Title: Goldbach Conjecture – A Proof

Author: Barry Foster

Abstract: The Goldbach Conjecture may be stated as follows:

Every even number greater than 4 can be written as the sum of two primes.

Examples:

We will call the two primes summing to a particular number a Goldbach Pair (GP) for that number.

Consider the following identity for all positive even numbers N:

$$N = (N-u) + (N-v) - (N-u-v) \{u, v; N>v>=u\}$$
(1)

Assuming all even numbers less than N are GP's

Then
$$(N-u), (N-v), (N-u-v)$$
 are GP'sAnd $(N-u-v) >= 6$

We must show N is also a GP.

Assume
 N = (A+B)
 {A, B, a, b prime; < N-2}
 (2)

 Thus from (1)

$$(A+B) = (A+a) + (B+b) - (N-u-v)$$
 $(N-u) = (A+a)$
 $(N-v) = (B+b)$
 $(N-u-v) = (a+b)$

 Giving
 N = (u+v) + (a+b)
 (3)

(2) and (3) impose constraints on $\{u, v\}$

Using N = 12 as an example the following table displays eligible values

Ν	a+b	u	v
12	6	2	4
12	8	2	2

Therefore (1) occurs in 2 ways:

$$12 = 10 + 8 - 6$$

= (7+3) + (5+3) - (3+3) = (7+5)

$$12 = 10 + 10 - 8$$

= (7+3) + (5+5) - (5+3) = (7+5)

This method may be used for any N apparently.