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Abstract

Modeling the flow of Non-Newtonian fluids in porous media is a challenging sub-

ject. Several approaches have been proposed to tackle this problem. These include

continuum models, numerical methods, and pore-scale network modeling. The lat-

ter proved to be more successful and realistic than the rest. The reason is that it

captures the essential features of the flow and porous media using modest computa-

tional resources and viable modeling strategies. In this article we present pore-scale

network modeling techniques for simulating non-Newtonian flow in porous media.

These techniques are partially validated by theoretical analysis and comparison to

experimental data.
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1 Introduction

The flow of non-Newtonian fluids in porous media is highly important subject and

has many applications as these fluids are the rule rather than the exception. These

applications include filtration of polymer solutions, enhanced recovery from oil

reservoirs, medical and biological technologies, and soil remediation by removing

toxic substances. Newtonian fluids are those fluids exhibiting a direct propor-

tionality between stress and strain rate in laminar flow. All fluids for which this

proportionality is violated, due to nonlinearity or initial yield-stress, are said to

be non-Newtonian. These fluids are commonly divided into three broad groups:

time-independent in which strain rate solely depends on the instantaneous stress,

time-dependent in which strain rate is a function of both magnitude and duration

of the applied stress, and viscoelastic which shows partial elastic recovery on re-

moval of the deforming stress. A large number of models have been proposed in the

literature to model the bulk rheology of non-Newtonian fluids under various flow

conditions. A range of modeling strategies and computational techniques have also

been developed to depict the flow of these fluids in porous media. In this article we

highlight the computational techniques that have been developed and implemented

in our non-Newtonian code using network modeling approach.

In the context of fluid flow, ‘porous medium’ can be defined as a solid matrix

through which small interconnected cavities occupying a measurable fraction of

its volume are distributed. These cavities are of two types: large ones, called

pores and throats, which contribute to the bulk flow of fluid; and small ones,

comparable to the size of the molecules, which do not have an impact on the bulk

flow though they may participate in other transportation phenomena like diffusion.

The mathematical description of the flow in porous media is extremely complex

and involves many approximations. In this regard, various methodologies have
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been proposed and used. These include the continuum models, numerical methods

and pore-scale network modeling. In this article we focus on network modeling as

it is the methodology that we adopted in our flow simulation techniques.

Pore-scale network modeling is a relatively novel method developed to deal with

the flow through porous media and other related issues. It can be seen as a com-

promise between the two extremes of continuum and numerical approaches as it

partly accounts for the physics of flow and void space structure at pore level using

affordable computational resources. Network modeling can be used to describe a

wide range of properties from capillary pressure characteristics to interfacial area

and mass transfer coefficients. The void space is described as a network of flow

channels with idealized geometry. Rules that determine the transport properties

in these channels are incorporated in the network to compute effective properties

on a mesoscopic scale. The appropriate pore-scale physics combined with a repre-

sentative description of the pore space gives models that can successfully predict

average behavior [4, 5].

The general feature of network modeling is the representation of pore space

by a network of interconnected ducts (bonds or throats) of regular shape and

the use of a simplified form of the flow equations to describe the flow through the

network. A numerical solver is normally employed to solve a system of simultaneous

equations to determine the flow field. The network can be two-dimensional or

three-dimensional with a random or regular lattice structure such as cubic. The

shape of the cylindrical ducts include circular, square and triangular cross section

and may include converging-diverging feature. The network elements may contain,

beside the conducting ducts, nodes (pores) that can have zero or finite volume and

may well serve a function in the flow phenomena or used as junctions to connect

the bonds. The simulated flow can be Newtonian or non-Newtonian, single-phase,

two-phase or even three-phase. The physical properties of the flow and porous
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medium that can be obtained from flow simulation include absolute and relative

permeability, formation factor, resistivity index, volumetric flow rate, apparent

viscosity, threshold yield pressure and much more. Typical size of the network is a

few millimeters. One reason for this minute size is to reduce the computational cost.

Another reason is that this size is sufficient to represent a homogeneous medium

having an average throat size of the most common porous materials. Up-scaling

the size of a network is a trivial task if larger pore size is required. Moreover,

extending the size of a network model by attaching identical copies of the same

model in any direction or imposing repeated boundary conditions is another simple

task.

The general strategy in network modeling is to use the bulk rheology of the fluid

and the void space description of the porous medium as an input to the model. The

flow simulation in a network starts by modeling the flow in a single capillary. For a

network of capillaries, a set of equations representing the capillaries and satisfying

mass conservation have to be solved simultaneously to find the pressure field and

other physical quantities. For a network with n nodes there are n equations in n

unknowns. These unknowns are the pressure values at the nodes. The essence of

these equations is the continuity of flow of incompressible fluid at each node in the

absence of sources and sinks. To find the pressure field, this set of equations have

to be solved subject to the boundary conditions which are the pressures at the inlet

and outlet of the network. This unique solution is ‘consistent’ and ‘stable’ as it

is the only mathematically acceptable solution to the problem, and, assuming the

modeling process and the mathematical technicalities are reliable, should mimic the

unique physical reality of the pressure field in the porous medium. For Newtonian

fluid, a single iteration is needed to solve the pressure field as the flow conductance

is known in advance because the viscosity is constant. For purely viscous non-

Newtonian fluid, the process starts with an initial guess for the viscosity, as it is
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unknown and pressure-dependent, followed by solving the pressure field iteratively

and updating the viscosity after each iteration cycle until convergence is reached.

For memory fluids, the dependence on time must be taken into account when

solving the pressure field iteratively.
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2 Modeling the Flow in Porous Media

In our model we use three-dimensional networks built from a topologically-equivalent

three-dimensional voxel image of the pore space with the pore sizes, shapes and

connectivity reflecting the real medium. Pores and throats are modeled as having

triangular, square or circular cross-section by assigning a shape factor which is

the ratio of the area to the perimeter squared and obtained from the pore space

image. Most of the network elements are not circular. To account for the non-

circularity when calculating the volumetric flow rate analytically or numerically

for a cylindrical capillary, an equivalent radius Req is defined

Req =

(
8G

π

)1/4

(1)

where G is the geometric conductance which may be obtained empirically from nu-

merical simulation. The network can be extracted from voxel images of real porous

materials or from voxel images generated by simulating the geological processes

by which the porous medium was formed. Examples for the latter are the two

networks of Statoil which represent two different porous media: a sand pack and

a Berea sandstone. These networks are constructed by Øren and coworkers [6, 7]

and have been used by several researchers in flow simulation studies. Another pos-

sibility for generating a network is by employing computational algorithms based

on numeric statistical data extracted from the porous medium of interest. Other

possibilities can also be found in the literature. An important aspect that charac-

terizes the flow in porous media and makes it distinct from bulk is the presence

of converging-diverging flow paths. This geometric factor significantly affects the

flow and accentuates elastic responses. Therefore, a converging-diverging feature

is introduced to the network capillaries when modeling viscoelastic flow.

Assuming a laminar, isothermal and incompressible flow at low Reynolds num-
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ber, the only equations that require attention are the constitutive equation for the

particular fluid and the conservation of volume as an expression for the conserva-

tion of mass. For Newtonian flow, the pressure field can be solved once and for all.

For non-Newtonian flow, the situation is more complex as it involves non-linearities

and requires iterative techniques. For the simplest case of time-independent fluids,

the strategy is to start with an arbitrary guess. Because initially the pressure drop

across each network element is not known, an iterative method is used. This starts

by assigning an effective viscosity to the fluid in each element. The effective vis-

cosity is defined as that viscosity which makes Poiseuille’s equation fits any set of

laminar flow conditions for time-independent fluids [8]. By invoking the conserva-

tion of volume for incompressible fluid, the pressure field across the entire network

is solved using a numerical solver [9]. Knowing the pressure drops in the network,

the effective viscosity of the fluid in each element is updated using the expression

for the flow rate in a capillary with the Poiseuille’s law as a definition. The pressure

field is then recomputed using the updated viscosities and the iteration continues

until convergence is achieved when a specified error tolerance in the total flow rate

between two consecutive iteration cycles is reached. Finally, the total volumetric

flow rate and the apparent viscosity, defined as the viscosity calculated from the

Darcy’s law, are obtained. Other physical parameters of interest that characterize

the fluid and the porous medium may also be computed in this process.
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3 Modeling Time-Independent Flow

Three time-independent fluids have been incorporated in the non-Newtonian model.

These are Carreau, Ellis and Herschel-Bulkley. Carreau is a four-parameter model

given by

µ = µ∞ +
µo − µ∞[

1 + ( γ̇
γ̇cr

)2
] 1−n

2

(2)

where µ is the fluid viscosity, µ∞ is the viscosity at infinite shear, µo is the viscosity

at zero shear, γ̇ is the shear rate, n is the flow behavior index, and γ̇cr is a critical

shear rate given by

γ̇cr =
(µo
C

) 1
n−1

(3)

where C is the consistency factor of the equivalent shear-thinning fluid in the power-

law formulation. This model was previously implemented and fully described by

Lopez [10] and Lopez et al [11]. In summary, the implementation of Carreau model

relies on the use of an empirical expression for the volumetric flow rate in a single

tube. The reader should refer to those references for details.

Ellis is a three-parameter model which describes time-independent shear-thinning

yield-free non-Newtonian fluids. It is used as a substitute for the power-law and

is appreciably better than the power-law model in matching experimental mea-

surements. Its distinctive feature is the low-shear Newtonian plateau without a

high-shear plateau. According to this model, the fluid viscosity µ is given by [12–

15]
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µ =
µo

1 +

∣∣∣∣ τ
τ
1/2

∣∣∣∣α−1 (4)

where µo is the low-shear viscosity, τ is the shear stress, τ
1/2

is the shear stress at

which µ = µo/2 and α is a dimensionless indicial parameter related to the slope

in the power-law region. For Ellis fluids, the volumetric flow rate in a circular

cylindrical tube is given by [12–15]:

Q =
πR4∆P

8Lµo

1 +
4

α + 3

(
R∆P

2Lτ
1/2

)α−1
 (5)

where R is the tube radius, ∆P is the pressure drop across the tube and L is the

tube length.

Herschel-Bulkley is a three-parameter model that can describe Newtonian and

a large group of time-independent non-Newtonian fluids. It is given by [8]

τ = τo + Cγ̇n (τ > τo) (6)

where τ is the shear stress, τo is the yield-stress above which the substance starts

flowing, C is the consistency factor, γ̇ is the shear rate and n is the flow behavior

index. Herschel-Bulkley reduces to the power-law, or Ostwald-de Waele model,

when the yield-stress is zero, to the Bingham plastic model when the flow behavior

index is unity, and to the Newton’s law for viscous fluids when both these conditions

are met. For Herschel-Bulkley fluids, the volumetric flow rate in a cylindrical

capillary at yield is given by [8]:

Q =
8π

C
1
n

(
L

∆P

)3

(τw − τo)1+ 1
n

[
(τw − τo)2

3 + 1/n
+

2τo (τw − τo)
2 + 1/n

+
τ 2
o

1 + 1/n

]
(τw > τo) (7)



3 MODELING TIME-INDEPENDENT FLOW 13

where τw (= ∆PR
2L

) is the shear stress at the tube wall.

The implementation of Ellis and Herschel-Bulkley is based on the use of the

analytical expressions for the volumetric flow rate in a circular cylindrical duct, as

given above (i.e. Equation 5 for Ellis and Equation 7 for Herschel-Bulkley). These

expressions are used in conjunction with an iterative technique to find the total

flow across the network, as outlined in § 2.
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4 Modeling Yield-Stress

Yield-stress or viscoplastic fluids can sustain shear stresses, that is a certain amount

of stress must be exceeded before the flow starts. So an ideal yield-stress fluid is

a solid before yield and a fluid after. Accordingly, the viscosity of the substance

changes from an infinite to a finite value. However, the physical situation suggests

that it is more realistic to regard a yield-stress substance as a fluid whose viscos-

ity as a function of applied stress has a discontinuity as it drops sharply from a

very high value on exceeding a critical stress. Several constitutive equations to

describe yield-stress substances are in use; the most popular ones are Bingham,

Casson and Herschel-Bulkley. In our network model, yield-stress was implemented

within the Herschel-Bulkley fluid. A number of numerical algorithms, related to or

independent of Herschel-Bulkley, were also implemented in the model.

The implementation of the yield-stress in a network is based on the yield con-

dition for its conducting ducts which are assumed to be circular cylinders. The

verification of the yield condition in the individual ducts associates the process

of solving the pressure field in the network. For yield-stress fluids, the threshold

pressure drop above which the flow in a single tube starts is given by

∆Pth =
2Lτo
R

(8)

where ∆Pth is the threshold pressure drop, τo is the yield-stress and R and L are

the tube radius and length respectively.

In our model, the substance before yield is considered to be fluid with very high

but finite viscosity so the flow virtually vanishes. The reason is that the pressure

across the network have to communicate. Accordingly, the pressure field in the case

of yield-stress fluids is solved as in the case of non-yield-stress fluids. A further
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condition is also imposed before any duct is allowed to yield, that is the duct must

be part of a non-blocked path spanning the network from the inlet to the outlet.

The logic is that any conducting duct should have a source on one side and a sink

on the other.

4.1 Predicting Threshold Yield Pressure of a Network

Non-Newtonian literature contains several attempts to predict the yield point of

a complex porous medium from the void space description and yield-stress value

of an ideal yield-stress fluid without modeling the flow process. In this regard,

there is an implicit assumption that the network is an exact replica of the medium

and the yield-stress value reflects the real yield-stress of fluid so that any failure

of these proposals can not be attributed to mismatch or any factor other than

flaws in these proposals. Our discussion in this section will focus on the Invasion

Percolation with Memory (IPM) and Path of Minimum Pressure (PMP) algorithms

which are implemented in the network model to make such predictions.

The IPM is an algorithm for finding the inlet-to-outlet path that minimizes the

sum of values of a property assigned to the individual elements of the network,

and hence finding this minimum. For a yield-stress fluid, this reduces to finding

the inlet-to-outlet path that minimizes the yield pressure. The yield pressure of

this path is then taken as the network threshold yield pressure. A flow chart of

the IPM algorithm is presented in Figure (1). The PMP algorithm is based on

a similar assumption to that upon which the IPM is based, that is the network

threshold yield pressure is the minimum sum of the threshold yield pressures of

the individual elements of all possible paths from the inlet to the outlet. However,

PMP is computationally different and is more efficient than the IPM in terms

of the required computational resources (memory and CPU time). A flow chart
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depicting the PMP algorithm is given in Figure (2). In most cases that have been

investigated the IPM and PMP produce identical results.

Another algorithm, called Actual Threshold Pressure (ATP), for finding the

network yield point by solving the pressure field was also developed and imple-

mented. The ATP is an iterative simulation algorithm which uses the solver to

find the network yield pressure to the required accuracy. However, this algorithm

is not independent of Herschel-Bulkley model as it relies on multiple applications

of flow simulation of this model.
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1. Nodes on inlet are sources

2. Nodes on outlet & inside are targets

3. For all nodes, Pressure = 0

Start

For each source:

1. Find the sum of the source pressure

plus the yield pressure of the bond

connecting the source to a target

2. Repeat this for all targets connected

to the source

Find the minimum of these sums

1. Assign this minimum to the respective

target

2. Add this target to the source list

3. Remove this target from the target list

Respective target

is on outlet?

No

Yes

Network threshold yield pressure

=

Pressure of the respective target

End

Figure 1: Flowchart of the Invasion Percolation with Memory (IPM) algorithm.
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1. Pressure of inlet nodes = 0.0

2. Pressure of other nodes = infinite

Start

For each node of finite pressure:

1. A target is a neighbouring node with

a larger x-coordinate

2. Find the sum of the node pressure

plus the yield pressure of the bond

connecting the node to the target

3. Assign to the target the minimum of

this sum and the target pressure

4. Repeat this for all targets connected

to the node

Loop over all outlet nodes and find their

minimum pressure

Any target

changed pressure?

No

Yes

Network threshold yield pressure

=

Minimum pressure of outlet nodes

End

Figure 2: Flowchart of the Path of Minimum Pressure (PMP) algorithm.
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5 Modeling Time-Dependent Flow

In theory, time-dependence effects can arise from thixotropic (and rheopectic)

structural change or from time-dependent viscoelasticity or from both effects simul-

taneously. The existence of these two different types of time-dependent rheological

behavior is generally recognized. Although it is convenient to distinguish between

these as two separate phenomena, real fluids can exhibit both types simultaneously.

Several physical distinctions between viscoelastic and thixotropic time-dependence

have been made. The important one is that while time-dependence of viscoelastic

fluids arises from relaxation and delayed response, time-dependence of thixotropic

fluids arises from structural change. With regards to modeling the flow in porous

media of complex fluids that have time dependency in a dynamic sense due to

thixotropic or elastic nature, there are three major difficulties

• The difficulty of tracking the fluid elements in the pores and throats and

identifying their deformation history, as the path followed by these elements

is random and can have several unpredictable outcomes.

• The mixing of fluid elements with various deformation history in the individ-

ual pores and throats. As a result, the viscosity is not a well-defined property

of the fluid in the pores and throats.

• The change of viscosity along the streamline since the deformation history is

continually changing over the path of each fluid element.

These complications have not been considered in the current model, and hence

no dynamic time-dependence has been included in the code. However, general

strategies for simulating time-dependent thixotropic behavior have been considered.

These strategies can provide a framework for future development. There are three

major cases of flow simulation of thixotropic fluids in porous media:
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• The flow of strongly strain-dependent fluid in a porous medium which is not

highly homogeneous. This case is very difficult to model due to the difficulty

of tracking the fluid elements in the pores and throats and determining their

deformation history. Moreover, the viscosity function may not be well defined

due to the mixing of fluid elements with various deformation history in the

individual pores and throats.

• The flow of strain-independent or weakly strain-dependent fluid through

porous media in general. A possible strategy is to apply single time-dependent

viscosity function to all pores and throats at each instant of time and hence

simulating time development as a sequence of Newtonian states.

• The flow of strongly strain-dependent fluid in a highly homogeneous porous

medium such that the fluid is subject to the same deformation in all ducts.

The strategy for modeling this flow is to define an effective pore strain rate.

Then using a very small time step the strain rate in the next instant of time

can be found assuming constant strain rate. As the change in the strain rate

is then known, a correction to the viscosity due to strain-dependency can be

introduced.

It should be remarked that the Bautista-Manero fluid, which is used to model

steady-state viscoelastic flow, incorporates thixotropic as well as viscoelastic at-

tributes.
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6 Modeling Viscoelastic Flow

As indicated already, no dynamic time-dependence has been included in the non-

Newtonian flow model. For the steady-state flow of viscoelastic fluids, the approach

of Tardy [16, 17] was used with some adaptation. In this approach, the capillaries

of the network are modeled with contraction to account for the effect of converging-

diverging geometry on the flow. The reason is that the effects of fluid memory take

place on going through a radius change, as this change induces a change in strain

rate with viscosity changing consequences. The capillaries are also discretized in

the flow direction and a discretized form of the flow equations is used with assumed

prior knowledge of the stress and viscosity at the inlet of the network. Starting with

an initial guess for the flow rate and using iterative technique, the pressure drop as

a function of the flow rate is then found in each capillary. Finally, the pressure field

for the whole network is found iteratively until convergence is achieved. Once this

happens, the flow rate through each capillary in the network can be computed and

the total flow rate through the network is determined by summing and averaging

the flow through the inlet and outlet capillaries.

This algorithm employs a one-dimensional version of the Bautista-Manero model

which combines the Fredrickson kinetic equation for flow-induced structural changes

with the Oldroyd-B constitutive equation for viscoelasticity. The model requires six

parameters that have physical significance and can be estimated from rheological

measurements. Bautista-Manero model was originally proposed for the rheology of

worm-like micellar solutions which usually have an upper Newtonian plateau, and

show strong signs of shear-thinning. The model, which incorporates shear-thinning,

elasticity and thixotropy, can be used to describe the complex rheological behavior

of viscoelastic systems that also exhibit thixotropy and rheopexy under shear flow

[16, 18–20].



6 MODELING VISCOELASTIC FLOW 22

The kinetic equation of Fredrickson that accounts for the destruction and con-

struction of structure is given by

dµ

dt
=
µ

λ

(
1− µ

µo

)
+ kµ

(
1− µ

µ∞

)
τ : γ̇ (9)

where µ is the viscosity, t is the time of deformation, λ is the relaxation time, µo and

µ∞ are the viscosities at zero and infinite shear rates respectively, k is a parameter

that is related to a critical stress value below which the material exhibits primary

creep, τ is the stress tensor and γ̇ is the rate of strain tensor. In this model, λ

is a structural relaxation time, whereas k is a kinetic constant for structure break

down [16, 18–20].

The Oldroyd-B constitutive equation is given by [14]

τ + λ1

5
τ = µo

(
γ̇ + λ2

5
γ̇

)
(10)

where λ1 is the relaxation time, λ2 is the retardation time, and
5
γ̇ is the upper

convected time derivative of the rate-of-strain tensor given by

5
γ̇ =

∂γ̇

∂t
+ v · ∇γ̇ − (∇v)T · γ̇ − γ̇ · ∇v (11)

Similar expression applies to the upper convected time derivative of the stress tensor

5
τ . A flow chart outlining the steady-state viscoelastic flow simulation algorithm is

presented in Figure (3).
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Model each capillary in the network 
with converging-diverging geometry 

Discretize each capillary into slices 

Obtain initial volumetric flow rate, average speed and shear 
rate of fluid in each capillary assuming Newtonian flow 

Solve the pressure field across the network, and hence 
obtain the total flow rate and apparent viscosity 

Convergence 
achieved? 

End

Yes 

Start

For capillaries at the network inlet, assume initial values for viscosity 
and stress at their inlet. For other capillaries, use Q-weighted averages 

For each capillary, calculate viscosity and stress slice by 
slice, where values from the previous slice are used to 

obtain values for the current slice 

Find the pressure drop across the slice using Poiseuille 

Find the pressure drop across the capillary by adding the pressures of 
individual slices and hence find the effective viscosity for the capillary

No 

Obtain volumetric 
flow rate, average 
speed and shear 
rate of fluid in 
each capillary  

Figure 3: Flow chart of the steady-state viscoelastic flow simulation algorithm.
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7 Validation and Results

These computational techniques as implemented in the non-Newtonian code were

quantitatively validated in a number of cases. These include low flow rate regimes,

Bingham fluids at high flow rates, Boger fluids, and Newtonian as a special case

of non-Newtonian model [17, 21, 22]. Two randomly-distributed networks repre-

senting two different porous media, a sand pack and a Berea sandstone, were used

in these validations. These networks are constructed by Øren and coworkers [6, 7]

from voxel images generated by simulating the geological processes by which the

porous medium was formed. The sand pack comprises 13490 elements (pores and

throats) with a cube side length of 2.5mm, while the Berea consists of 38495 ele-

ments with a cube side of 3mm. The physical and statistical properties of these

networks with detailed comparison between them can be found in [17, 21].

These computational techniques were also partially validated by a number of

experimental data sets found in the literature for time-independent fluids [17, 21].

A sample of these data with their simulation counterparts are given in Figures (4),

(5) and (6) for Ellis, Herschel-Bulkley and Bingham fluids respectively. The bulk

rheologies of these data sets are presented in Tables (1), (2) and (3) respectively.

In these simulations, scaled versions of the sand pack network were used. The

purpose of scaling is to match the network characteristics to the characteristics of

the corresponding porous media. The sand pack was used instead of Berea because

it is a better match to the experimental packed beds in terms of homogeneity and

tortuosity. The experimental validation is based on using the experimental bulk

rheology and bed properties as an input to the non-Newtonian code. Qualitatively,

all trends of behavior that have been observed are sensible. The major failure of

the non-Newtonian model occurs in the case of fluids with yield-stress. Although

the quality of some experimental data sets may be questionable, it seems that the
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yield-stress model, which is based on the concept of equivalent radius of cylindrical

capillaries, is too simplistic and unrealistic and hence is very unlikely to produce

reliable predictions.
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Figure 4: Park’s Ellis experimental data sets [1] for polyacrylamide solutions with
0.50%, 0.25%, 0.10% and 0.05% weight concentration flowing through a coarse
packed bed of glass beads having K = 3413 Darcy and φ = 0.42 alongside the
simulation results obtained with a scaled sand pack network having the same K
presented on a log-log scale. The bulk rheology of these data is given in Table 1.
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Figure 5: Al-Fariss and Pinder’s Herschel-Bulkley experimental data sets [2] for
5.0% wax in Clarus B oil flowing through a column of sand having K = 315 Darcy
and φ = 0.36 alongside the simulation results obtained with a scaled sand pack
network having the same K and φ. The temperatures, T, are in ◦C. The bulk
rheology of these data is given in Table 2.
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Figure 6: Network simulation results with the corresponding experimental data
points of Chase and Dachavijit [3] for Bingham aqueous solutions of Carbopol
941 with various concentrations (0.37%, 0.45%, 0.60%, 1.00% and 1.30%) flowing
through a packed column of glass beads. The bulk rheology of these data is given
in Table 3.
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Table 1: The bulk rheology of Park’s Ellis experimental data sets [1].

Dataset µo (Pa.s) α τ
1/2

(Pa)

0.50% 4.35213 2.4712 0.7185
0.25% 1.87862 2.4367 0.5310
0.10% 0.60870 2.3481 0.3920
0.05% 0.26026 2.1902 0.3390

Table 2: The bulk rheology of Al-Fariss and Pinder’s Herschel-Bulkley experimental
data sets [2].

Dataset C (Pa.sn) n τo (Pa)
T=16 0.463 0.87 3.575
T=18 0.568 0.80 2.650
T=20 0.302 0.90 1.921

Table 3: The bulk rheology of Chase and Dachavijit’s Bingham experimental data
sets [3].

Dataset C (Pa.sn) n τo (Pa)
0.37% 0.017 1.0 2.06
0.45% 0.038 1.0 4.41
0.60% 0.057 1.0 7.09
1.00% 0.128 1.0 17.33
1.30% 0.215 1.0 28.46
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8 Non-Newtonian Code

The computer code in which these computational techniques have been imple-

mented is derived from the non-Newtonian code of Lopez [10] which was con-

structed from an early version of the Newtonian code by Valvatne [23]. Beside

the Carreau model, which is inherited from the original code of Lopez, the current

code can simulate the flow of Ellis and Herschel-Bulkley fluids. Several algorithms

related to yield-stress and a modified version of the Tardy algorithm to simu-

late steady-state viscoelastic flow using the Bautista-Manero model are also imple-

mented. The code can be downloaded from this URL: http://www3.imperial.ac.

uk/earthscienceandengineering/research/perm/porescalemodelling/software/

non-newtonian%20code or this URL: www.scienceware.net/id2.html.

The code has a command line interface that uses a keyword-based input file.

Convergence time generally depends on the fluid rheology, the size of network and

the type of algorithm. A typical convergence time for the sand pack and Berea

sandstone networks used in this study is a second for the time-independent models

and a few seconds for the viscoelastic model. The time requirement for the yield-

stress algorithms is highly dependent on the last two factors. However, there is

significant difference between the IPM and PMP convergence time. As these two

algorithms produce very similar results, it is recommended to use the PMP for

large networks. In all cases, the memory requirement does not exceed a few tens

of megabytes for a network with up to 12000 pores. In general, the memory cost is

affordable on a typical modern workstation for all available networks. The general

flow sequence of the program is as follows:

• The program starts by reading the input and network data files followed by

creating the network.

• For fluids with yield-stress, the program executes IPM and PMP algorithms

http://www3.imperial.ac.uk/earthscienceandengineering/research/perm/porescalemodelling/software/non-newtonian%20code
http://www3.imperial.ac.uk/earthscienceandengineering/research/perm/porescalemodelling/software/non-newtonian%20code
http://www3.imperial.ac.uk/earthscienceandengineering/research/perm/porescalemodelling/software/non-newtonian%20code
www.scienceware.net/id2.html
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to predict the threshold yield pressure of the network. This is followed by

an iterative simulation algorithm to find the network actual threshold yield

pressure to the required accuracy.

• Single-phase flow of a Newtonian fluid is simulated to find the fluid-related

network properties such as absolute permeability.

• Single-phase flow of Newtonian and non-Newtonian fluids is simulated for a

range of pressure points as defined by the user.

In all stages, informative messages are issued about the program progress and

the data obtained. The program also creates several output data files. These

include script files to visualize the entire network or slice of it and the flow path of

yield-stress fluid using Rhino 3D program.
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9 Conclusions and Discussions

In this study, we outlined a set of computational techniques based on pore-scale

network modeling to simulate single-phase flow of non-Newtonian fluids in porous

media. These techniques are implemented in a computer code and have been

partially validated analytically and experimentally.

1. The success was evident in the case of time-independent fluids. This includes

comparison with a number of experimental data sets and correct predictions

in special and limiting cases such as Newtonian fluids and the asymptotic

behavior of Bingham at high flow rates.

2. Steady-state viscoelastic flow simulation has also produced reliable results in

the case of low flow rate regimes and Boger fluids. Moreover, qualitatively

sensible trends of behavior were observed in the other cases using several

parameters related to the fluid, porous media and numerical indicators.

3. Thixotropic flow as such has not been modeled although thixotropic aspects

are included within the Bautista-Manero model which is the basis of the

steady-state viscoelastic flow algorithm. However, thixotropic computational

strategies have been developed and assessed.

4. The predictions were less satisfactory in the case of yield-stress fluids. This

may be explained by inadequate representation of the pore space structure,

experimental errors and involvement of other physical phenomena. Minimum

threshold path algorithms (i.e. IPM and PMP) have also been developed and

implemented. The analysis revealed that these algorithms are too simplistic

and hence cannot produce reliable predictions for the pressure yield point of

a network.
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Nomenclature

α parameter in Ellis model

γ̇ strain rate (s−1)

γ̇cr critical shear rate (s−1)

γ̇ rate-of-strain tensor

λ structural relaxation time in Fredrickson model (s)

λ1 relaxation time (s)

λ2 retardation time (s)

µ viscosity (Pa.s)

µo zero-shear viscosity (Pa.s)

µ∞ infinite-shear viscosity (Pa.s)

τ stress (Pa)

τ stress tensor

τ
1/2

stress when µ = µo/2 in Ellis model (Pa)

τo yield-stress (Pa)

τw stress at tube wall (Pa)

φ porosity

C consistency factor (Pa.sn)

G geometric conductance (m4)

G′ flow conductance (m3.Pa−1.s−1)

k parameter in Fredrickson model (Pa−1)

K absolute permeability

L tube length (m)
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n flow behavior index

P pressure (Pa)

∆P pressure drop (Pa)

∆Pth threshold pressure drop (Pa)

Q volumetric flow rate (m3.s−1)

R tube radius (m)

Req equivalent radius (m)

t time (s)

T temperature (K, ◦C)

v fluid velocity vector

ATP Actual Threshold Pressure algorithm

IPM Invasion Percolation with Memory algorithm

PMP Path of Minimum Pressure algorithm

5
· upper convected time derivative

(·)T matrix transpose

Note: units, when relevant, are given in the SI system. Vectors and tensors are

marked with boldface. Some symbols may rely on the context for unambiguous

identification.



REFERENCES 33

References

[1] H.C. Park. The flow of non-Newtonian fluids through porous media. PhD

thesis, Michigan State University, 1972.

[2] T.F. Al-Fariss; K.L. Pinder. Flow of a shear-thinning liquid with yield stress

through porous media. SPE 13840, 1984.

[3] G.G. Chase; P. Dachavijit. Incompressible cake filtration of a yield stress fluid.

Separation Science and Technology, 38(4):745–766, 2003.

[4] M.J. Blunt. Flow in porous media - pore-network models and multiphase flow.

Colloid and Interface Science, 6(3):197–207, 2001.

[5] M.J. Blunt; M.D. Jackson; M. Piri; P.H. Valvatne. Detailed physics, pre-

dictive capabilities and macroscopic consequences for pore-network models of

multiphase flow. Advances in Water Resources, 25:1069–1089, 2002.

[6] P.E. Øren; S. Bakke; O.J. Amtzen. Extending predictive capabilities to net-

work models. SPE Annual Technical Conference and Exhibition, San Antonio,

Texas, (SPE 38880), 1997.

[7] P.E. Øren; S. Bakke. Reconstruction of berea sandstone and pore-scale mod-

elling of wettability effects. Journal of Petroleum Science and Engineering,

39:177–199, 2003.

[8] A.H.P. Skelland. Non-Newtonian Flow and Heat Transfer. John Wiley and

Sons Inc., 1967.
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