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Abstract

We revisit the construction of diffeomorphic but not isometric metric solutions
to the Schwarzschild metric. These solutions require the introduction of non-trivial
areal-radial functions and are characterized by the key property that the radial
horizon’s location is displaced continuously towards the singularity (r = 0). In the
limiting case scenario the location of the singularity and horizon merges and any in-
falling observer hits a null singularity at the very moment he/she crosses the horizon.
This fact may have important consequences for the resolution of the fire wall prob-
lem and the complementarity controversy in black holes. This construction allows
to borrow the results over the past two decades pertaining the study of the Renor-
malization Group (RG) improvement of Einstein’s equations which was based on
the possibility that Quantum Einstein Gravity might be non-perturbatively renor-
malizable and asymptotically safe due to the presence of interacting (non-Gaussian)
ultraviolet fixed points. The particular areal-radial function that eliminates the in-
terior of a black hole, and furnishes a truly static metric solution everywhere, is used
to establish the desired energy-scale relation k = k(r) which is obtained from the k
(energy) dependent modifications to the running Newtonian coupling G(k), cosmo-
logical constant Λ(k) and spacetime metric gij,(k)(x). (Anti) de Sitter-Schwarzschild
metrics are explored as examples and we find signatures of ultraviolet/infrared en-
tanglement involving the observed cosmological constant. We conclude with a dis-
cussion of the role that Asymptotic Safety might have in the geometry of phase
spaces (cotangent bundles of spacetime); i.e. namely, in establishing a quantum
spacetime geometry/classical phase geometry correspondence gij,(k)(x)↔ gij(x,E).

Keywords : General Relativity; Black Holes; Asymptotic Safety; Quantum Gravity;
Phase Space. PACS : 04.60.-m, 04.65.+e, 11.15.-q, 11.30.Ly
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1 Introduction : Diffeomorphic but Not Isometric

Solutions to the Schwarzschild Metric

In this introduction we review the key points in [3] which are essential to follow the
next sections. The static spherically symmetric (SSS) vacuum solution of Einstein’s field
equations [1] that we learned from the text books is actually the Hilbert form of the
original Schwarzschild [2] solution

(ds)2 = (1− 2GM

r
) (dt)2 − (1− 2GM

r
)−1 (dr)2 − r2 (dΩ)2. (1.1)

There are an infinite number of metrics which are diffeomorphic but not isometric to
the Hilbert form of the Schwarzschild [2] solution. A particular class of metrics are given
by a family of metrics parametrized by a family of areal radial functions ρλ(r) (in c = 1
units), in terms of a real parameter 0 ≤ λ < 1, as follows

(ds)2
(λ) = (1− 2GM

ρλ(r)
) (dt)2 − (1− 2GM

ρλ(r)
)−1 (dρλ)

2 − ρ2
λ(r) (dΩ)2. (1.2)

where (dρλ)
2 = (dρλ(r)/dr)

2(dr)2 and the solid angle infinitesimal element is (dΩ)2 =
(dφ)2 + sin2(φ)(dθ)2. The surface area at each point r is now given by 4π(ρλ(r))

2 so that
ρλ(r) plays the role of an effective radius and hence the name of “areal-radial” function
for ρλ(r).

It is clear that the metric (1.2) is diffeomorphic but not isometric to the Hilbert form
(1.1) of the Schwarzschild [2] solution because the area elements r2 (dΩ)2 6= ρ2

λ(r) (dΩ)2

are not equal, except in the trivial case when ρλ(r) = r. The diffeomorphisms are simply
established by the mappings r → ρλ(r). Therefore, despite that the metric (1.2) has the
same exact appearance as the Schwarzschild solution, it is very different. We have not
relabeled the radial variable r by giving it another “name” and calling it “ρλ”, because
ρλ(r) is itself a function of r. Furthermore, one has not performed a naive change of
variables by writing r = r(r′). The metric (1.2) leads to modifications of the Newtonian
potential at short distances. One recovers the Newtonian potential in the asymptotic
regime when ρλ(r) ∼ r.

In the Appendix we show explicitly that the metric (1.2) is a solution to Einstein’s
vacuum field equations. This expression for the family of metrics is given in terms of the
family of areal radial functions ρλ(r) which does not violate Birkhoff’s theorem since the
metric (1.2) expressed in terms of the areal radial functions ρλ(r) has exactly the same
functional form as that required by Birkoff’s theorem. It is well known to the experts
that the extended Schwarzschild metric solution for r < 0 with M > 0, corresponds to a
solution in the region r > 0 with M < 0. Negative masses are associated with repulsive
gravity. For this reason, the domain of values of r will be chosen to span the whole real
axis −∞ ≤ r ≤ ∞.

The particular choice for the function ρ(r) = r yields the standard Hilbert-
Schwarzschild solution, whereas the infinite family of metric solutions (1.2) are associated
to an infinite number of modifications to the gravitational Newtonian potential, in the
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weak field limit. Experiments will tell what type of corrections to the Newtonian poten-
tial at shorter distances occur and which will fix the functional form of the areal radial
function ρ(r) (which in the Appendix we denote by R(r) and must not be confused with
the scalar curvature R(r)).

The boundary conditions obeyed by the areal radial function ρλ(r) must be at the
origin ρλ(r = 0) = 0, and asymptotically ρλ(r → ∞) ∼ r → ∞. The Hilbert textbook
(black hole) solution [5] when ρ(r) = r obeys the boundary conditions but the Abrams-
Brillouin [4] choice ρ(r) = r + 2GM does not. The original solution of 1916 found by
Schwarzschild for ρ(r) did not obey the boundary condition ρ(r = 0) = 0 as well. The
condition ρ(r = 0) = 2GM has a serious flaw and is : how is it possible for a point-mass
at r = 0 to have a non-zero area 4π(2GM)2 and a zero volume simultaneously ?; so it
seems that one is forced to choose the Hilbert areal radial function ρ(r) = r. It is known
that fractals have unusual properties related to their lengths, areas, volumes, dimensions
but we are not focusing on fractal spacetimes at the moment. For instance, one could have
a fractal horizon surface of infinite area but zero volume (space-filling fractal surface).
The finite area of 4π(2GM)2 could then be seen as a regularized value of the infinite area
of a “fractal horizon”.

The Hilbert choice for the areal radial function ρ(r) = r is ultimately linked to the
actual form of the Newtonian potential VN = −(Gm1m2/r). In the last few decades cor-
rections to Newton’s law of gravitation and constraints on them have become the subject
of considerable study, see the monograph [6]. Yukawa-type corrections to Newton’s grav-
itational law from two recent measurements of the Casimir interaction between metallic
surfaces was studied by [7]. A Yukawa-like correction to the Newtonian potential could
be chosen to be

V (r) = − Gm1m2

r
(1− λ e−r/2GM), λ > 0 (1.3a)

where λ and ro = 2GM are the strength and interaction range of the Yukawa-type correc-
tion. One may notice that the potential (1.3a) can be rewritten in terms of an areal-radial
function ρ(r) as

V (r) = − Gm1m2

ρ(r)
, ρ(r) =

r

1− λ e−r/2GM
, λ 6= 1 (1.3b)

One has the correct boundary conditions for the areal radial function when λ 6= 1

ρ(r = 0) = 0; ρλ(r →∞) ∼ r, ρ(r = rh) = 2GM ; 0 ≤ rh ≤ 2GM (1.3c)

so that the location of the horizon radius rh has been shifted towards the singularity.
In the asymptotic regime one has as expected ρ(r → ∞) → r, so that the areal-radial
function tends to r (as in the Hilbert choice) and the expression for the potential is
asymptotic to the Newtonian one. At the end of this section we shall discuss the case
when λ = 1.

Instead of the Yukawa-type areal radial function (1.3b), one could have had a different
one-parameter family of areal-radial functions ρλ(r)

1. For example, the metric solutions

1We thank Matej Pavsic for a discussion on other choices for the radial functions

3



(1.2) are invariant under the transformations r → −r;M → −M for our particular
choice of the areal radial functions ρλ(r) given in eq-(1.3b) and due to the condition
ρλ(−r,−M) = −ρλ(r,M). This allows us to extended the solutions to the r < 0 region.
For a recent analysis of the properties of the maximal extensions ( in regions r < 0 ) of
the Kerr and Kerr-Newman spacetimes with negative mass, see [8].

The Penrose diagrams associated with the solutions described in (1.2) are the same as
the diagrams corresponding to the extended Schwarzchild solutions with the only differ-
ence that we must replace the radial variable r for ρ. The horizons at the radial locations
r

(λ)
h all correspond to the unique value of the areal radial function ρ(r

(λ)
h ) = 2GM and

t = ±∞. The spatial singularity is located at ρλ(r = 0) = 0. The Fronsdal-Kruskal-
Szekeres change of coordinates that permit an analytical extension into the interior region
of the black hole has the same functional form as before after replacing r for ρ. In the
exterior region ρ(r) > 2GM one has

U = (
ρ(r)

2GM
− 1)

1
2 eρ(r)/4GM cosh (

t

4GM
), V = (

ρ(r)

2GM
− 1)

1
2 eρ(r)/4GM sinh (

t

4GM
);

(1.4a)
The change of coordinates in the interior region ρ(r) < 2GM is

U = (1− ρ(r)

2GM
)
1
2 eρ(r)/4GM sinh (

t

4GM
), V = (1− ρ(r)

2GM
)
1
2 eρ(r)/4GM cosh (

t

4GM
)

(1.4b)
In the overlap ρ(r) = 2GM region, one has straight lines U = ±V of ±π/4 slope when
t = ±∞, and U = V = 0 for finite t.

The coordinate transformations lead to a well behaved metric (except at ρ(r = 0) = 0)

ds2 =
4(2GM)3

ρ(U, V )
e−ρ(U,V )/2GM (dV 2 − dU2 ) − ρ(U, V )2 (dΩ)2. (1.4c)

When ρ(r = rhorizon) = 2GM and dΩ = 0, the above interval displacement ds2 = 0 is null
along the lines U = ±V ⇒ dU = ±dV . The interval is singular ds2 =∞ at ρ(r = 0) = 0;
i.e. the singularity r = 0 corresponds to the spacelike lines V 2−U2 = 1⇒ dV 2− dU2 =
−dU2/(U2 +1) < 0. A salient feature of the metric (1.4c) is that is no longer static in the
U, V coordinates. This is a reflection of the fact that the roles of r and t are interchanged
inside the horizon due to the signature flip when r < 2GM .

In the extreme limiting case λ→ 1 any infalling observer reaches a horizon r
(λ)
h whose

location approaches arbitrarily close to the singularity r = 0. To model the scenario
when the horizon merges precisely with the singularity one needs an area radial function
defined as follows

ρ(r = 0) = 0, ρ(r) =
r

1 − e−r/2GM
, r > 0 (1.5)

Under r → −r; M → −M one has that ρ(r)→ −ρ(r) so one can ensure the invariance of
the metric (1.2) under these transformations and extend the solutions to the r < 0 region.

Hence, we have in eq-(1.5) that ρ(r = 0+;M) = 2GM , and ρ(r = 0−;−M) = −2GM ,
but ρ(r = 0) = 0 since a point mass must have zero area and zero volume. The horizon
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is located at rh = 0+ and the singularity at r = 0. There is a discontinuity of ρ(r) at
r = 0. The right r = 0+, and left r = 0− limits of ρ(r) give respectively ±2GM , while
ρ(r = 0) = 0 which is the arithmetic mean of 2GM and −2GM .

In the Appendix it is shown that the areal-radial function ρ(r) given by eq-(1.5) (along
with an infinite number of C∞ differentiable functions) solves the vacuum field equations.
The finite discontinuity of ρ(r) occurs at one single point r = 0 (the origin), whereas
(dρ/dr) = ∞ at r = 0±. Hence, the derivatives of ρ(r) are continuous while ρ(r) is
discontinuous at r = 0. A typical example of this behavior is the tangent function tan(θ).
At θ = π/2, the tangent exhibits a discontinuity as it goes from ∞ to −∞, whereas
the derivative remains the same and equal to ∞. Fractal curves on the other hand are
continuous everywhere but nowhere differentiable. Concluding, since the derivatives of
ρ(r) are continuous everwhere, the metric (1.2) whose areal-radial function ρ(r) is given
by eq-(1.5) solves the vacuum field equations as shown in the Appendix.

Because a point mass is an infinitely compact source there is nothing wrong with the
possibility of having a discontinuity of the metric at the location of the singularity r = 0.
Due to the boundary condition ρ(r = 0) = 0, there is a curvature tensor singularity and
the Kretschmann invariant RµνρσR

µνρσ ∼ (2GM)2/ρ(r)6 diverges at ρ(r = 0) = 0. In
this extreme case, when the the location of the horizon merges with the singularity, there
is a null-line singularity at r = 0 and a null-surface at r = 0+. This may sound quite
paradoxically but it is a consequence of the metric discontinuity at r = 0, the location
of the point mass (singularity). This key fact may have important consequences for the
resolution of the fire wall problem and the complementarity controversy in black holes
[11], [13].

When the areal-radial function ρ(r) has the actual form in eq-(1.5) there is no interior
region beyond the horizon r = 0+, so that the metric (1.2) is truly static everywhere. The
Fronsdal-Kruskal-Szekeres analytical continuation of the metric (1.4c) inside the horizon
is not static. ’t Hooft [12] has most recently argued how black hole unitarity demands
the existence of transformations that can remove firewalls at the standard horizon radius
2GM . A continuity condition is imposed with an antipodal identification as an inevitable
consequence. ’t Hooft argued that it is necessary to revise the boundary conditions (and
topology) for Nature’s degrees of freedom at the horizon of a black hole. The boundary
condition is characterized as an antipodal identification and what it means is that the
region of space-time inside the horizon is removed completely, as if by surgery, after
which the edges are glued together by identifying the antipodes. In our case, the horizon
is located at r = 0+, hence this procedure is no longer necessary. After this introductory
review one may proceed.

2 Renormalization Group Improved Einstein’s Equa-

tions

The Renormalization Group (RG) improvement of Einstein’s equations is based on the
possibility that Quantum Einstein Gravity might be non-perturbatively renormalizable
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and asymptotically safe due to the presence of interacting ultraviolet fixed points [14].
In this program one has k (energy) dependent modifications to the Newtonian coupling
G(k), the cosmological constant Λ(k) and energy-dependent spacetime metrics gij,(k)(x).
Quantum gravitational effects in spherically symmetric black hole spacetimes were studied
by [15]. The effective quantum spacetime felt by a point-like test mass was constructed
by “Renormalization Group improving” the Schwarzschild metric. The key ingredient is
the running Newton constant which is obtained from the exact evolution equation for the
effective average action. As a consequence of the quantum effects, the classical singularity
at r = 0 was either removed completely or was at least much milder than classically.
The Asymptotic safety program has also found important applications in Fractals and
Cosmology [16] hinting at the possibility that a fractal spacetime arises at Planck scales,
this picture was also envisioned by Nottale long ago in his formulation of Scale Relativity
Theory.

In D = 4 there is a nontrivial interacting (non-Gaussian) ultraviolet fixed point
G∗ = G(k)k2 6= 0. The fixed point G∗ by definition is dimensionless and the running
gravitational coupling has the form [15], [14]

G(k) = GN
1

1 + [GNk2/G∗]
(2.1)

The Renormalization Group (RG) improvement of the Schwarzschild metric components
are defined to be [15]

g00,k(r) = 1− 2G(k)M

r
, grr,k(r, E) = − (1− 2G(k)M

r
)−1 (2.2)

however if one assigns an energy-scale k ↔ r correspondence by introducing a nontrivial
functional relation of the form k = k(r), and substitutes back its expression into the
scale-dependent metric components (2.2) one will no longer satisfy the vacuum Einstein
field equations (which led to the Schwarzschild solutions in the first place)

Rµν −
1

2
gµν R = 0 (2.3)

consequently, one will be forced to modify Einstein’s equations. For example, via the
introduction of f(R,∇R) Lagrangians into the modified gravitational action involving
polynomials in the curvature tensor and its covariant derivatives, or more complicated
functions f(R,∇R).

For this reason, it is far simpler to exploit the more general solutions (1.2) to the
vacuum field equations which are diffeomorphic but not isometric to the Schwarzschild
solution (1.1). Therefore, one may define the k ↔ r correspondence by absorbing the
energy dependent (running) gravitational coupling G(k) into the definition of the areal-
radial function ρ(r) introduced in the metric (1.2). This is achieved by writing eq-(2.2)
in the form

1− 2G(k(r))M

r
= 1− 2GNM

ρ(r)
⇒

G(k(r))

r
=

GN

ρ(r)
⇒ GN

1

1 + [GNk2(r)/G∗]
= GN

r

ρ(r)
(2.4)
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and in this fashion one recasts the two metric components (2.2) as two pieces of the
most general solutions displayed by eq-(1.2) involving the areal-radial function ρ(r) given
by eq-(1.5). Hence, from eq-(2.4) and eq-(1.5) one can read-off directly the sought-after
k ↔ r correspondence

k2(r) =
G∗
GN

e−r/2GNM

1− e−r/2GNM
(2.5)

the most salient feature of the energy-scale relation eq-(2.5) is that it does not have the
same functional dependence as obtained in [15] and given by k ∼ 1/d(r) where d(r) is

the proper radial distance between two points
∫ r
ro

√
|grr|dr. It was emphasized earlier that

metrics of the type

(ds)2 = (1− 2G(k(r))M

r
) (dt)2 − (1− 2G(k(r))M

r
)−1 (dr)2 − r2 (dΩ)2. (2.6)

do not solve the vacuum Einstein field equations.
Before proceeding let us mention that one could try to remedy this problem by adding

matter sources, corresponding to the stress energy tensor T µν = (σ,−pr,−pθ,−pφ), to the
right hand side of Einstein equations, and associated to a mass source distribution of the
form M(r) =

∫ r
0 σ(r′) 4πr′2 dr′. The expression for M(r) is obtained from the identifi-

cation G(k(r))M ≡ GNM(r). The conservation of the stress energy tensor ∇µT
µ
ν = 0

imposes additional relations among the components in (σ,−pr,−pθ,−pφ). We refer to
the review work by [10] where, in particular, a self gravitating droplet with anisotropic
pressure was taken as the source. It is based on smearing a point mass delta function
distribution by introducing a Gaussian mass density σ(r) of finite width and which deter-
mined the functional form of M(r) in terms of an incomplete Euler gamma function. We
shall not pursue this route, just fix M to a constant and focus on the vacuum solutions
only.

Given ρ(r = 0+) = 2GNM , the above expression for k2(r) in eq-(2.5) has the following
properties :
(i) when r → 0+, k → ∞, one recovers the expected ultraviolet limit at infinitesimally
small distances approaching zero. i.e. it will take an infinite energy to probe r = 0+.

(ii) when r →∞, k → 0, one recovers the expect infrared limit at infinite large distances.

(iii) when r
2GNM

<< 1 ⇒ k2 ∼ (2G∗M/r); i.e. when r is much smaller than the standard
black hole horizon radius 2GNM , one arrives at an energy-scale dependence of the form
k ∼ r−1/2. This behavior should be compared with the “naive” dependence k ∼ 1/r.

(iv) At Planck scales r ∼ LP , the condition (iii) implies M >> mP , which in turn leads
to k2 ∼ MmP >> m2

P , so the energy k ∼
√
MmP required to explore the Planck scale

size regions would be much higher than the Planck mass.

(v) Had one chosen an areal radial function of the form ρλ(r) = r(1−λe−r/2GNM)−1, λ 6= 1,
the value of k2 as r → 0, is G∗λ

GN (1−λ)
6= ∞ and would no longer be infinite. This is not

compatible with the ultraviolet completion program of asymptotic safety.
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(vi) The choice k = 1/r is associated to an areal-radial function ρ(r) which is derived
from the equality

GN
1

1 + [GNk2(r)/G∗]
= GN

1

1 + [GN/G∗r2]
= GN

r

ρ(r)
(2.7)

and leading to

ρ(r) = r +
GN

G∗r
(2.8)

the above expression for ρ(r) has the correct behavior at large distances ρ(r) ∼ r but
it blows up at r = 0. Consequently, it does not have the correct boundary condition
ρ(r = 0) = 0. The functional form (2.8) is reminiscent of the minimal length modified
stringy uncertainty relations since ρ(r) defined by eq-(2.8) has a minimum value of ρmin =

2
√

(GN/G∗) at r∗ =
√

(GN/G∗).
The construction presented here can also be extended to metrics which are are diffeo-

morphic but not isometric to the (Anti) de Sitter-Schwarzschild metrics

(ds)2 =

(
1− 2GNM

ρ(r)
− Λ0

3
ρ(r)2

)
(dt)2 −

(
1− 2GNM

ρ(r)
− Λ0

3
ρ(r)2

)−1

(dρ(r))2 −

(ρ(r))2 (dΩ)2 (2.9)

Λ0 > 0 for de Sitter space and Λ0 < 0 for Anti de Sitter. By writing

1− 2G(k(r))M

r
− Λ(k(r))

3
r2 = 1− 2GNM

ρ(r)
− Λ0

3
ρ(r)2 (2.10)

and establishing a k ↔ r correspondence one can incorporate the Renormalization Group
flow of the coupling G(k(r)) and the running cosmological constant Λ(k(r)) into the areal-
radial function ρ(r) in the right hand side of (2.10). The scale dependence of Λ(k) in the
de Sitter regime was found to be [15]

Λ(k) = Λ0 +
b G(k)

4
k4, Λ0 > 0 (2.11)

where b is positive numerical constant. In D = 4, the dimensionless gravitational coupling
has a nontrivial fixed point G = G(k)k2 → G∗ in the k →∞ limit, and the dimensionless
variable Λ = Λ(k)k−2 has also a nontrivial ultraviolet fixed point Λ∗ 6= 0 [15]. The
infrared limits are Λ(k → 0) = Λ0 > 0, G(k → 0) = GN . Whereas the ultraviolet limit is
Λ(k =∞) =∞;G(k =∞) = 0.

Upon substituting the expressions for G(k),Λ(k) (2.1,2.11) into the left hand side of
eq-(2.10), it furnishes a new energy-scale relation k(r) in terms of the given areal-radial
function ρ(r) of eq-(1.5) appearing in the right hand side of eq-(2.12). The functional
relation is now given by the solutions of a quadratic equation

k2(r) =
−B +

√
B2 − 4AC

2A
(2.12a)

8



where we chose the plus sign in front of the square root to ensure k2(r) ≥ 0. The
expressions for A,B,C are respectively

A(r) ≡ bGN

12
r2 > 0, B(r) ≡ GN

G∗

(
Λ0

3
(ρ(r)2 − r2) +

2GNM

ρ(r)

)
> 0 ,

C(r) ≡ 2GNM (
1

ρ(r)
− 1

r
) +

Λ0

3
(ρ(r)2 − r2) (2.12b)

A careful inspection of eqs-(2.12a, 2.12b) based on the graph of the areal-radial function
in the region r > 0, ρ(r) = r(1 − e−r/2GNM)−1 ≥ r, reveals that k2(r → ∞) → 0, and
k2(r → 0+)→∞ as expected.

When r → 0+ ⇒ 4AC → 0, and one can perform the binomial expansion in

k2 =
−B +

√
B2 − 4AC

2A
=
−B + B

√
1− 4AC/B2

2A
∼

−B + B (1− 2AC/B2)

2A
=
−C
B

(2.13)

Hence, in the limit r → 0+, given that ρ(r = 0+) = 2GNM , eq-(2.13) yields

k2(r → 0+) → limr→0+
−C
B
→

limr→0+
(2GNM/r)

(GN/G∗) (1 + (Λ0/3) (2GNM)2)
= limr→0+ β

G∗M

r
→ ∞ (2.14)

therefore, from eq-(2.14) one can infer that the ultraviolet scaling is of the form

k2 r ∼ β (G∗M), β ≡ 2

1 + (Λ0/3) (2GNM)2
< 2, Λ0 > 0 (2.15)

The infrared limit r →∞, A→∞, B → 0, C → 0, ρ(r) ∼ r, is such that k2 → 0.
It was not necessary to solve for k2(r) in eq-(2.10) in order to glean the infrared

and ultraviolet behavior. One can infer from the ultraviolet scaling behavior, given by
k2r ∼ βG∗M, (β 6= 2) when r → 0+, k →∞, that the products k2r; k4r2 remain finite so
the left and right hand sides of eq-(2.12) coincide (ρ(r = 0+) = 2GNM). Conversely, the
infrared scaling behavior is k4r2 → 0, when r → ∞, k → 0, ρ(r) ∼ r, such that eq-(2.10)
holds given that G(k = 0) = GN ,Λ(k = 0) = Λ0.

From the ultraviolet scaling behavior k2r ∼ βG∗M of eq-(2.15), one learns

2

β
− 1 =

Λ0

3
(2GNM)2 = (

2GNM

RH

)2 < 1, β < 2, Λ0 > 0. (2.16)

after setting Λ0

3
= 1

R2
H

in terms of the Hubble radius corresponding to the current de Sitter

expanding phase of the universe. Due to the very small present value of the cosmological
constant Λ0, and for small values of M (like the mass of a galaxy) relative to the observed
mass of the universe, one infers that β in this case is very close to 2; i.e. β = 2 − ε. An
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interesting limit occurs when M is of the order of the mass MU of the observed universe.
In this special limiting case, one has β = 1 such that the ratio (2GNMU

RH
)2 ∼ 1. We have

argued in the past [23], in connection to the Dirac’s large number coincidences and Mach’s
view of the universe, that if one recasts the maximal proper force condition associated
with a fundamental particle of Planck mass mP , in terms of the speed of light and the
Planck scale LP as F = mP c

2/LP , by equating F to MUc
2/RH = mP c

2/LP , it leads to
the above condition (2GNMU

RH
)2 ∼ 1 (in units of h̄ = c = 1).

It is intriguing that the relation in eq-(2.16) involving the cosmological constant (con-
comitant with the large Hubble radius), and the standard black hole horizon radius
2GNM , was obtained in the ultraviolet scaling region, k2r ∼ βG∗M ; i.e. at very small
scales r → 0+ and very high energies k2 →∞. This could be a manifestation of some sort
of ultraviolet/infrared entanglement which occurs in QFT’s defined on Noncommutative
spacetimes. The analysis of this section can be generalized to higher dimensions.

To finalize this section we should mention that it was pointed out by Donoghue [14]
that the standard perturbative quantization of Einstein gravity leads to a well-defined, fi-
nite prediction for the leading large distance correction to Newton’s gravitational potential
energy, after restoring h̄ and c, given by

V (r) = −GN
Mm

r

(
1 − GN(M +m)

2c2r
− αGN h̄

c3r2

)
, α =

118

15π
(2.17)

the first correction proportional to (M+m)
r

is a purely kinematic effect of classical general
relativity, while the second correction proportional to 1/r2 is a quantum effect.

The modified potential energy (2.14) can also be rewritten in terms of another areal
function ρ̃(r) differing from eq-(1.5), as

V (r) = −GN
Mm

ρ̃(r)
, ρ̃(r) ≡ r

1 − GN(M +m)/2c2r − αGN h̄/c3r2
(2.18)

the new areal-radial function does obey the required boundary conditions described in
section 1. ρ̃(r = 0) = 0; and asymptotically ρ̃(r) ∼ r. Furthermore, when r → −r, and
(M,m) → (−M,−m) we have ρ̃(r) → −ρ̃(r) so that a metric of the form (1.2) remains
invariant and can be extended to the region r < 0.

In the author’s opinion, the power of the infinite dimensional diffeomorphism sym-
metry of gravity has not been fully grasp. The results described in this section seem to
indicate that one can encode quantum effects in the ultraviolet, and infrared regime, by
choosing the appropriate areal-radial functions, which in turn, furnish an infinite number
of static spherically symmetric metric solutions to the field equations which are diffeo-
morphic, but not isometric, to the (Anti) de Sitter-Schwarzschild metrics.

Another highlight of the power of diffeomorphisms is that allows us to displace the
location of the black hole horizon towards the singularity to the point when the horizon
merges with the singularity. This merger is attained by arguing that the metric can admit
a discontinuity at the location of the infinitely compact point mass source at r = 0, and
which coincides with the location of the singularity. Many authors [10] argue that the
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Planck energy density (3/4π)(mP )4 should be considered as the maximum one attainable
in Nature, thus eliminating the existence of point masses. We bypass this argument by
recurring to the discontinuity at r = 0.

3 Asymptotic Safety and the Geometry of Phase

Space

The Lagrange-Finsler geometry of the tangent bundle (Hamilton-Cartan geometry of the
cotangent bundle) of spacetimes has been the subject of intensive study in recent years
[18], [19]. It is better understood now that the Planck-scale modifications of the particle
dispersion relations can be encoded in the nontrivial geometrical properties of momentum
space [20]. When both spacetime curvature and Planck-scale deformations of momentum
space are present, it is expected that the nontrivial geometry of momentum space and
spacetime get intertwined. The interplay between spacetime curvature and non-trivial
momentum space effects was essential in the notion of “relative locality” and in the
deepening of the relativity principle [20].

The authors [21], [22] have described the Hamilton geometry of the phase space of
particles whose motion is characterized by general dispersion relations. Explicit exam-
ples of two models for Planck-scale modified dispersion relations, inspired from the q-de
Sitter and κ-Poincare quantum groups, were considered. In the first case they found the
expressions for the momentum and position dependent curvature of spacetime and mo-
mentum space, while for the second case the manifold is flat and only the momentum
space possesses a nonzero, momentum dependent curvature.

Starting with the geometry of the cotangent bundle (phase space), it was shown in [23]
that the maximal proper force condition, in the case of a uniformly accelerated observer of
mass m along the x axis, leads to a minimum value of x lying inside the Rindler wedge and
given by the black hole horizon radius 2Gm. Whereas in the uniform circular motion case,
the maximal proper force condition implied that the radius of the circle cannot exceed
the value of the horizon radius 2Gm. A correspondence was found between the black
hole horizon radius and a singularity in the curvature of momentum space. In this final
section we argue how the Asymptotic Safety program in gravity [14], [15], combined with
the phase space geometry seem to be a proper arena for a space-time-matter unification.

The 8D cotangent space/phase-space associated to a 4D spacetime has for coordinates
x,p and the infinitesimal interval in phase space is

(dσ)2 = gij(x,p) dxi dxj + hab(x,p) (dpa − Na
i (x,p) dxi) (dpb − N b

j (x,p) dxj) (3.1)

where the N -coefficients define a nonlinear connection, an N -connection structure. For
rigorous details we refer to [18], [19]. In a very particular case one recovers the ordinary
linear connection if Na

i (x,p) = Γabi(x)pb.
The vacuum field equations were given by [19]
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Rij −
1

2
(R+ S) gij = 0, i, j = 1, 2, 3, 4. (3.2)

Sab −
1

2
(R+ S) hab = 0, a, b = 1, 2, 3, 4. (3.3)

where Rij,R and Sab,S are the Ricci and scalar curvatures of spacetime and the internal
momentum space, respectively. The geometry of the cotangent bundle is very intricate
and it involves six distinguished curvature tensors, five distinguished torsion tensors and
the nonlinear connections components [18], [19]. Hence, to find exact solutions to the
very intricate set of eqs-(3.2,3.3) is highly nontrivial [19], [24].

The additional momentum-dependent behavior of the field equations (3.2,3.3) (beside
the x-dependence) could cast more light into the study of the Renormalization Group
(RG) improvement of Einstein’s equations which was based on the possibility that Quan-
tum Einstein Gravity might be non-perturbatively renormalizable and asymptotically safe
due to the presence of interacting ultraviolet fixed points [14]. As seen in the prior sec-
tion, one has k (energy) dependent modifications to the Newtonian coupling G(k), the
cosmological constant Λ(k) and energy dependent spacetime metrics gij,(k)(x). Namely,
what one is aiming for is in establishing a quantum spacetime geometry/classical phase
geometry correspondence gij,(k)(x)↔ gij(x,E).

Let us insert directly the energy dependence of G(k),Λ(k) of eqs-(2.1, 2.11) into the
metric components associated to (Anti) de Sitter-Schwarzschild metrics, by setting E = k
and without imposing any energy-distance relationship k = k(r) as done previously. The
components of the spacetime metric are now given directly in terms of r and E (there is
no E(r) relation)

g00(r, E) = 1 − 2G(E)M

r
+

Λ(E)

3
r2, grr(r, E) = − (gtt(r, E))−1 (3.4)

The angular part can be chosen to be r2(dΩ)2 as usual. The task now is to find the expres-
sions (if possible) for the internal momentum space metric hab(x,p), and the nonlinear
connection N(x,p) components, such that the above vacuum field equations (3.2,3.3) are
satisfied when the spacetime metric components gij(x,p) are given by eq-(3.4). There is
no guarantee a priori that exact solutions of eqs-(3.2,3.3) of this type exist, nevertheless
it is worthy of exploration.

To conclude, related to establishing a quantum geometry/classical phase correspon-
dence gij,(k)(x) ↔ gij(x,E), we should recall that in the Deformation Quantization pro-
gram there is a one-to-one correspondence between operators in a Hilbert space and func-
tions in a classical phase space A(x, p) subject to a noncommutative (Moyal, Fedosov,
Kontsevich, ....) star product A(x, p)∗B(x, p). Noncommutative and Nonassociative star
products were constructed by studying non-geometric string (M-theory) backgrounds with
fluxes. These novel star products and their implications to Nonassociative Gravity are
currently under intense investigation. In particular, they might provide important clues
in order to solve the membrane quantization problem, see [25] and references therein.

APPENDIX A : Schwarzschild-like solutions in D > 3
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In this Appendix we follow closely the calculations of the static spherically symmetric
vacuum solutions to Einstein’s equations in any dimension D > 3. Let us start with the
line element with signature (−,+,+,+, ....,+)

ds2 = −eµ(r)(dt)2 + eν(r)(dr)2 +R2(r)g̃ijdξ
idξj. (A.1)

where the areal radial function ρ(r) is now denoted by R(r) and which must not be
confused with the scalar curvature R. Here, the metric g̃ij corresponds to a homogeneous
space and i, j = 3, 4, ..., D − 2 and the temporal and radial indices are denoted by 1, 2
respectively. In our text we denoted the temporal index by 0. The only non-vanishing
Christoffel symbols are given in terms of the following partial derivatives with respect to
the r variable and denoted with a prime

Γ1
21 = 1

2
µ′, Γ2

22 = 1
2
ν ′, Γ2

11 = 1
2
µ′eµ−ν ,

Γ2
ij = −e−νRR′g̃ij, Γi2j = R′

R
δij, Γijk = Γ̃ijk,

(A.2)

and the only nonvanishing Riemann tensor are

R1
212 = −1

2
µ′′ − 1

4
µ′2 + 1

4
ν ′µ′, R1

i1j = −1
2
µ′e−νRR′g̃ij,

R2
121 = eµ−ν(1

2
µ′′ + 1

4
µ′2 − 1

4
ν ′µ′), R2

i2j = e−ν(1
2
ν ′RR′ −RR′′)g̃ij,

Ri
jkl = R̃i

jkl −R′2e−ν(δikg̃jl − δil g̃jk).

(A.3)

The vacuum field equations are

R11 = eµ−ν(
1

2
µ′′ +

1

4
µ′2 − 1

4
µ′ν ′ +

(D − 2)

2
µ′
R′

R
) = 0, (A.4)

R22 = −1

2
µ′′ − 1

4
µ′2 +

1

4
µ′ν ′ + (D − 2)(

1

2
ν ′
R′

R
− R′′

R
) = 0, (A.5)

and

Rij =
e−ν

R2
(
1

2
(ν ′ − µ′)RR′ −RR′′ − (D − 3)R′2)g̃ij +

k

R2
(D − 3)g̃ij = 0, (A.6)

where k = ±1, depending if g̃ij refers to positive or negative curvature. From the combi-
nation e−µ+νR11 +R22 = 0 we get

µ′ + ν ′ =
2R′′

R′
. (A.7)

The solution of this equation is

µ+ ν = lnR′2 + C, (A.8)
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where C is an integration constant that one sets to zero if one wishes to recover the flat
Minkowski spacetime metric in spherical coordinates in the asymptotic region r →∞.

Substituting (A.7) into the equation (A.6) we find

e−ν ( ν ′RR′ − 2RR′′ − (D − 3)R′2 ) = − k(D − 3) (A.9)

or

γ′RR′ + 2γRR′′ + (D − 3)γR′2 = k(D − 3), (A.10)

where

γ = e−ν . (A.11)

The solution of (A.10) for an ordinary D-dim spacetime ( one temporal dimension )
corresponding to a D − 2-dim sphere for the homogeneous space can be written as

γ = (1− 16πGDM

(D − 2)ΩD−2RD−3
) (
dR

dr
)−2 ⇒

grr = eν = (1− 16πGDM

(D − 2)ΩD−2RD−3
)−1 (

dR

dr
)2. (A.12)

where ΩD−2 is the appropriate solid angle in D−2-dim and GD is the D-dim gravitational
constant whose units are (length)D−2. Thus GDM has units of (length)D−3 as it should.
When D = 4 as a result that the 2-dim solid angle is Ω2 = 4π one recovers from eq-(A.12)
the 4-dim Schwarzchild solution. The solution in eq-(A.12) is consistent with Gauss law
and Poisson’s equation in D − 1 spatial dimensions obtained in the Newtonian limit.

For the most general case of the D − 2-dim homogeneous space we should write

−ν = ln(k − βDGDM

RD−3
)− 2 lnR′. (A.13)

βD is a constant equal to 16π/(D − 2)ΩD−2, where ΩD−2 is the solid angle in the D − 2
transverse dimensions to r, t and is given by 2π(D−1)/2/Γ[(D − 1)/2].

Thus, according to (A.8) we get

µ = ln(k − βDGDM

RD−3
) + constant. (A.14)

we can set the constant to zero, and this means the line element (A.1) can be written as

ds2 = −(k − βDGDM

RD−3
)(dt)2 +

(dR/dr)2

(k − βDGDM
RD−3 )

(dr)2 + R2(r)g̃ijdξ
idξj =

−(k − βDGDM

RD−3
)(dt)2 +

1

(k − βDGDM
RD−3 )

(dR)2 + R2(r)g̃ijdξ
idξj (A.15)
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One can verify, that the equations (A.4)-(A.6),leading to eqs-(A.9)-(A.10), do not deter-
mine the form R(r). It is also interesting to observe that the only effect of the homoge-
neous metric g̃ij is reflected in the k = ±1 parameter, associated with a positive (negative)
constant scalar curvature of the homogeneous D − 2-dim space. k = 0 corresponds to a
spatially flat D−2-dim section. The metric solution in eq-(1.2) is associated to a different
signature than the one chosen in this Appendix, and corresponds to D = 4 and k = 1.
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