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Abstract An analog of the S = 1/2 Feynman-Dyson propagator is presented in
the framework of the S = 1 Weinberg’s theory. The basis for this construction is
the concept of the Weinberg field as a system of four field functions differing by
parity and by dual transformations. Next, we analyze the recent controversy in the
definitions of the Feynman-Dyson propagator for the field operator containing the
S = 1/2 self/anti-self charge conjugate states in the papers by D. Ahluwalia et al. and
by W. Rodrigues Jr. et al. The solution of this mathematical controversy is obvious.
It is related to the necessary doubling of the Fock Space (as in the Barut and Ziino
works), thus extending the corresponding Clifford Algebra. However, the logical
interrelations of different mathematical foundations with the physical interpretations
are not so obvious (Physics should choose only one correct formalism: it is not clear,
why two correct mathematical formalisms (which are based on the same postulates)
lead to different physical results?)

1 The Weinberg Propagators.

Accordingly to the Feynman-Dyson-Stueckelberg ideas, a causal propagator has to
be constructed by using the formula in Ref. [1, p.91] In the S = 1/2 Dirac theory it
results to

SF(x) =
∫ d4k

(2π)4 e−ikx k̂ +m
k2−m2 + iε

, (1)

provided that the constant a and b are determined by imposing (i∂̂2−m)SF(x2,x1) =
δ (4)(x2− x1) in [1, p.91]. Namely, a =−b = 1/i .

However, attempts to construct the covariant propagator in this way have failed
in the framework of the Weinberg theory, Ref. [2]. It is a generalization of the Dirac
ideas to higher spins. For instance, on the page B1324 of Ref. [2] Weinberg writes:
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“Unfortunately, the propagator arising from Wick’s theorem is NOT equal to the
covariant propagator except for S = 0 and S = 1/2. The trouble is that the deriva-
tives act on the ε(x) = θ(x)−θ(−x) in ∆C(x) as well as on the functions1 ∆ and
∆1. This gives rise to extra terms proportional to equal-time δ functions and their
derivatives. . . The cure is well known: . . . compute the vertex factors using only the
original covariant part of the Hamiltonian H ; do not use the Wick propagator for
internal lines; instead use the covariant propagator. The propagator proposed in
Ref. [3] is the causal propagator. However, the old problem persists: the Feynman-
Dyson propagator is not the Green function of the Weinberg equation. As men-
tioned, the covariant propagator proposed by Weinberg propagates kinematically
spurious solutions [3].

The aim of my paper is to consider the problem of constructing the propagator in
the framework of the model given in [4]. The concept of the Weinberg field ‘doubles’
has been proposed there. It is based on the equivalence between the Weinberg field
and the antisymmetric tensor field, which can be described by both Fµν and its
dual F̃µν . These field operators may be used to form a parity doublet. An essential
ingredient of my consideration is the idea of combining the Lorentz and the dual
transformation. The set of four equations has been proposed in Ref. [4].

The simple calculations give
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where

Sp = m+(S ·p)+
(S ·p)2

E +m
, Sp = m− (S ·p)+

(S ·p)2

E +m
. (4)

And, u− are the 6-cpmponent objects for spin 1, which are solutions of th Weinberg
“double” equations in the momentum space. One can conclude: the generalization
of the notion of causal propagators is admitted by using the ‘Wick’s formula’ for the
time-ordered particle operators provided that a = b = 1/4im2. It is necessary to con-
sider all four equations. Obviously, this is related to the 12-component formalism,
which I presented in [4].

The S = 1 analogues of the formula (1) for the Weinberg propagators follow
immediately. In the Euclidean metrics they are:

S(1)
F (p)∼− 1

i(2π)4(p2 +m2− iε)
[
γµν pµ pν −m2] , (5)

1 In the cited paper ∆1(x) ≡ i [∆+(x)+∆+(−x)] and ∆(x) ≡ ∆+(x)−∆+(−x) have been used.
i∆+(x)≡ 1

(2π)3

∫ d3 p
2Ep

exp(ipx) is the particle Green function.
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S(2)
F (p)∼− 1

i(2π)4(p2 +m2− iε)
[
γµν pµ pν +m2] , (6)

S(3)
F (p)∼− 1

i(2π)4(p2 +m2− iε)
[
γ̃µν pµ pν +m2] , (7)

S(4)
F (p)∼− 1

i(2π)4(p2 +m2− iε)
[
γ̃µν pµ pν −m2] . (8)

γµν are the covariantly defined 6×6 matrices of the (1,0)⊕ (0,1) representation.
We should use the obtained set of Weinberg propagators (5,6,7,8) in the perturba-

tion calculus of scattering amplitudes. In Ref. [6] the amplitude for the interaction of
two 2(2S+1) bosons has been obtained on the basis of the use of one field only and
it is obviously incomplete, see also Ref. [5]. But, it is interesting that the spin struc-
ture was proved there to be the same, regardless we consider the two-Dirac-fermion
interaction or the two-Weinberg(S = 1)-boson interaction. However, the denomi-
nator slightly differs in the cited papers [6] from the fermion-fermion case. More
accurate considerations of the fermion-boson and boson-boson interactions in the
framework of the Weinberg theory has been reported elsewhere [7].

2 The Self/Anti-self Charge Conjugate Construct in the
(1/2,0)⊕ (0,1/2) Representation.

The first formulations with doubling solutions of the Dirac equations have been
presented in Refs. [10], and [11]. The group-theoretical basis for such doubling has
been given in the papers by Gelfand, Tsetlin and Sokolik [12], who first presented
the theory in the 2-dimensional representation of the inversion group in 1956 (later
called as ‘the Bargmann-Wightman-Wigner-type quantum field theory’ in 1993).
M. Markov wrote long ago two Dirac equations with the opposite signs at the mass
term [10]: [

iγµ
∂µ −m

]
Ψ1(x) = 0 , (9)[

iγµ
∂µ +m

]
Ψ2(x) = 0 . (10)

In fact, he studied all properties of this relativistic quantum model (while he did not
know yet the quantum field theory in 1937). Next, he added and subtracted these
equations. What did he obtain?

iγµ
∂µ ϕ(x)−mχ(x) = 0, iγµ

∂µ χ(x)−mϕ(x) = 0 . (11)

Thus, ϕ and χ solutions can be presented as some superpositions of the Dirac 4-
spinors u− and v−. These equations, of course, can be identified with the equations
for the Majorana-like λ− and ρ− spinors, which we presented in Ref. [8, 9]. The
equations can be written in the 8-component form as follows:
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iΓ µ

∂µ −m
]
Ψ(+)(x) = 0 , ,

[
iΓ µ

∂µ +m
]
Ψ(−)(x) = 0 . (12)

The signs at the mass terms depend on how do we choose the “positive”- and
“negative”- energy solutions. For instance,

Ψ(+)(x) =
(

ρA(x)
λ S(x)

)
,Ψ(−)(x) =

(
ρS(x)
λ A(x)

)
, Γ

µ =
(

0 γµ

γµ 0

)
. (13)

It is easy to find the corresponding projection operators, and the Feynman-Dyson-
Stueckelberg propagator.

You may say that all this is just related to the spin-parity basis rotation (unitary
transformations). However, in the previous papers I explained: the connection with
the Dirac spinors has been found [9, 13], provided that the 4-spinors have the same
physical dimension. Thus, we can see that the two 4-spinor systems are connected
by the unitary transformations, and this represents itself the rotation of the spin-
parity basis. However, it is usually assumed that the λ− and ρ− spinors describe
the neutral particles, meanwhile u− and v− spinors describe the charged particles.
Kirchbach [13] found the amplitudes for neutrinoless double beta decay (00νβ ) in
this scheme. It is obvious from that connections that there are some additional terms
comparing with the standard formulation.

Barut and Ziino [11] proposed yet another model. They considered γ5 operator
as the operator of the charge conjugation. The concept of the doubling of the Fock
space has been developed in the Ziino works (cf. [12, 4]) in the framework of the
quantum field theory. In their case the self/anti-self charge conjugate states are si-
multaneously the eigenstates of the chirality. Next, our formulation with the λ− and
ρ− spinors naturally lead to the Ziino-Barut scheme of massive chiral fields.

3 The Controversy.

I cite Ahluwalia et al., Ref. [14]: “To study the locality structure of the fields Λ(x)
and λ (x), we observe that field momenta are

Π(x) =
∂L Λ

∂Λ̇
=

∂

∂ t
¬
Λ (x), (14)

and similarly π(x) = ∂

∂ t

¬
λ (x). The calculational details for the two fields now differ

significantly. We begin with the evaluation of the equal time anticommutator for
Λ(x) and its conjugate momentum

{Λ(x, t), Π(x′, t)}= i
∫ d3 p

(2π)3
1

2m
eip·(x−x′)
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×∑
α

[
ξα(p)

¬
ξ α

(p)−ζα(−p)
¬
ζ α

(−p)
]

︸ ︷︷ ︸
=2m[I+G (p)]

.

The term containing G (p) vanishes only when x− x′ lies along the ze axis (see
Eq. (24) [therein], and discussion of this integral in Ref. [15])

x−x′ along ze : {Λ(x, t), Π(x′, t)}= iδ 3(x−x′)I (15)

The anticommutators for the particle/antiparticle annihilation and creation opera-
tors suffice to yield the remaining locality conditions,

{Λ(x, t), Λ(x′, t)}= O, {Π(x, t), Π(x′, t)}= O. (16)

The set of anticommutators contained in Eqs. (15) and (16) establish that Λ(x) be-
comes local along the ze axis. For this reason we call ze as the dark axis of locality.”

Next, I cite Rodrigues et al., Ref. [16]: “We have shown through explicitly and
detailed calculation that the integral of G (p) appearing in Eq.(42) of [14] is null for
x−x′ lying in three orthonormal spatial directions in the rest frame of an arbitrary
inertial frame e0 = ∂/∂ t.

This shows that the existence of elko spinor fields does not implies in any break-
down of locality concerning the anticommutator of {Λ(x,t),Π(x′, t} and moreover
does not implies in any preferred spacelike direction field in Minkowski spacetime.”

Who is right? In 2013 W. Rodrigues [17] changed a bit his opinion. He wrote:
“When ∆z 6= 0, ∧G (x−x′) is null the anticommutator is local and thus there exists in
the elko theory as constructed in [14] an infinity number of “locality directions”. On
the other hand ∧G (x−x′) is a distribution with support in ∆z = 0. So , the directions
∆ = (∆x,∆y,0) are nonlocal in each arbitrary inertial reference frame e0 chosen
to evaluate ∧G (x−x′)”, thus accepting the Ahluwalia et al. viewpoint. See the cited
papers for the notation.

Meanwhile, I suggest to use the 8-component formalism (see the Section 2) in
the similarity with the 12-component formalism of the Section 1. If we calculate

S(+,−)
F (x2,x1) =

∫ d3k
(2π)3

m
Ek

∑
σ

[
θ(t2− t1)a Ψ

σ
+ (k)⊗Ψ

σ

+(k)e−ikx+

+ θ(t1− t2)b Ψ
σ
− (k)⊗Ψ

σ

−(k)eikx
]

=

=
∫ d4k

(2π)4 e−ikx (k̂ +m)⊗ I2

k2−m2 + iε
, (17)

we easily come to the result that the corresponding Feynman-Dyson propagators
are local in the sense: [iΓµ ∂

µ

2 ∓m]S(+,−)
F (x2− x1) = δ (4)(x2− x1). However, again:

Physics should choose only one correct formalism. It is not clear, why two correct
mathematical formalisms lead to different physical results?
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