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Abstract—The use of expert knowledge is always more or less
afflicted with uncertainties for many reasons: Expert knowledge
may be imprecise, imperfect, or erroneous, for instance. If we
ask several experts to label data (e.g., to assign class labels to
given data objects, i.e. samples), we often state that these experts
make different, sometimes conflicting statements. The problem
of labeling data for classification tasks is a serious one in many
technical applications where it is rather easy to gather unlabeled
data, but the task of labeling requires substantial effort regarding
time and, consequently, money. In this article, we address the
problem of combining several, potentially wrong class labels. We
assume that we have an ordinal class structure (i.e., three or
more classes are arranged such as “light”, “medium-weight”,
and “heavy”) and only a few expert statements are available.
We propose a novel combination rule, the Extended Imprecise
Dirichlet Model Rule (EIDMR) which is based on a k-nearest-
neighbor approach and Dirichlet distributions, i.e., second-order
distributions for multinomial distributions. In addition, experts
may assess the difficulty of the labeling task, which may op-
tionally be considered in the combination. The combination rule
EIDMR is compared to others such as a standard Imprecise
Dirichlet Model Rule, the Dempster-Shafer Rule, and Murphy’s
Rule. In our evaluation of EIDMR we first use artificial data
where we know the data characteristics and true class labels.
Then, we present results of a case study where we classify low-
voltage grids with Support Vector Machines (SVM). Here, the
task is to assess the expandability of these grids with additional
photovoltaic generators (or other distributed generators) by
assigning these grids to one of five ordinal classes. It can be
shown that the use of our new EIDMR leads to better classifiers
in cases where ordinal class labels are used and only a few,
uncertain expert statements are available.

I. INTRODUCTION

In general, human judgment can be gathered either in a

quantitative or in a qualitative way. Often, humans feel not

comfortable with the task to express their opinion or belief

quantitatively, because they worry that a concrete numeric

value could give the (false) impression that there is more

confidence in a judgment than they really have. Even for

application experts it is difficult to cope with high-dimensional

and complex tasks (see, e.g., [1]). But, using words instead of

concrete values is also ambiguous and imprecise [2]. Thus,

making a statement based on predefined ordinal classes (e.g.,

“low”, “medium”, and “high”) can be seen as a reasonable

trade-off between eliciting a quantitative and a qualitative

judgment, for instance.

In the following, we assume that we want to gather knowl-

edge of experts in an application task, and only refer to

“experts” as human knowledge source. These domain experts

assess data objects (samples), e.g., they label data using

predefined ordinal classes to solve machine learning problems

with supervised learning techniques. In addition, the experts

may assess the difficulty of providing that label. This optional

value can be seen as a kind of uncertainty of a single expert

regarding that statement.
Basically, the statement of experts using an ordinal scale is

influenced by many subjective parameters, e.g.,

1) experts have individual experience levels,

2) their forms of the day may vary,

3) they have different notions of “strictness”, and

4) experts have an individual tendency not to opt for

extremes.

On an abstract level, experience level and form of the day can

be regarded as affecting the probability that a correct statement

is provided by an expert. The individual use of strictness

can be seen as a probability that the expert tends to rate a

sample with a higher (or lower) class label compared to the

true class. Furthermore, the individual tendency not to opt for

extremes leads to a probability that an expert tends to assess a

sample whose true class is near a “boundary” class (e.g., the

“lowest” or “highest” class) with a label which is nearer to a

“middle” class. Depending on this tendency, the bandwidth of

the actually exploited ordinal classes may be low.
Assessing the difficulty of the labeling tasks, the fraction

of statements rated as either being “easy” or “difficult” by

an expert will be larger or smaller for an expert with a

high experience level compared to a low experienced expert.

Likewise, these fractions will differ for a single expert with

different forms of the day. Because of all these reasons, a

decision regarding an ordinal classification made by an expert

is more or less uncertain. Hence, a final classification decision

in a concrete application should not only be made using

statements from a single expert. As experts might disagree,

uncertain statements have to be combined in an appropriate

way. The aim of all combination rules is to generate fused

class labels which predict the true class with a higher accuracy

than with the more uncertain individual class labels.
In this article, we present a novel combination rule for
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class labels which is shown to be superior to some existing

ones if (1) we have to cope with ordinal classes as discussed

above and (2) the number of labels (expert statements) for

single samples is quite low. This rule, the Extended Im-
precise Dirichlet Model Rule (EIDMR), is based on a k-

nearest-neighbor (knn) approach and Dirichlet distributions,

i.e., second-order distributions for multinomial distributions.

Basically, it extends a standard Imprecise Dirichlet Model

Rule (IDMR) by considering (1) the class order and (2)

additional, also uncertain labels for similar samples (measured

in an appropriate feature space). The uncertainty accompanied

with the combination can be determined with the help of two

probability boundaries. The usage of the resulting uncertainty

values for the combined statement is optional. They can be

used, e.g., for a comparison of the uncertainty of different

data objects or for a comparison to another expert group in a

second classification approach. In addition, experts may assess

the difficulty of the labeling task, which may optionally be

considered by EIDMR.

The accuracy of different rules (including EIDMR, IDMR,

the Dempster-Shafer rule, and Murphy’s rule) in predicting

a class label is first investigated using three artificial data

sets for which the true classes are known. Then, we compare

the combination rules using real data from the field of low-

voltage grid classification. With combined class labels, we

train support vector machine (SVM) classifiers. The empirical

data contain 300 samples of rural and suburban low-voltage

grids with ten features. They were gathered in an extensive grid

survey and labeled according to the grids’ hosting capacity for

distributed generators (e.g., photovoltaic generators) by five

experts in distribution grid planning.

The remainder of the article is organized as follows: In

Section II, we first discuss related work and IDMR. Then, we

present EIDMR and illustrate its properties with an example.

In Section III, the accuracy of these combination rules is

investigated in more detail using three artificial data sets

and compared to two other well-known rules derived from

Dempster-Shafer theory. Section IV presents the results of

our study on the classification of low-voltage grids. Section V

summarizes the key findings and sketches our future research.

II. COMBINATION OF CLASS LABELS

In this Section, we propose the new EIDMR, which is based

on Imprecise Dirichlet Models (IDM) and can be used to fuse

uncertain ordinal class labels. We start with a presentation

of the current state of the art (Section II-A). After that, the

methodical foundations of IDM and IDMR are given in Sec-

tion II-B. Next, we propose our new EIDMR in Section II-C.

The application of IDMR and EIDMR is illustrated with a

simple example in Section II-D.

A. Combination Rules – The State of the Art

Before we present the two combination rules which are

based on IDM in a formal way, some important, general

properties of combination rules are identified. Four of these

requirements on combination rules are claimed in [3], [4] and

extended by another fifth requirement in [5]. In summary, these

requirements are [5]:

1) irrelevance of order of statements in knowledge fusion

(commutativity and associativity),

2) decrease of ignorance with an increasing number of

statements,

3) concordance of knowledge increases the belief in a

statement,

4) conflicting knowledge decreases the belief in a state-

ment, and

5) persistent conflict is reflected.

Most well-known combination rules are based on

Dempster-Shafer theory (DST) [6], e.g. the Dempster-Shafer

Rule (DSR) [6] or Murphy’s Rule (MR) [3]. A survey on

combination rules based on DST has been presented in [7].

Most of the alternative DST based rules consider conflict redis-

tribution. The counter-intuitive behavior concerning paradox

problems [8] caused by compatible evidence is rarely consid-

ered [9]. Beside the DST based rules there exist some other

rules which are derived from Dezert-Smarandache theory [10]

and correspond to a non-Bayesian reasoning approach, e.g.,

the PCR5 [11]. Additionally, Smarandache et al. give several

counterexamples where the DSR fails to provide coherent

results (or provides no results at all) [12].
In summary, most of all known DST based rules do not

fulfill—as they were not designated to—the additional fifth

requirement. Because of this fact Andrade et al. [5] propose an

IDM based rule (IDMR) and show that this rule accomplishes

all of the properties concerning the above requirements. At

this point, it should be mentioned that none of the mentioned

known rules considers (1) the class order and (2) available un-

certain labels for similar samples (measured in an appropriate

feature space). We overcome these points with our EIDMR.

B. Methodical Foundations: IDM and IDMR

To motivate the IDM, we assume a set Ω = 1, . . . , C of C
mutually exclusive events, in our case a number of C different

classes. Let the probability θc for the choice of a class c during

a labeling process for a sample be denoted as element of a

vector θθθ. Usually, these probabilities θc are unknown. If we

suppose that an object is labeled by altogether NE experts, the

result can be denoted by the classes’ occurrence frequencies

nnn = (n1, . . . , nC)
T with

∑C
c=1 nc = NE . Furthermore, we

model the likelihood of a result nnn with [13]:

p(nnn|θθθ) =
C∏

c=1

(θc)
nc . (1)

Because of the fact that θθθ is usually unknown, we now use

the Dirichlet distribution, which is the prior distribution in a

Bayesian parameter estimation approach with hyperparameters

h and ttt = (t1, . . . , tC)
T, to model a distribution of vector

θθθ which is assumed to be a random variable itself [14]:

p(θθθ) =
Γ(h)

C∏
c=1

Γ(htc)

·
C∏

c=1

(θc)
htc−1

(2)
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with h > 0, 0 < tc < 1 for c = 1, . . . , C, and
∑C

c=1 tc = 1.

Γ is the gamma function [15]. The vector ttt represents the

prior knowledge about θθθ. In a next step, the combination

of (1) and (2) according to p(θθθ|nnn) ∝ p(nnn|θθθ) · p(θθθ) yields

the following posterior probability:

p(θθθ|nnn) =
Γ

(
C∑

c=1
(nc + htc)

)
C∏

c=1
Γ(nc + htc)

·
C∏

c=1

(θc)
nc+htc−1

. (3)

We get a Dirichlet distribution again, because a Dirichlet is

the conjugate distribution of a multinomial distribution. The

influence of the prior knowledge ttt on the posterior probability

can be controlled with the hyperparameter h [13]. In a real

classification application, there is often no information about

the hyperparameters h and ttt available.

The idea of the IDMR is now, not only to consider a

single one, but to start with a set of Dirichlet distributions

for a fixed value of h [13]. Thereby, a set of Dirichlet

distributions is chosen in such a way that
∑C

c=1 tc = 1 is

adhered [16]. Under these conditions, the following upper and

lower bounds for the probability that a sample is assigned to

class c can be determined by a maximization and minimization

of tc, respectively [14]. That is, for each ttt, the corresponding

Dirichlet distribution is updated using (1) [13]. If there is no

prior information on θθθ available, the bounds are determined

with the one-sided limits tc → 0 and tc → 1 (because of the

linear updating step) and result according to [16] in:

p(c|nc, NE) =
nc

NE + h
, (4)

and

p(c|nc, NE) =
nc + h

NE + h
(5)

where c is regarded here as the random variable for the

combined statement (i.e., the fused class label). The hyper-

parameter h determines how quickly these upper and lower

probabilities converge with an increasing number of observa-

tions. Because of this reason, Walley defined h as a number of

observations needed to reduce the imprecision to half its initial

value [16]. Typically, h is set to either 1 or 2 [16]. Using the

derived bounds, the vector ttt needs not to be specified.

IDMR (not related to DST, cf. [5], [16]) is an alternative

to the fusion rules based on DST. Andrade et al. used the

probability boundaries from (4) and (5) to combine a collection

of NE classification statements cj (cj ∈ Ω is the statement of

expert j, j = 1, . . . , NE) among which some experts vote for

class c.
Above, nc is the number of experts that assign a given

sample to class c. With NE experts, we have 0 ≤ nc ≤ NE .

This approach does not consider a difficulty assessment of

the experts. To account for this, we introduce weights wj for

each classification statement cj of an expert (with wj ≥ 1,

as suggested in [5]). Then, we need an indicator function Ij,c
which is 1 if expert j assigns label c to the sample under

consideration (i.e., cj = c), and 0 otherwise. We replace the

number of experts that assign a given sample to a class c by

nc =

NE∑
j=1

wj · Ij,c. (6)

Thus, the higher the weight wj of an expert, the more influence

has the corresponding statement. With this nc, we may deter-

mine the boundaries according to (4) and (5). The boundaries

can be interpreted similar to belief and plausibility in DST.

Their difference depends on the number of classification

statements with their weights and can be compared to the

degree of ignorance in DST.

In an application of IDMR, the boundaries can be used in

different ways. If we want to come to a sharp decision for

a certain class, we may act carefully and consider the lower

boundary p(c|nc, NE). Alternatively, we may choose class

c′ = argmax
c

nc, (7)

i.e., the highest number of weighted observations. Then, the

uncertainty of the decision can be determined by analyzing

the differences p(c|nc, NE) − p(c|nc, NE). The uncertainty

values can be used, e.g., for a comparison of the uncertainty

for different samples or for a comparison to another expert

group in a second labeling approach.

C. EIDMR

In a next step, we propose a new combination rule EIDMR

which is based on the same idea as IDMR. But, the key idea is

to decrease the uncertainty of the fused result by means of ad-

ditional information which is available from similar samples.

Here, “similar” means that their feature vectors are similar,

determined with an appropriate similarity measure (which may

be based on a metric). To choose these additional samples, the

IDMR is extended by a k-nearest neighbor technique (knn)

applied in the feature space. Then, the expert statements for the

sample under consideration and the statements of its k nearest

neighbors are considered. The application of knn ensures that

only samples which have a characteristic that is similar to

the one of the considered sample are involved in a weighted

combination. Assuming that NE statements are available for

each sample, (k+1)·NE statements are considered by EIDMR

to assess one specific sample. EIDMR weights the statements

not only depending on the experts’ difficulty assessment as

described above, but also depending on differences between

the class assignments for the sample under consideration and

its k neighbors. EIDMR also considers the fact that we have

ordinal classes: Larger differences in class numbers lead to

lower weighting factors.

To describe the approach in a formal way, we first need an

additional index i for several variables as we have to consider

not only one sample, but also its k neighbors. Thus, the sample

under consideration gets the index 0, and its neighbors i =
1, . . . , k. Then, for a sample i (i = 0, . . . , k) we have NE

expert statements (assignments to classes) summarized in ccci =
(ci,1, . . . , ci,NE

)T with corresponding difficulty assessments
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wwwi = (wi,1, . . . , wi,NE
)T. As we have ordinal classes, the

dissimilarity between a vector ccci and the vector ccc0 can be

measured using a standard metric, e.g., the Euclidean distance

‖ccci − ccc0‖. Then, we are able to define weights for samples

gi (with i = 0, . . . , k) that consider differences in their class

assignments as follows:

gi =
1

k
·
(
1− ‖ccci − ccc0‖∑k

l=1 ‖cccl − ccc0‖

)
. (8)

To avoid dividing by zero we have to exclude the very special

case where all class vectors ccci are equal (in this case we would

proceed with g0 = 1 and gi = 0 for i = 1, . . . , k). These

weights have the property
∑k

i=0 gi = 1.

With this spadework, we formally extend the two probability

boundaries in the following way:

p(c|nc,0, . . . , nc,k, NE) =

k∑
i=0

gi · nc,i

C∑
c=1

k∑
i=0

gi · nc,i + h

, (9)

p(c|nc,0, . . . , nc,k, NE) =

k∑
i=0

gi · nc,i + h

C∑
c=1

k∑
i=0

gi · nc,i + h

(10)

with

nc,i =

NE∑
j=1

wi,j · Ii,j,c, (11)

where now Ii,j,c indicates whether sample i has been assigned

to class c by expert j (cf. 6 above).

Such as with IDMR, the probability boundaries can be

directly used or a sharp decision for a single class can be

made by choosing c′ with

c′ = argmax
c

k∑
i=0

gi · nc,i (12)

That is, class c with the highest number of weighted ob-

servations is chosen as the combined label. The uncer-

tainty accompanied by this decision can be determined with

p(c|nc,0, . . . , nc,k, NE)− p(c|nc,0, . . . , nc,k, NE). The uncer-

tainty values may vary more likely between different samples

using EIDMR because of the additional k samples and the

additional weights gi.
The EIDMR procedure is set out in Algorithm 1.

D. Illustrative Example

To illustrate EIDMR and differences to IDMR, we now

elaborate a simple example with three samples in a feature

space as shown in Figure 1. We assume that each sample was

classified by two experts into one of the three ordinal classes 1,

2, and 3. Furthermore, we suggest that a difficulty assessment

is known for each statement (either “easy” (with weight wi,j

= 1.5), “medium” (wi,j = 1.25), or “hard” (wi,j = 1.0). In

Algorithm 1: EIDMR algorithm for one sample.

Input: set of samples with feature vectors, experts’

classification statements, and difficulty

assessment; sample 0 that has to be labeled.

1 Search k nearest neighbors of sample 0 in the feature

space with a Euclidean distance measure;

2 for i = 0 to k do
3 Compute similarity weights gi;

4 for c = 1 to C do
5 compute lower boundary p(c|nc,0, . . . , nc,k, NE);
6 compute upper boundary p(c|nc,0, . . . , nc,k, NE);

7 choose class c′ with c′ = argmaxc
∑k

i=0 gi · nc,i;

Output: class c′ and upper and lower boundaries p and p.

the figure, the classification statements and weights are set

out as vectors ccci and wwwi (i = 0, 1, 2). It can be seen that

the weights of the experts’ statements are lower for the data

sample 0 under consideration (red) compared to the weights

of its two nearest neighbors (green). This simulates the case

when a sample is hard to classify and there exist some similar

samples for which the classification task is easier.

��������������������	
���	
��

� � �� �� � � �� ��

��������������������	
���	
���

��������

�������������������������

��������

Fig. 1. Sample 0 and its k = 2 neighbors in the feature space.

Using IDMR for sample 0 results in n1 = 1, n2 = 1, and

n3 = 0. Obviously, a clear decision concerning the combined

class label can not be made. The values for the lower and upper

boundaries are p(1) = p(2) = 1/3 and p(1) = p(2) = 2/3
for the classes 1 and 2, as well as p(3) = 0 and p(3) =
1/3 for class 3 if we use h = 1. That is, the uncertainty

regarding the class decision—estimated by the difference of

the boundaries—is 1/3 for each class.

Now, we proceed with EIDMR. First, the three dissimilar-

ities of samples are computed with the Euclidean distance:

‖ccc0 − ccc0‖ = 0, ‖ccc1 − ccc0‖ = 1, and ‖ccc2 − ccc0‖ = 1. In a next

step, the similarity weights are computed: g0 =
1
2 (1− 0) =

1
2 , g1 = 1

2

(
1− 1

2

)
= 1

4 , g2 = 1
2

(
1− 1

2

)
= 1

4 . Then, we

calculate the nc,i using (11): n1,0 = 1, n2,0 = 1, n2,1 = 3,

n3,2 = 3. All other nc,i are 0 in this example. These values

finally lead to the class decision argmaxc
k∑

i=0

gi · nc,i =

argmaxc
{

1
2 , 2, 0

}
= 2. Hence, the additional information

of the two nearest neighbors considered in EIDMR leads
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to the rather clear decision that class 2 should be taken as

label. The computation of the boundaries with h = 1 yields

p(1) = 1/7, p(1) = 3/7, p(2) = 4/7, p(2) = 6/7, and

p(3) = 0, p(3) = 2/7. In comparison to IDMR, the uncertainty

is reduced to 2/7.

Altogether, EIDMR leads to a clearer class decision with

reduced uncertainty in this very simple example.

III. EVALUATION ON ARTIFICIAL DATA SETS

In this section, the accuracy of the combination rules

proposed in Section II-A is investigated and compared to two

further well-known rules, DSR and MR, which are derived

from DST, on three artificial data sets for which the true

classes are known. The generation of the artificial data sets that

we used in our experiments is described in Section III-A. Then,

the simulation of artificial experts is sketched in Section III-B.

The accuracy of the four combination rules on these artificial

data is investigated in Section III-C.

A. Generation of Artificial Data Sets

Before we apply the four combination rules to a real data

set, we want to assess these rules with regard to their ability

to detect the true classes under different conditions. To do

this, we generated three data sets which contain 1000 samples

with five ordinal classes. The feature space consists of two

dimensions which allows for an illustrative presentation of the

data sets. The samples were generated with the use of Gaussian

mixture models (GMM) with five components, each assigned

to one of the five ordinal classes. All mixture coefficients of

the GMM were set to 0.2. Thus, each class label occurred

approximately 200 times in a data set. The three data sets

were generated with similar GMM but differ regarding the

location of the samples in the feature space, because the

distances of the expectations (mean values) are highest in

data set I and lowest in data set III. That is, the overlap of

the component densities increases from data set I to III and,

thus, the samples belonging to different classes become more

difficult to separate. In Figure 2, the data sets with highest and

lowest overlap are set out.

B. Generation of Artificial Expert Statements

Having prepared the data sets, we generated 30 artificial,

ordinal expert statements (class labels) for every sample by

altering the true class labels with a random process according

to the influences identified in Section I. Each of the influences

was modeled separately, and, hence, could be chosen individ-

ually for every simulated expert. Particularly, every simulated

expert was allotted an individual level of experience (the form

of the day was not modeled separately), an individual notion of

strictness, and an individual tendency not to opt for extremes.

Each of these influences leads to a probability that a simulated

expert labels a sample with an altered (i.e., wrong) class. An

expert with a distinct notion of strictness will, e.g., have a high

probability to choose a class label which is lower than the true

class. To illustrate the results of this process, the statements

for the samples in data sets I and III are shown for one of the

experts in Figure 3.

Additionally, the generation of a difficulty statement reflect-

ing the certainty of an expert concerning the label for a specific

sample was implemented with three levels “easy”, “medium”,

and “difficult” (with numerical values of 1.00, 1.25, and 1.50,

respectively, cf. also the example in Section II-D). For the

application of the DSR and MR, simple support functions

(cf. [5]) were used. We had to transform the difficulty values

to an appropriate interval by multiplying with 0.6 (i.e., to 0.60,

0.75, and 0.90).

C. Properties of the Combination Rules

In this section, we apply each of the four combination rules

DSR, MR, IDMR, and EIDMR to the artificial data sets to

combine the experts’ label statements. To measure the degree

of agreement between the results of the combination rules

and the true labels, the inter-rater agreement is used as an

accuracy measure. Cohen’s weighted kappa statistic κw is

a standard measure for this purpose [17]. It allows for the

use of weights to reflect the extent of similarity between

ordinal classes. Hence, it incorporates the magnitude of each

disagreement and provides partial credit for disagreement

when agreement is not perfect [18]. The two most widely

used weighting schemes are symmetric linear weights and

symmetric quadratic weights [19]. For our analysis, we use

symmetric linear weights. Cohen’s weighted kappa statistic κw

can be interpreted as a chance-corrected index of agreement.

It yields 1 for a perfect agreement. If κw is 0, the agreement

is equal to that expected under independence. A negative

value indicates that the agreement is less than expected by

chance [20].

To apply EIDMR, the data had to be scaled using a z-

transform because features with larger values would dominate

those with smaller values in the knn approach [21]. This

scaling is not needed for the other three combination rules.

In our first experiment, the number of additionally considered

samples in EIDMR was set to k = 3, 5, 7, or 9. In order

to investigate the influence of the number of experts on the

accuracy, we increased this number step-by-step. To obtain

statistically significant results, we repeated the generation of

the artificial class labels and the application of the combination

rules ten times for each data set. The fact that the true classes

are known for the generated data sets enables us to evaluate

the accuracy of the rules.

In Figure 4, the mean values μ(κw) and the standard

deviations σ(κw) for the ten repetitions of the experiment are

outlined for data set I. Different values of k have been used

applying EIDMR. It can be seen that EIDMR outperforms

the other combination rules for every considered number of

experts and k with regard to μ(κw), and, thus, with regard to

the accuracy in detecting the true classes. This is due to the

additional statements in the knn approach. Because of the low

overlap of the Gaussian components there are no differences

in the combination accuracy no matter which of the considered

values is used for k if there is more than one expert statement
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Fig. 2. Two of the data sets, I (left) and III (right), generated with different GMM (samples with true labels).
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Fig. 3. Statements of an artificial expert for samples in data set I (left) and III (right).
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Fig. 4. Combination accuracy for data set I: mean (top) and standard
deviation (bottom).

available for a sample. In comparison to the other rules, the

standard deviations of EIDMR are higher if the number of

experts is lower than 8. This can be reasoned with the influence

of the often differing expert statements gathered with the knn

approach. The results of MR and IDMR coincide strongly,

only minor differences can be stated. This is reasoned by

the combination process using MR where an average belief

function is computed and then combined NE − 1 times using

DSR. This yields very similar results compared to IDMR.

Results for data set II are shown in Figure 5. Compared to

the other two data sets, this data set is based on a medium

overlap of the five components in the feature space that are

assigned to different classes. Comparing the three combination

rules DSR, MR, and IDMR, there are no significant differences

in their accuracies if the number of experts is lower than

five. As for data set I, the curves of MR and IDMR coincide
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Fig. 5. Combination accuracy for data set II: mean (top) and standard
deviation (bottom).

strongly. Due to additional information gathered with the knn

approach, EIDMR outperforms the other rules if the number

of fused statements (i.e., experts) is lower than 12. However,

the standard deviations are higher, too. The highest accuracy

using EIDMR is reached with k = 9. If the number of experts

exceeds 12, DSR performs best in detecting the true classes.

Thus, the additional benefit of the knn approach decreases

with an increasing number of experts.

Figure 6 outlines the results for data set III which is the data

set with the highest overlap of components. In the cases with

a low number of expert statements (i.e., where the number

of experts is at most 3), EIDMR outperforms the other rules.

In comparison to the other data sets, a variation of k has the

highest influence on the combination accuracy. The highest

accuracy using EIDMR is reached for k = 3. For an increasing

number of experts (> 3), the influence of the knn approach

leads to a lower accuracy of EIDMR compared to the other
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Fig. 6. Combination accuracy for data set III: mean (top) and standard
deviation (bottom).

combination rules. Both effects can be reasoned by the high

overlap of the components of the mixture model underlying

data set III. Then, DSR has the highest average accuracy and

also the lowest standard deviation of all combination rules.
We now investigate some properties of EIDMR in two

additional experiments.
In our second experiment, we varied the number of samples

in data set III to examine the influence of the sample density on

the combination accuracy of EIDMR. This is a very interesting

aspect as we can expect that the sample density influences the

values of κw. Figure 7 outlines the results for 250, 750, and

all 1000 samples contained in data set III which result from

using EIDMR with k = 3 and 9. It can be seen that the mean

μ(κw) (ten repetitions again, see above) actually increases

significantly with the number of samples. The increasing

sample density will lead to a selection of more similar k
samples in the knn approach.
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Fig. 7. Combination accuracy for different sample numbers (data set III).

In our third experiment, we analyzed the influence of the

difficulty weights wi,j and the use of information about the

class order in EIDMR. To do this, we may set the value of each

weight wi,j to one which is equivalent to ignoring the experts’

difficulty assessments for each sample. To ignore the class

order information contained in the class labels, we may set the

value of each similarity gi to 1/(k + 1). In this experiment,

we investigate both cases and also their combination. The

latter case leads to a simple majority decision considering the

k + 1 considered samples with EIDMR. The results, outlined

in Figure 8, show that both, the difficulty weights and the

class order information, have a noticeable positive effect on

the combination accuracy.
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Fig. 8. Influence of class order information and difficulty weights on
combination accuracy for data set III.

Considering the results of our experiments for all three

data sets, the DSR has a strong performance with regard

to the detection of the true class labels for every data set.

However, the combination accuracy can be further improved

using EIDMR in many cases where the the number of avail-

able expert statements is rather low. The actual benefit from

EIDMR depends on the particular data set. The accuracy of

EIDMR increases with more available samples in a data set.

Furthermore, the use of the ordinal information given by the

class labels and the consideration of reliability weights lead

to an additional improvement in the application of EIDMR.

IV. CLASSIFICATION OF LOW-VOLTAGE GRIDS

In the preceding two sections we formally elaborated a new

combination rule EIDMR and compared it to IDMR, DSR,

and MR on three artificial data sets. To further investigate

and analyze the combination approaches with regard to a real

application, we now present a case study where we apply

the combination rules to classify 300 low-voltage grids. In

Section IV-A, we describe the background of our case study as

well as the collection of the grid data. Additionally, our expert

knowledge based approach to gather labels for the grids under

investigation is briefly presented. The previously discussed

combination rules are compared with regard to their accuracy

in an application of SVM classifiers in Section IV-B.

A. Background and Collection of Empirical Data

The low-voltage distribution level is the one at which most

of the end users—for example households—are connected to

the electric power system. From the beginning of the supply

with electricity, the power system was designed in a hierarchi-

cal way to transport electric energy from central power plants

to consumers. With changing political circumstances, upcom-

ing new market trends, increasing environmental loading, and

decreasing availability of fossil energy sources, a paradigm

change can be recognized [22], [23], [24], [25]. Especially
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in rural and suburban areas—because of their high potential

for Renewable Energies (RE)—the installation of distributed

generators (DG) has been forced in the past decade. Without

appropriate counteraction, the high amount of installed DG

in the low-voltage grids—especially Photovoltaic Generators

(PV)—may cause overloading of the electrical equipment and

violation of voltage limits. The emergence of such bottlenecks

is highly dependent on the grid structure and the configuration

of the DG within the grid. Regarding these problems, the

responsible distribution system operator (DSO) has to consider

specific enhancement and long-acting development of low-

voltage grids. But regarding the limited financial possibil-

ities in regulated markets (e.g., incentive regulation), the

decision in which low-voltage grids an investment is placed

becomes increasingly important. The discrimination of low-

voltage grids into different ordinal classes with regard to their

hosting capacity for DG can support the investment decision

but it is a difficult task, because various and complex grid

structures exist. This is due to the fact that low-voltage grids

have historically grown structures with local and geographic

dependencies (e.g., rivers, composition of the ground). To cope

with the challenge of classifying grids into different ordinal

classes, expert knowledge can be elicited. Our aim is to build

a system which is based on expert knowledge and allows for

an automatic classification of a grid.

In our grid survey, the ten grid parameters shown in Table I

were gathered for 300 real rural and suburban low-voltage

grids. In order to label these data, we accomplished an expert

based procedure. Admittedly, a real ground truth to validate

the experts’ classification results could only be obtained by

an actual increase of the DG power in these grids which

is obviously not possible. A number of five experts from

distribution grid planning practice (DSO staff) was chosen

as a trade-off between reliability of the combined statements

and costs of the inquiry. The classification was intended to

yield information on the DG capacity of the low-voltage grids

under consideration. For that, we used five distinct ordinal

classes with an ascending order describing the strength of the

grid structure: (1) “very weak”, (2) “weak”, (3) “average”,

(4) “strong”, and (5) “very strong”.

The design of the questionnaire was oriented to hold the

quality criteria validity, reliability, and objectivity for the mea-

surement. Hence, we provided the gathered grid parameters

and a plan for every grid as well as some supplementary

information for optional usage by the experts. The first sup-

plementary information consisted of five prototype grids, one

for each class, which we selected from the 300 real grids.

To provide more information, we divided the range of the

parameters into five intervals so that every interval contains

20% of the grids. This results in indicator functions assigning

one of the five grid classes for the manifestation of every

particular parameter (e.g., if the percentage of intermeshing

lies between 0% and 31% the corresponding indicator function

yields class 1 for this parameter). Additionally, the experts

were asked for a global ranking and weighting of the grid

parameters concerning their importance for the classification

TABLE I
GRID PARAMETERS OF TWO SAMPLE GRIDS.

Characteristic Grid Parameter Grid I Grid II

1 No. of transformer stations 2 2
2 Sum of rated transformer power [kVA] 880 1260
3 No. of cable distribution boxes 5 9
4 Sum of wired line length [m] 7475 5375
5 Sum of intermeshed line length [m] 1764 3105
6 Portion of intermeshing [%] 23,6 57,8
7 Portion of new line type NAYY 150 [%] 50,3 62,8
8 Max. straight-line dist. to transf. [m] 1082 354
9 Avg. straight-line dist. to transf. [m] 840 344
10 No. of house connections 92 100

decision at the beginning of the inquiry. With regard to

the ranking and weighting of the parameters, we provided

a classification indicator for every grid using the first five

parameters and their weighting. The indicator represents the

rounded weighted average of the first five indicator functions

in the ranking.

Although we provided supplementary information to the five

experts they, unsurprisingly, often made conflicting statements.

We also asked every expert for a difficulty statement according

to three difficulty levels (“easy”, “medium”, “hard”) while

assessing a grid. This information was considered by EIDMR.

The numeric values for the weights were set as described in

Section III-B.

B. Classification with Support Vector Machines

We now apply the four combination rules IDMR, EIDMR,

DSR, and MR to the data of our case study. That is, we aim for

a combination of five experts’ statements into one combined

class label for every sample using each of the four combination

rules. Using EIDMR, the number of considered additional

samples was set to k = 5 and the features were z-transformed.

The accuracy of the combination results cannot be evaluated

such as in Section III-C. This is due to the fact that the true

classes are not known for the data of our case study. We train

a classifier on training data, evaluate it on test data, and do

so in a cross-validation approach using the combined class

labels. Thus, we aim to compare the classification accuracy

regarding the combined class labels of each combination rule.

Our assumption is that a high accuracy of a combination rule

concerning the detection of the true classes is accompanied by

a high accuracy of the trained classifier.

In our experiments, we evaluate two different classification

concepts predicting the classes. In the first concept, we treated

the expert statements individually by extending the training

data in the following way: Each feature vector occurs five

times and as targets we used the five expert statements. This

extension of the training data can be seen as an interpretation

of the set of the five expert statements as one gradual label.

Only the testing is done with the combined label in this

concept. The second concept already uses the combined label

in the training phase. The testing is, such as in the first concept,

done with the combined label. To implement the classifiers,

the LIBSVM library with a standard Gaussian kernel [26] was

2016 International Joint Conference on Neural Networks (IJCNN) 2171



TABLE II
CLASSIFICATION RESULTS OF THE FIRST SVM CLASSIFICATION CONCEPT

PREDICTING EIDMR-COMBINED CLASS LABELS.

Accuracy Measure

Results

# κw,train κw,test etrain [%] etest [%]

1 0.456 0.736 42.8 23.7
2 0.456 0.744 43.1 23.7
3 0.449 0.737 43.3 21.7
4 0.459 0.713 42.8 24.7
5 0.459 0.768 42.9 20.7
6 0.457 0.752 43.1 22.7
7 0.459 0.767 42.8 20.7
8 0.453 0.738 43.1 23.3
9 0.457 0.763 43.0 20.7

10 0.453 0.755 43.1 22.0
μμμ 0.456 0.747 43.0 22.4
σσσ 0.003 0.017 0.2 1.5

TABLE III
CLASSIFICATION RESULTS OF THE SECOND SVM CLASSIFICATION

CONCEPT PREDICTING EIDMR-COMBINED CLASS LABELS.

Accuracy Measure

Results

# κw,train κw,test etrain [%] etest [%]

1 0.912 0.799 8.2 18.0
2 0.914 0.805 8.0 17.7
3 0.910 0.786 8.3 19.4
4 0.909 0.818 8.5 16.6
5 0.917 0.783 7.7 19.7
6 0.910 0.780 8.3 19.6
7 0.905 0.807 8.8 17.3
8 0.912 0.789 8.2 19.3
9 0.905 0.819 8.8 16.3

10 0.908 0.814 8.5 16.7
μμμ 0.910 0.800 8.3 18.1
σσσ 0.004 0.015 0.4 1.3

used. The feature space was built by the characteristic grid

parameters set out in Table I.

To estimate good parameter values for the SVM classifiers

and to prevent them from overfitting, we used a stratified 3-fold

cross-validation. The stratification is essential here because

the 300 combined class labels were not equally distributed no

matter which of the four combination rules is applied. Thus,

the process of randomly rearranging the data into 3 folds has

to ensure that each fold represents the distribution of the class

labels. Furthermore, the selection of the SVM parameters C
and γ was done using a grid search. Because the test data

of the 3-fold cross-validation process must not be used to

find the parameters, we implemented another 3-fold cross

validation within the actual validation procedure to robustly

search the parameters on the training data. One problem is that

the class labels have an ordinal character which are interpreted

as nominal classes by the SVM. Thus, to estimate the model

performance, we do not make use of the classification error e
(amount of incorrectly classified samples) only but optimized

the model parameters with regard to κw (which we use to

measure the classification accuracy, thus, e �= 1−κw) between

the test data and the output of the model (cf. Section III-B).

The resulting parameter combination which we used for all

implemented SVM is C = 10 and γ = 0.03.

Having found good parameter values for the SVM, we made

ten 3-fold cross-validations for each classification concept. In

each of these cross-validations, the data is randomly rear-

ranged into 3 stratified folds. As a consequence, the samples

which are assigned to the folds will differ in each repetition. A

number of ten repetitions of the cross-validations is chosen to

get statistically significant results and to consider the influence

of the random rearrangement of the folds.

In Table II, the classification error and the classification

accuracy κw of the first classification concept predicting

EIDMR-combined labels are set out for each of the ten cross-

validation repetitions. The results of all single cross-validations

are outlined to illustrate the influence of the random rearrange-

ment of the folds on the classification error and classification

accuracy. The last two columns show the classification error

for the training samples and the test data. In the preceding two

columns, the values of κw are outlined for the training samples

as well as the test data. We show both, training and test

accuracies, to illustrate the differences between training and

test. In addition to the single values of the cross-validations,

the overall mean values (μμμ) and the overall standard deviations

(σσσ) are presented for each accuracy measure. It can be seen,

that the overall test accuracy represented by the mean value

μμμ(κw,test) is approximately 0.75. The corresponding overall

test error μμμ(etest) is 22.4%. The overall training accuracy and

the overall training error attain significantly worse values of

μμμ(κw,train) ≈ 0.46 and μμμ(etest) = 43.0%, respectively. This

is reasoned by the fact that in the first classification concept the

same feature vector of a training set is contained multiple times

(here, five times) in the training data (often with different, i.e.,

conflicting expert statements).

Table III shows the results of the second classification

concept which directly uses the combined labels to train the

SVM. Because of the direct use of the combined labels,

the overall training accuracy as well as the overall training

error are noticeably better compared to the first classification

concept. The test values result in μμμ(κw,train) = 0.80 and

μμμ(etest) = 18.1% and are also better than the respective values

of the first classification concept.

In summary, the second classification concept outperforms

the first one, and, thus, is more advantageous to predict the

combined labels in this experiment. Furthermore, our results

show that the use of EIDMR has a high potential to yield a

good classification accuracy. But is this accuracy significantly

better compared to the use of the other three combination

rules? To investigate the influence of the combination rule

on the classification results, we conducted another experiment.

We realized the better performing second classification concept

for each combination rule. The overall classification results are

set out in Figure 9. Using the labels combined with the three

well-known approaches DSR, MR, and IDMR yields an over-

all classification accuracy of approximately μμμ(κw,test) ≈ 0.61
for each of these three rules. These values are significantly

worse compared to the discussed results based on EIDMR.

Using EIDMR labels leads to an enhancement of the overall

classification accuracy to about 0.8 on test data. Additionally,

we observe that the use of EIDMR reduces the standard
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Fig. 9. Overall classification accuracy μμμ(κw) for each combination rule
using the second classification concept.

deviations of the classification accuracy.

V. CONCLUSION AND FUTURE RESEARCH

In this article, we proposed a novel combination rule for

expert statements and compared it to the well-known com-

bination rules DSR, MR, and IDMR. The results show that

especially if there are only a small number of expert statements

available (e.g., due to high elicitation costs), the additional

information gathered from similar samples by means of a

knn approach leads to significantly better combination results

with the new EIDMR. The use of the ordinal information

given by the class labels and the consideration of reliability

weights leads to an additional improvement in the application

of EIDMR.

If desired, EIDMR could be developed further by consid-

ering the distance (measured in the feature space) of similar

samples in the knn approach by means of additional weights.

To further validate our new combination rule, we presented a

comprehensive case study by applying all combination rules to

the data of 300 real low-voltage grids. The grids were assessed

with ordinal labels by five experts from a regional distribution

system operator. In this case study, the combination rules

were compared with regard to the prediction accuracy in

a classification approach with SVM. Our results show that

EIDMR noticeably outperforms the other rules concerning the

prediction of the combined labels.

Our future research activities in the field of low-voltage grid

classification will further consolidate the concluded results and

we will investigate other ways to predict the combined class

labels such as, e.g., ensemble learning. Furthermore, we will

improve the classification accuracy by integrating additional

features and using classification results from stochastic load

flow simulations [27].
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