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Abstract: The aim of the present work is to setup the basis of a physics theory that
embeds no postulate at all. We show that only four elementary and obvious theorems,
associated to very simple  mathematics,  are  enough to forecast  the  main laws of  the
classical mechanics, including the gravitation, the thermodynamics, but also the quantum
structure of the universe. 
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1) Introduction
An ideal theory of physics should embed no postulate, but be based on theorems
only. Are we able today to build such a perfect theory ? Although the main
opinion answers no, we intend to propose here a step toward this ideal.

We  will  show  that  the  classical  mechanics,  including  the  gravitation,  the
thermodynamics and the quantum structure of the universe can all be explained
and unified by the means of only four elementary and obvious theorems, but no
use of any postulate at all. 

The mathematics used to achieve so are elementary, and this is satisfying as it
sounds logical that the most elementary structure of the universe can be based on
elementary mathematics. For instance the velocity of a Keplerian orbiter, that
concerns all the astral bodies in the universe, is only the superposition of two
uniform  velocities,  of  rotation  and  translation.  Such  a  simplicity  must  be
considered as a track leading to the fundamental laws governing the universe.

As a result we show that we can forecast many physical laws that have been fully
measured  experimentally  :  Newton’s  second  law,  Kepler’s  laws,  Galileo’s
equivalence principle, Newton’s gravitation law, mechanical energy, Gibbs’s free
energy, Boltzmann’s statistical entropy, law of the chemical equilibrium, law of
the chemical kinetics, ideal gas law, Plank’s constant, Plank-Einstein relation, de
Broglie’s hypothesis. 

Although we prove that such an approach of the physics is fruitful, this is only a
step toward a complete theory of physics free of any postulate. Much still remain
to be done. This work is so intended to setup the basis of such a project, and we
hope  that  its  simplicity,  with  regards  to  what  is  usually  the  physics,  will
encourage many people to investigate further.
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2) Toolbox

2.1)  Theorems

2.1.1) Theorem of mathematicality

Theorem 1 : The evolution in time of any measurable physical property can be
modeled by the means of a mathematical function, that we call Lagrangian and
note L.

Proof : Any measure of any physical parameter with respect to time will exhibit
a two dimensions plot, which abscissa represents the time and the ordinate the
value of the parameter. Such a curve respecting a two dimension geometry, can be
modeled by the  means  of  the  mathematics  (for  instance  polynomials,  Fourier
series, …).

Consequences : A system having no measurable physical properties has a null
Lagrangian. A system having a constant Lagrangian in time does not change its
physical properties in time, we say that it is stable, or at equilibrium.

2.1.2) Theorem of non ubiquity

Theorem 2 :  It  is impossible  to measure a physical  system in two different
physical states simultaneously.

Proof  :  No  one  has  ever  measured  a  physical  body  at  rest  and  moving
simultaneously,  hot  and  cold  simultaneously,  at  two  different  positions
simultaneously, or in general in two different physical states simultaneously.

2.1.3) Theorem of bijective time dependence

Theorem 3 : Any  measurable  physical  quantity  is  related  to  the  time  by  a
bijection.

Proof : Any series of measures of any physical quantity with report to the time
can be split into successive intervals, in which the quantity is related to the time
by  a  bijection  (see  figure  1).  Being  always  in  such  a  bijective  interval,  the
quantity is always related to the time by a bijection.
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Figure  1  :   The  trajectory  of  a  classical  quantity,
recording  its  value  x with  respect  to  time  t,  is  a
succession of intervals in which x and t are related by a
bijection x=f(t) and t = f-1(x). The trajectory might be
either continuous or discontinuous.

2.1.4) Theorem of universality

Theorem 4 : The theorem of mathematicality, the theorem of non ubiquity and
the theorem of bijective time dependence are true in all frames of reference.

Proof : no one has ever measured, in any frame of reference, a classical system
that  does  not  respect  the  theorem  of  mathematicality,  the  theorem  of  non
ubiquity and the theorem of bijective time dependence.

2.2)  Definitions
We consider a physical quantity q, which derivative with respect to time is q̇ ,
that we will call velocity, although it is not always the kinematics velocity. Even
if we define a momentum, a force and a mass, we are not referring always to the
only  kinematics  properties,  but  to  more  general  concepts  applying  on  any
quantity.

We define the momentum as the the Lagrangian divided by the velocity :

P=
L
q̇ (1)

We define the force as the derivative of the momentum with respect to time :
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F=
dP
dt (2)

We define the “free Lagrangian” as the integral of the momentum with respect to
the velocity :

C=∫P d q̇ (3)

We define the mass as the Lagrangian divided by the square of the velocity :

m=
L

q̇2 (4)

If the measured quantity is a vector, we state the following definitions, where the
vectors are set in bold  :

Momentum :               P=(
L

q̇2 ) q̇=m q̇ (5)

Force:                            F=
d P
d t (6)

Free Lagrangian :          C=∫P . d q̇ (7)

3) Applications

3.1)  Mechanics

3.1.1) Introduction

In  this  chapter  we  will  study  the  physical  properties  of  a  classical  system
depending  upon  its  kinematics  quantities,  i.e.  its  position,  velocity  and
acceleration, which are three dimension vectors (the definitions  (5),  (6) and  (7)
therefore apply). 

We will constraint our study to a stable system, so with L=L0=constant , and
having a constant mass m.
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3.1.2) Second law of Newton

From the relations (5) and (6), it is trivial to see that the force must be :

F=m q̈ , q̈ being the acceleration (8)

This is the second law of Newton.

3.1.3) Elementary velocities

Because the system has a constant Lagrangian and a constant mass,  it  must
verify q̇2

=constant (see definition (4)). There are only two classical motions that
can verify this : the uniform rotation and the uniform translation, characterized
by the following velocities :

Uniform rotation velocity : q̇R=ω ×q , q̇R=‖q̇R‖=ω r=constante (9)

Uniform translation velocity: q̇T= constant (10)

These elementary velocities are the only two that a stable system with a constant
mass can exhibit.

3.1.4) Addition of velocities

If the system has a velocity that is the sum of sub-velocities, the total stable
Lagrangian is the sum of the Lagrangians corresponding to each sub-velocity :

LT
0
=∑

n=0

N

LN
0
=m ∑

n=0

N

q̇2=constant (11)

This expression is always true if each sub-velocity respects the definitions either
(9) or  (10).  The  velocity  of  any  classical  mobile  will  then  be  given  by  the
following  general  formula,  where  the  velocities q̇R , q̇T ,  q̇Ri , q̇Tj are  all
given by the definitions (9) and (10) :

q̇= q̇R + q̇T

with q̇R=∑
i=1

I

q̇Ri , q̇T=∑
j=1

J

q̇Tj , and i , j=1, 2, 3, .. .
(12)

The equation (12) is also the velocity of any Keplerian orbiter. Let us show it.
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3.1.5) Keplerian motion

If we define the massless angular momentum Lk  as Lk=q× q̇ . It is trivial to
see that the derivation of Lk with respect to time, by including the relation (9),
is null, thus the angular momentum is constant as expected for a central field
motion.

Regarding the result (12) , the multiplication of Lk by q̇R leads to :

q̇R×Lk= q̇R
2 (1+

q̇R . q̇T
q̇R
2 )q (13)

Therefore the modulus of this expression is :

Lk

q̇R

=(1+
q̇T

q̇R

cos θ)q or p=(1+ecosθ)q (14)

This last equation is the one of a conic where p=Lk / q̇R is the semilatus rectum,
e=q̇T/ q̇R is the eccentricity and θ is the angle between the directions of the

rotation and the translation speed, i.e. the true anomaly. We see that both p and
e are constants and therefore the equation (14) is nothing else but the first law of
Kepler.

An other way to express the angular momentum is the use the areal velocity f :

Lk=2 f with f=
1
2
q2

θ̇ and θ̇=
d θ

d t (15)

As far as Lk is constant, the areal velocity will also be. This is the second law of
Kepler.

At last,  the third Kepler's law also derives simply from the constancy of the
angular momentum. Indeed the integration with respect to time of the relation
(15), over a complete period T of revolution, gives :

Lk T=∫
0

2π

q2d θ (16)

For the case where the trajectory is an ellipse, the right side of this equation is
worth 2π a b , where a is the major semi axis and b the minor one. Knowing
that  a=p/(1−e2)  and  b=p/√1−e2 ,  and remembering the definition of the
semilatus  rectum p given by the  equations  (14),  it  is  easy to  finally  get  the
following relation :

© Hervé Le Cornec, 2019, herve.le.cornec@free.fr                                                                                                            7

mailto:herve.le.cornec@free.fr


Lk q̇R=4π
2a3

/T2 (17)

Because Lk and q̇R are constants, this last expression is nothing else but the
third  law  of  Kepler  stating  that  the  square  of  the  period  of  revolution  is
proportional to the cube of the major semi axis.

We can conclude that a mobile respecting the relation (12) also respects the three
laws of Kepler.

3.1.6) Galileo’s equivalence principle

The expression (12) of the velocity is independent of the mass of the mobile. This
is consistent with the Galileo’s principle stating that the motion in a gravitation
field is mass independent, but this is also true for all classical motions.

3.1.7) Newton’s gravitation law

Deriving the equation (12) with respect to the time, we get the acceleration a of a
Keplerian orbiter : q̈=ω̇×q+ω × q̇ . Including the solutions  (9) and  (10), we
can write q̈=−(ω/q2

)∧[q∧(q∧q̇)] , and finally :

q̈=−
Lk q̇R

q3 q (18)

This is the expression of the Newton’s gravitational acceleration if :

Lk q̇R=GM (19)

where G is the constant of gravitation and M is the attracting mass. 

We can also notice that the equation (19) is consistent with the expression (17) of
the third Kepler’s law. 

3.1.8) Mechanical energy

If we develop the square of the equation  (12), and include the result  (14), it is
trivial to define the massless mechanical energy EM , i.e. the mechanical energy
divided by the mass of the mobile, as follows :

EM=
1
2
q̇2

−
Lk q̇R

q
=
1
2
q̇R
2
(e2−1) (20)
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This expression is interesting because it describes the classical mechanical energy
(divided by the mass of the orbiter) made of the addition of the usual kinetic and
potential  parts.  It  also  shows,  with  its  right  member,  that  this  energy  is  a
negative constant for a fixed conic. 

3.1.9) Conclusion

In this chapter we have shown that the motion of a classical mobile, stable with a
constant mass, can only be the addition of one ore many of the two elementary
uniform motions, of rotation an translation, described by the relations  (9) and
(10) (see equation (12)). So the classical motion is fundamentally Keplerian. The
three  Kepler’s  laws  are  then  not  only  true  for  the  astral  bodies,  but  for  all
classical bodies.  Even if  in  our day to day experience this  is  difficult  to see,
because I and J in the equation (12) are generally big integers, and changing in
time.

3.2)  Thermodynamics

3.2.1) Introduction

In this chapter the quantity q is not any more a position in three dimension, but
can be any physical quantity encountered in thermodynamics, as the volume, the
concentration or the number of particle in a special state. 

We  will  constraint  our  study  to  stable  systems,  so  with L=L0=constant ,
therefore we can integrate the equation (1) to get C, as defined by (3) :

C=C0+L0 ln (
q̇
q̇0 ) , with L0 , C0 , q̇0 all constant (21)

We can also write :

q̇= q̇0 e
Δ C
L0 with Δ C=C−C0

(22)

In addition the momentum and the force, which do not have here a kinematics
meaning, but a more generalized one, will verify :

P=
L0

q̇
and F=−(

L0

q̇2 ) q̈ (23)
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3.2.2) Gibbs’s free energy and Boltzmann’s entropy

Let qn be the number of particle in the state Δ Cn , and q the number of all
the particles in a global system, we shall verify :

q=∑
n=0

N

qn thus q̇=∑
n=0

N

q̇n (24)

Here q̇n is the evolution in time of the number of particle in the state n. Each
state must verify the equation (22), so we can write :

q̇=∑
n=0

N

q̇n
0 e

Δ Cn

Ln

0

(25)

Here Ln
0  is the constant Lagrangian corresponding to the stable state n.

Dividing the last relation by a reference velocity q̇0 we can define a partition
function Z as follows :

Z=
q̇
q̇0

=∑
n=0

N q̇n

q̇0

=∑
n=0

N q̇n
0

q̇0
e

Δ Cn

Ln

0

(26)

Replacing this result into (21), leads to :

Δ C=L0 ln (Z) (27)

This is the Gibbs’s free energy, at the condition that L0=k T , where k is the
Boltzmann”s constant and T the temperature.

Consequently  dividing  the  last  expression  by  the  temperature  gives  straight
forward the formula of the Boltzmann’s statistical entropy :

Sent=k ln (Z) (28)

3.2.3) Chemical equilibrium

Let us study the following chemical reaction :

A+ 2 B→ 3 C+D (29)

The total free energy of this reaction must be the sum of the free energies of the
products, minus those of the reactive :
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Δ CT=3 ΔCC+ΔCD−Δ CA−2 Δ CB (30)

According to (27), this leads to :

Δ CT=L0 ln (
ZC

3 ZD

ZA ZB
2 ) (31)

If  the reaction is  at the equilibrium Δ CT must be constant, and we get the
expression of the chemical equilibrium :

ZC
3 ZD

ZA ZB
2 =e

Δ CT

L0 =constant (32)

3.2.4) Chemical kinetics and ideal gas law

The theorem of bijective time dependence states that any physical quantity is
related to the time by a bijection : q= f (t) and  t= f−1

(q) . Considering the
equation (22), the most obvious way to achieve so is to have a free energy directly
proportional to the time :

Δ C=L0 ν Δ t with Δ t= t− t0 (33)

As far as Δ C has the same dimension as L0 , ν must be a frequency.

Consequently q and its derivatives with respect to time become :

q=q0 e
ν Δ t , q̇=ν q , q̈=ν

2 q (34)

These formulas are typical of the chemical kinetics, when measuring the amount
of reactive with respect to time (chemical reactions, radioactive decay, …).

If q is the volume of a gas in the former equations, the corresponding force (23) is
of course the pressure, and must verify :

F q=−L0 (35)

This is the ideal gas law if L0=N k T , where N is the number of molecules, k
the Boltzmann’s constant and T the temperature.
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3.2.5) Conclusion

The toolbox enables us to forecast the main laws of the thermodynamics, that
have been measured experimentally, for systems at equilibrium.

3.3)  Quantization

3.3.1) Introduction

In this chapter we will study the most elementary behavior of the systems. We
will then consider the most elementary particles as photons, electrons, atoms, …,
in order to simplify the reasoning.  We will use the word “measure” in a wide
sens, as it means actually “interaction”.

3.3.2) Time quantization

Because of the theorem of non ubiquity, it impossible to measure a system in two
different state at the same time. So let say that t 0 is the  last time where a
system is in the state L0 , and t 1 the first time where it is in the state L1 .
The interval Δ t= t1− t0 can not be null, and must then at least have a non null
minimum value. We call “quantum of time” this interval.

Consequently any measure can be performed at the boundaries of the quantum of
time, but no measure can be achieved inside it. 

As far as  the theorem of  universality is  true,  it  must then exist  a  minimum
universal quantum of time Δ tU , which is the shortest possible quantum of time
in the universe.

3.3.3) Space quantization

As far as the time is quantized, any system having a kinematic velocity q̇ will
also exhibit a quantum of space : 

Δ q= q̇ Δ t (36)

Here again any measure can be performed at the boundaries of the quantum of
space, but no measure can be achieved inside it. 
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As far as  the theorem of  universality is  true,  it  must then exist  a  minimum
universal quantum of space Δ qU ,  which is  the shortest possible quantum of
space in the universe.

3.3.4) Least existence

To exist a system must exhibit some physical properties, therefore its Lagrangian
can not be null and must exhibit a minimum value,  L=LQ=constant that we
call quantum of existence.

Note that nothing forces the Lagrangian L of a system to be only the quantum
Lagrangian LQ during a quantum of time Δ t .

As far as  the theorem of  universality is  true,  it  must then exist  a  minimum
universal quantum of existence LU , which is the smallest possible quantum of
existence in the universe.

3.3.5) Action quantization, relation of Plank-Einstein

The  action  S  is  the  integral  of  the  Lagrangian  with  respect  to  time.  For  a
quantum of time its value is :

Δ S=L Δ t (37)

We call Δ S “quantum of action”. 

Because L has the dimension of an energy, Δ S has the same dimension as the
Plank’s constant h. We can then write :

L=h ν , with h=Δ S and ν=
1

Δ t (38)

This is the relation of Plank-Einstein.

As far as  the theorem of  universality is  true,  it  must then exist  a  minimum
universal quantum of action Δ SU , which is the smallest possible quantum of
action in the universe :

Δ SU=LU Δ tU (39)

Therefore Δ SU has  all  the  universal  characteristics  to  be  indeed the  Plank’s
constant.
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3.3.6) Momentum quantization, de Broglie’s hypothesis

Because the momentum is equal to the Lagrangian divided by the velocity (see
definition  (1)), as far as the system exhibits a quantum of action, it must also
exhibit a quantum of momentum :

PQ=
Δ S
Δ q (40)

If Δ S is  the  Plank’s  constant,  this  is  the  expression  of  the  de  Broglie’s
hypothesis.

If a system exists during a quantum of time, it will exhibit a quantum of action,
and therefore both quanta of time and space must exist. The system must then
be in motion with the velocity v=Δ q /Δ t .  This  explains  why the quantum
particles are always moving.

3.3.7) The physics inside the quantum of time

Between two measures, i.e. two interactions, a system is inside its quantum of
time,  and we can not  get  any information about  it.  For  instance  if  a  single
particle goes from a gun to a screen, in a perfect vacuum, we have no information
on its state between the gun and the screen. 

If we place a measuring device between the gun and the screen, the particle will
interact with the device and its quantum of time is not any more the time spent
between the gun and the screen, but between the gun and the device. If  the
measure is non destructive, the particle can finally reach the screen, but then it
will exhibit a second quantum of time, from the device to the screen. The whole
trajectory will be made of two quanta of time, instead of one. Therefore we can
not definitely measure the electron inside a single quantum of time.

There is however a way to get some information about what happens inside : the
Young’s double-slit experiment. 

We place a wall pierced with a slit between the gun and the screen. If the particle
hits the wall, no impact is seen on the screen, but if the particle goes through the
slit, an impact appears on the screen, in front of the slit. And this is indeed what
the experiment shows.
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However, if we place two slits in the wall, and we push the particles one by one
individually, the experiment exhibits a typical interference pattern, as shown on
the figure 2.

© Wikipedia / Dr. Tonomura

Figure 2 : Young’s double-slit experiment with electrons pushed individually, at 5
different times of advancement 

Such an interference pattern indicates that the particle has the structure of a
wave inside the quantum of time, and furthermore that it can interfere with itself.
To achieve so the wave must get trough both slits at the same time. This seems
to violate the theorem of non ubiquity, but it is not. Indeed as far as this theorem
only applies to measurable systems, it does not apply to such a wave that is not
measurable.

We observe therefore that the physical laws inside a quantum of time are very
different from those dedicated to the measurable systems.

3.3.8) Conclusion

The theorem of non ubiquity is the cause of the quantization of time, and this
has huge consequences  as  the  quantization of  the space,  the  existence  of  the
Plank’s  constant,  the  Plank-Einstein  relation,  as  well  as  the  de  Broglie’s
hypothesis.

We can give a good description of what is an elementary quantum particle : it is
a wave that can be in many physical states simultaneously, that collapses into a
particle when it is measured. Such a system will be alternatively a wave and a
particle, but will never be both together.

4) General conclusion
The present approach describing the physics without postulate is able to forecast
numbers of physical laws that have been experimentally measured, and were often
difficult  to  unify  before  :  Newton’s  second  law,  Kepler’s  laws,  Galileo’s

© Hervé Le Cornec, 2019, herve.le.cornec@free.fr                                                                                                            15

mailto:herve.le.cornec@free.fr


equivalence principle, Newton’s gravitation law, mechanical energy, Gibbs’s free
energy, Boltzmann’s statistical entropy, law of the chemical equilibrium, law of
the chemical kinetics, ideal gas law, Plank’s constant, Plank-Einstein relation, de
Broglie’s hypothesis.  

All this was obtained by the means of very simple mathematics, and no unnatural
concept for a human being. This theory of physics looks like an extended classical
mechanics, taking now into account the quantum and thermodynamics aspects of
the world.

We only studied here the systems with a constant Lagrangian, and eventually a
constant mass, so stable systems at the equilibrium. A lot of investigations are
then still to be performed, with the same approach, for the unstable systems, and
those with a non constant mass. 

An other lack of this work is the electromagnetism. This is because it requires to
state the postulate of elementary charge, but we can not accept any postulate. As
we saw the mass comes with a definition (it is the Lagrangian divided by the
square of the velocity), but we have no such a definition for the charge. This issue
has then also still to be investigated.
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