‖ − λ‖u‖2 = 0.

Thus, (x, u, y, v) ∈ C(L).
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Conversely, suppose that (x, u, y, v) ∈ C(L). Then, (x, u) ∈ L, (y, v) ∈M and

0 = 〈(x, u), (y, v)〉 = 〈x, y〉+ 〈u, v〉 ≥ 〈‖u‖e, y〉+ 〈u, v〉 ≥ ‖u‖‖v‖+ 〈u, v〉 ≥ 0.

Hence, there exists λ > 0 such that v = −λu, 〈e, y〉 = ‖v‖ and 〈x − ‖u‖e, y〉 = 0. It follows that
(x− ‖u‖e, y) ∈ C(Rp

+). �

Theorem 1. Let (z, w) ∈ R
p × R

q. Then, we have

1. If z+ ≥ ‖w‖e, then PL(z, w) = (z+, w) and PM(−z,−w) = (z−, 0).

2. If 〈z−, e〉 ≥ ‖w‖, then PL(z, w) = (z+, 0) and PM(−z,−w) = (z−,−w).

3. If z+ 6≥ ‖w‖e and 〈z−, e〉 < ‖w‖, then the piecewise linear equation

λ‖w‖ = 〈e, [(λ+ 1)z − ‖w‖e]−〉. (1)

has a unique positive solution λ > 0,

PL(z, w) =

(

[

z −
1

λ+ 1
‖w‖e

]+

+
1

λ+ 1
‖w‖e,

1

λ+ 1
w

)

(2)

and

PM(−z,−w) =

(

[

z −
1

λ+ 1
‖w‖e

]−

, −
λ

λ+ 1
w

)

(3)

Proof. We will use Moreau’s decomposition theorem for L for proving all three items. In this case this
theorem states that, PL(z, w) = (x, u) and PM(−z,−w) = (y, v) if and only if (z, w) = (x, u)− (y, v) and
(x, u, y, v) ∈ C(L).

1. This is exactly the case when v = 0.

Indeed, v = 0 implies PL(z, w) = (x, u) and PM(−z,−w) = (y, 0). Hence, z = x − y, w = u,
x ≥ ‖u‖e, y ≥ 0 and 〈x, y〉 = 0. By using Moreau’s decomposition theorem for R

p
+, we have that

z = x− y, x ≥ 0, y ≥ 0 and 〈x, y〉 = 0 implies x = z+ and y = z−. Since, w = u and x ≥ ‖u‖e, we
get z+ ≥ ‖w‖e.

Conversely, suppose that z+ ≥ ‖w‖e. Then, it is easy to check that (z+, w, z−, 0) ∈ C(L). Then,
by Moreau’s decomposition Theorem for L, we get PL(z, w) = (z+, w) and PM(−z,−w) = (z−, 0).
Thus, v = 0.

2. This is exactly the case when u = 0.

Indeed, u = 0 implies PL(z, w) = (x, 0) and PM(−z,−w) = (y, v). Hence, z = x− y, w = −v, x ≥ 0,
〈y, e〉 ≥ ‖v‖, y ≥ 0 and 〈x, y〉 = 0. By using Moreau’s decomposition theorem for Rp

+, we have that
z = x− y, x ≥ 0, y ≥ 0 and 〈x, y〉 = 0 implies x = z+ and y = z−. Since w = −v and 〈y, e〉 ≥ ‖v‖,
we get 〈z−, e〉 ≥ ‖w‖.

Conversely, suppose that 〈z−, e〉 ≥ ‖w‖. Then, it is easy to check that (z+, 0, z−,−w) ∈ C(L). Then,
by Moreau’s decomposition Theorem for L, we get PL(z, w) = (z+, 0) and PM(−z,−w) = (z−,−w).
Thus, u = 0.
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3. This is exactly the case when neither the condition of item 1 nor the condition of item 2 holds, or
equivalently when u 6= 0 and v 6= 0.

From Proposition 1 it follows that (z, w) = (x, u) − (y, v) and (x, u, y, v) ∈ C(L) is equivalent to
z = x−y, w = u−v and the existence of a λ > 0 such that v = −λu, 〈y, e〉 = ‖v‖ and (x−‖u‖e, y) ∈
C(Rp

+). On the other hand, by Moreau’s decomposition theorem for Rp
+, (x − ‖u‖e, y) ∈ C(R

p
+) is

equivalent to x− ‖u‖e = [x− ‖u‖e− y]+ and y = [x− ‖u‖e− y]−. Hence,

PL(z, w) =

(

x,
1

λ+ 1
w

)

(4)

and

PM(−z,−w) =

(

y,−
λ

λ+ 1
w

)

(5)

if and only if z = x− y and λ > 0 is such that

〈y, e〉 =
λ

λ+ 1
‖w‖, (6)

x =

[

z −
1

λ+ 1
‖w‖e

]+

+
1

1 + λ
‖w‖e (7)

and

y =

[

z −
1

λ+ 1
‖w‖e

]−

. (8)

From equations (4) and (7) follows equation (2) and from equations (5) and (8) follows equation
(3), where λ > 0 is given by equation (1), which is a combination of equations (6) and (8). The
uniqueness of λ > 0 which satisfies (1) follows from the uniqueness of PL(z, w) and PM(z, w).

�

Alternative Proof.

For proving items 1 and 2 it is enough to take the third paragraphs from the original proofs of these
items (i.e., the paragraphs which start with the word “Conversely”).

3. Denote the right hand sides of equations (2) and (3) by (x, u) and (y, v), respectively. It is easy to
see that (z, w) = (x, u) − (y, v). On the other hand y = [z − ‖u‖e]− and x − ‖u‖e = [z − ‖u‖e]+.
Hence, 〈x−‖u‖e, y〉 = 0. Thus, it follows that (x−‖u‖e, y) ∈ C(Rp

+). If equation (1) has a positive
solution, then by using some algebra, it can be seen that equation (1) implies that 0 = 〈(x, u), (y, v)〉.
If follows that

0 = 〈x, y〉+ 〈u, v〉 = 〈[z − ‖u‖e]+ + ‖u‖e, [z − ‖u‖e]−〉+ 〈u, v〉 = ‖u‖〈e, y〉+ 〈u, v〉,

which, by using v = −λu, implies that 〈e, y〉 = ‖v‖. Under the given conditions of item 3, we also
have u 6= 0 and v 6= 0. Hence, Proposition 1 implies (x, u, y, v) ∈ C(L). Therefore equations (2)
and (3) follow from Moreau’s decomposition theorem. It remains to show that (1) has a positive
solution. Let

ψ(λ) = λ‖w‖ − 〈e, [(λ+ 1)z − ‖w‖e]−〉.

In this case z 6≥ ‖w‖e, otherwise it would follow that z+ = z ≥ ‖w‖e, which contradicts our
assumptions. Hence, we get ψ(0) < 0. If λ > 0 is sufficiently large, then we get

ψ(λ) ≥ λ‖w‖ − 〈e, (λ+ 1)z− + ‖w‖e〉 = (‖w‖ − 〈z−, e〉)λ− 〈e, z− + ‖w‖e〉 > 0.

Since ψ is continuous, there is a λ > 0 such that ψ(λ) = 0 and hence equation (1) has a positive
solution. The uniqueness of the projection shows that this positive solution is unique.
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The next remark will recover the well known formulas for projecting onto the second order cone (see for
example [12, Proposition 3.3]).

Remark 1. Let (z, w) ∈ R× R
q and L be the second order cone. Then, Theorem 1 implies that

PL(z, w) =



















1

2

(

[z − ‖w‖]+ + [z + ‖w‖]+,
[

[z + ‖w‖]+ − [z − ‖w‖]+
] w

‖w‖

)

, w 6= 0,

(

z+, 0
)

, w = 0.

(9)

For p = 1, the conditions in item 3 in Theorem (1) hold if and only if 0 ≤ |z| < ‖w‖ and equation
(1) becomes λ‖w‖ = [(λ + 1)z − ‖w‖]−, which obviously can have only nonnegative solutions, because the
right hand side of the equation is nnonegative. Moreover, λ = 0 cannot be a solution neither because that
would imply |z| − ‖w‖ ≥ z − ‖w‖ > 0. Hence, the conditions in item 3 hold if and only if (1) becomes
λ‖w‖ = (‖w‖ − λ+ 1)z). This latter equation has the unique positive solution

λ =
‖w‖ − z

‖w‖+ z
. (10)

By using equation (2) and (10), it is just a matter of algebraic manipulations to check that (9) holds for
this case. The cases described by items 1 and 2 can be similarly checked.

4 Numerical methods for projecting

In this section we will present three well known numerical methods to find the unique zero of the piecewise
linear equation (1), in order to project onto the extended second order cones. We note that (z, w) ∈ R

p×Rq

satisfies the two conditions in item 3 of Theorem 1 if and only if

∃ i0 ∈ {1, . . . , p}; 0 ≤ z+i0 < ‖w‖, 0 ≤

p
∑

i=1

z−i < ‖w‖. (11)

Throughout this section we will assume that (z, w) ∈ R
p × R

q satisfies (11).

4.1 Semi-smooth Newton method

In order to study (1), we consider the piecewise linear function ψ : (0,+∞)→ R defined by

ψ(λ) := λ‖w‖ − 〈e, [(λ+ 1)z − ‖w‖e]−〉. (12)

The function ψ is piecewise linear and its unique zero is the solution of (1). The semi-smooth Newton
method for finding the zero of ψ, with starting point λ0 ∈ (0,+∞), it is formally defined by

ψ(λk) + sk (λk+1 − λk) = 0, sk ∈ ∂ψ(λk), k = 0, 1, . . . , (13)

where sk is any subgradient in ∂ψ(λk) the Clarke generalized subdifferential of ψ at λk. By letting

N(λ) := diag
(

−sgn
(

[(λ+ 1)z − ‖w‖e]−
))

, λ ∈ (0,+∞), (14)
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where sgn(x) := (sgn(x1), . . . , sgn(xp)) for each x ∈ R
p, we can see ‖w‖ − 〈e,N(λ)z〉 ∈ ∂ψ(λ). Since

N(λ)[(λ+ 1)z − ‖w‖e] = [(λ+ 1)z − ‖w‖e]−, by setting sk = ‖w‖ − 〈e,Nkz〉 and

Nk := N(λk), (15)

equation (13) implies λk‖w‖ − 〈e,Nk [(λk + 1)z − ‖w‖e]〉 + [‖w‖ − 〈e,Nkz〉] [λk+1 − λk] = 0. After some
algebraic manipulations, the last equality becomes

[‖w‖ − 〈e,Nkz〉]λk+1 = 〈e,Nk [z − ‖w‖e]〉 , k = 0, 1, . . . , (16)

which formally defines the semi-smooth Newton sequence {λk} for solving (1).

Remark 2. For p = 1, the conditions in (11) hold if and only if 0 ≤ |z| < ‖w‖. Thus, if z ≤ 0, then
Nk ≡ −1 and λk+1 = [‖w‖−z]/[‖w‖+z] for all k = 0, 1, . . .. Now, if z > 0 then letting 0 < λ0 < [‖w‖−z]/z,
we have N0 ≡ −1 and λ1 = [‖w‖− z]/[‖w‖+ z]. Therefore, from Remark 1, we conclude that semi-smooth
Newton (16) solve equation (1) for p = 1 with only one iteration.

Proposition 2. Assume that 2 〈e, |z|〉 < ‖w‖. Then, for any λ0 > 0 , the sequence {λk} defined in (16)
is well defined and converges linearly to the unique solution λ∗ of (1) as follows

|λ∗ − λk+1| ≤
〈e, |z|〉

‖w‖ − 〈e,Nkz〉
|λ∗ − λk|, k = 0, 1, . . . . (17)

Proof. Definition (14) implies that the entries of Nk are equal to 0 or −1, for all k = 0, 1, . . .. Thus, from
(11) we have ‖w‖ − 〈e,Nkz〉 > 0 for all k = 0, 1, . . ., which implies that the sequence {λk} is well defined.
Since we are under conditions in (11), then item 3 in Theorem 1 implies that (1) has a unique solution
λ∗ ∈ (0,+∞). Thus, from the definition of ψ, we conclude that 0 = ψ(λ∗). Hence, by using (15), (16) and
the definition of ψ, after some algebra we obtain that

λ∗ − λk+1 = [‖w‖ − 〈e,Nkz〉]
−1
[

− λ∗‖w‖+ 〈e, [(λ∗ + 1)z − ‖w‖e]−〉+

λk‖w‖ − 〈e, [(λk + 1)z − ‖w‖e]−〉+ [‖w‖ − 〈e,Nkz〉] [λ∗ − λk]
]

, k = 0, 1, . . . .

On the other hand, since Nk[(λk + 1)z − ‖w‖e] = [(λk + 1)z − ‖w‖e]−, after some calculations we get

− λ∗‖w‖+ 〈e, [(λ∗ + 1)z − ‖w‖e]−〉+ λk‖w‖ − 〈e, [(λk + 1)z − ‖w‖e]−〉+ [‖w‖ − 〈e,Nkz〉] [λ∗ − λk] =

〈e,N∗[(λ∗ + 1)z − ‖w‖e]〉 − 〈e,Nk[(λk + 1)z − ‖w‖e]〉 − 〈e,Nkz〉 [λ∗ − λk] ,

for all k = 0, 1, . . ., where N∗ := N(λ∗). By combining the above two equalities, we obtain that

λ∗−λk+1 = [‖w‖ − 〈e,Nkz〉]
−1
[

〈e,N∗[(λ∗+1)z−‖w‖e]〉−〈e,Nk[(λk+1)z−‖w‖e]〉−〈e,Nkz〉 [λ∗ − λk]
]

.

Define the auxiliary piecewise linear function ζ(λ) = 〈e,N(λ)[(λ+ 1)z − ‖w‖e]〉. Thus, except possibly at
p points, ζ is differentiable and there holds

ζ(λ∗) = ζ(λk) +

∫

1

0

〈e,N(λk + t(λ∗ − λk))z〉 [λ∗ − λk]dt,

due to 〈e,N(λ)z〉 ∈ ∂ζ(λ). Hence, by simple combination of the two latter equalities, we have

λ∗ − λk+1 = [‖w‖ − 〈e,Nkz〉]
−1

[
∫

1

0

〈e, [N(λk + t(λ∗ − λk))−Nk] z〉 dt

]

[λ∗ − λk], k = 0, 1, . . . .

Since (14) implies that the entries of the matrix N are equal to 0 or −1, the last inequality implies (17).
Therefore, as we are under the assumption 2 〈e, |z|〉 < ‖w‖, we have [〈e, |z|〉]/[‖w‖−〈e,Nkz〉] < 1 and (17)
implies that the sequence {λk} converges to λ∗, which concludes the proof. �
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4.2 Picard’s method

In this section we present a method based on Picard’s iteration for solving equation (1). The statement
of the result is

Proposition 3. If 〈e, |z|〉 < ‖w‖, then for all λ0 > 0 the sequence given by the iteration

λk+1 =
1

‖w‖

〈

e, [(λk + 1)z − ‖w‖e]−
〉

, k = 1, . . . , (18)

converges to the unique solution of the semi-smooth equation (1).

Proof. It is sufficient to prove that ϕ : [0,+∞) → R defined by ϕ(λ) = 1

‖w‖
〈e, [(λ+ 1)z − ‖w‖e]−〉 is a

contraction. Indeed, the definition of ϕ implies

|ϕ(λ)− ϕ(µ)| ≤
1

‖w‖

∑

i=1

∣

∣[(λ+ 1)zi − ‖w‖]
− − [(µ+ 1)zi − ‖w‖]

−
∣

∣

≤
1

‖w‖

∑

i=1

|zi(λ− µ)| =
〈e, |z|〉

‖w‖
|λ− µ| , λ, µ ∈ [0,+∞).

Since we are under the assumption 〈e, |z|〉 < ‖w‖, the last inequality implies that ϕ is a contraction and
the result follows. �

4.3 Bisection method

In the followings we state the bisection method for finding the unique solution of (1). Let ψ be defined
by (12). Since (11) implies ‖w‖ > 0, we have ψ(0) < 0. Then, the initializations of the method λ0 and µ0

can be obtained by taking

λ0 > max

{

max

{

‖w‖

zi
: i ∈ {1, ..., n}, zi 6= 0

}

− 1, p

}

,

and µ0 = 0. Note that ψ(λ0)ψ(µ0) < 0. Therefore, the bisection method is formally stated as follows:

0. Let λ0 > 0 and µ0 = 0 satisfying ψ(λ0)ψ(µ0) < 0. Set k = 0;

1. compute

λk+1 =
λk + µk

2
; (19)

2. if ψ(λk+1) = 0 stop. Otherwise, compute

µk+1 =

{

λk, if ψ(λk)ψ(λk+1) < 0,

µk, otherwise;
(20)

3. set k ← k + 1 and go to step 1.

It is well known that the bisection method is globally convergent with linear rate; see, for example, [23].
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Final remarks

We believe that the extended second order cones will become an important class of cones in the future.
First, they are probably the most natural extension of the already important second order cones. Next,
the complementarity problems defined on them often have nice computational properties as remarked in
the introduction. Finally, we found “almost closed-form” formulas for projecting onto them. The formulas
depend only on a piecewise linear equation for a real parameter.

For a given point the projection can be obtained easily in at most 2p steps, by assigning signs to the
components of the second vector in the scalar product on the right hand side of the piecewise linear
equation (1), solving for λ, and if there is a solution, then checking that the solution corresponds to the
apriori assumed signs. However, this method is computationally unviable for larger p. Therefore, we
developed numerical methods for solving (1) based on the semi-smooth Newton method, Picard’s iteration
and bisection. The first two of these methods need some restrictions on the point which is projected to
prove that they are globally convergent, but the bisection method is always globally linearly convergent.

In the future we plan to solve conic optimization and complementarity problems on the extended second
order cone and to find practical examples which can be modelled by such problems.
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