Primality Criterion for Safe Primes

Predrag Terzić
Bulevar Pera Ćetkovića 139, Podgorica, Montenegro
e-mail: pedja.terzic@hotmail.com

Abstract: Polynomial time primality test for safe primes is introduced.
Keywords: Primality test, Polynomial time, Prime numbers.
AMS Classification: 11A51.

1 Introduction

In 1750 Euler stated following theorem

Theorem 1.1. Let $p \equiv 3 \pmod{4}$ be prime, then $2p + 1$ is prime iff $2p + 1 \mid 2^p - 1$.

In 1775 Lagrange gave a proof of the theorem, see [1]. In this note we provide a proof to the theorem that is similar to the Euler-Lagrange theorem.

2 The Main Result

Theorem 2.1. Let $p \equiv 5 \pmod{6}$ be prime, then $2p + 1$ is prime iff $2p + 1 \mid 3^p - 1$.

Proof. Suppose $q = 2p + 1$ is prime. $q \equiv 11 \pmod{12}$ so 3 is quadratic residue module q and it follows that there is an integer n such that $n^2 \equiv 3 \pmod{q}$. This shows $3^p = 3^{(q-1)/2} \equiv n^{q-1} \equiv 1 \pmod{q}$ showing $2p + 1$ divides $3^p - 1$.

Conversely, let $2p + 1$ be factor of $3^p - 1$. Suppose that $2p + 1$ is composite and let q be its least prime factor. Then $3^p \equiv 1 \pmod{q}$ and so we have $p = k \cdot \text{ord}_q(3)$ for some integer k. Since p is prime there are two possibilities $\text{ord}_q(3) = 1$ or $\text{ord}_q(3) = p$. The first possibility cannot be true because q is an odd prime number so $\text{ord}_q(3) = p$. On the other hand $\text{ord}_q(3) \mid q - 1$, hence p divides $q - 1$. This shows $q > p$ and it follows $2p + 1 > q^2 > p^2$ which is contradiction since $p > 3$, hence $2p + 1$ is prime.

Q.E.D.
References