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Abstract 

The quantization of second order dissipative dynamical systems is well known 

to be a complicated Sturm-Liouville problem. This work is devoted to the exact 

quantization of a given quadratic Liénard type oscillator equation. The bound 

state solutions of the resulting Schrödinger equation in terms of associated 

Laguerre polynomials and the possibility to recover the energy spectrum of the 

quantum harmonic oscillator are discussed following the specific values of 

system parameters, using the Nikiforov-Uvarov method.   

 Keywords: Quadratic Liénard equation, Schrödinger equation, bound state 

solutions, quantum mechanics, Laguerre polynomials. 

1. Introduction 

Many problems in physics and science were found to be adequately solved by 

considering the harmonic oscillator with position-dependent mass [1], so that 

the study of classical and quantum harmonic oscillator with a spatially varying 

mass has fast become an attrative research field of the mathematical physics. 

Numerous applications in various areas of engineering have been developped 

on the basis of harmonic oscillator with position dependent mass [2]. However, 

exact analysis is often hard to be carried out, and most research contributions 

are limited to the approximate and numerical investigations of differential 

equations governing the classical as well as quantum features of systems with 

position-dependent mass. The quadratic Liénard type differential equations 

constitute an important class of position-dependent mass oscillators, since it 

allows a more satisfactory description of nonlinear dissipative dynamical 

systems [3-6]. In this context, it appears reasonable to be interested to the 
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problem of finding exact quantum mechanics of quadratic Liénard type 

oscillator equations. More again, a high interest should be accorded to exact 

quantum mechanics of classical quadratic Liénard type oscillator equations 

having exact harmonic periodic solutions, since such nonlinear dissipative 

oscillator studies are known to be rare in the mathematical physics literature. 

Analytical quantum mechanics of quadratic Liénard type equations leads to 

solve in general a complicated Schrödinger equation due to the quadratic term 

in velocity. In [7] the exact eigenfunctions are expressed in terms of associated   

Legendre functions and Gegenbauer polynomials. The position-dependent 

mass Schröndinger equation in [8-10] is analytically solved in terms of prolate 

spheroidal wave functions. In [11] the eigensolutions of the Schrödinger wave 

equation with position-dependent mass are exactly formulated as the prolate 

spheroidal wave functions. However, as before mentioned, it is not difficult to 

notice that few works about exact quantization of quadratic Liénard type 

equations are available in the literature. Recently in [12], it is shown for the 

first time the existence of a family of quadratic Liénard type nonlinear 

equations 

0))(2exp()(' 22  xxxxx             (1)

  

which admits an exact trigonometric periodic solution but with amplitude 

dependent frequency, where the dot over a symbol stands for differentiation 

with respect to time and the prime denotes differentiation with respect to x . 
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This equation may be regarded as a nonlinear oscillator equation with a 

quadratic dissipative term. The exact harmonic periodic solution may be 

written 
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where 0t  is a constant of integration. 

For 0 , or 0 , (2) reduces to the linear harmonic oscillator equation with 

well known trigonometric solution, so that the parameter o  , becomes the 

natural frequency in this situation. In such a context a problem to investigate 

may be the exact quantization of (2) for a fixed   and arbitrary , or 

conversely, for a fixed   and arbitrary    in order to analyze the effects of 

nonlinearity on the discrete bound state eigensolutions and energy spectrum of 

the quantum harmonic oscillator. To be more precise, the question to be 

answered in this work may be addressed as follows: Can we perform the exact 

quantization of the equation (2) in terms of classical orthogonal polynomials 

with discrete energy spectrum? The present work postulates that the classical 

equation (2) may be exactly quantized in terms of discrete bound states in 

order to study the nonlinearity effects. This prediction is of a great interest 

since the energy spectrum of the quantum harmonic oscillator may be 

recovered as a limiting case of that of (2) and conditions for obtaining discrete 

bound states solutions with negative energy spectrum may be stated. The 

present formulation in terms of associated Laguerre polynomials of the 

eigensolutions of the Schrödinger wave equation is theoretically and practically 

interesting since the hypergeometric type polynomials are deeply and 

intensively studied from mathematical as well as physical and numerical 

standpoint [13]. The associated Laguerre polynomials are well known in 

quantum mechanics since they arise in the bound state solutions of the radial 

part of the Schrödinger equation for the hydrogen atom [13]. Exact solutions 

are physically important since they will enable to better understand and 

capture analytically interesting features of the quantum system under question 

and are also well convenient for engineering calculations. Several mathematical 

techniques like point-canonical transformations, supersymmetric quantum 

theory and Nikiforov-Uvarov approach, are used to analytically solve the 

position-dependent mass Schrödinger equations [14]. The Nikiforov-Uvarov 

theory [15] has however, the advantage to be a coherent solving process and 

suitably transform the second order linear Schrödinger equation into a 

hypergeometric type differential equation, so that it ensures the bound state 

eigensolutions to be expressed in terms of classical hypergeometric type 

polynomials and the necessary conditions to obtain the associated energy 
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spectrum. That being so, to demonstrate the preceding prediction, it is suitable 

to first establish the appropriate Schrödinger equation with position-

dependent mass associated to the equation (2) (section 2), and secondly 

perform the solution using the Nikiforov-Uvarov method [15] (section 3).  

Finally the predicted results are discussed (section 4) and a conclusion is given 

for the developed work. 

2. Schrödinger equation 

The one dimensional Schrödinger differential equation requires the knowledge 

of the Hamiltonian associated to (2). Usually the Hamiltonian operator is 

derived from the classical Hamiltonian. As regards the equation (2) the mass 

distribution function may be written 

 



dx

xemxM 


1

1

0)(  

or 
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where 0m is the integration constant, so that  the potential energy 
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In this perspective the classical Hamiltonian 
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which is not invariant Hamiltonian such that the associated Hamiltonian 

operator is not Hermitian for 0 . In such a case the momentum and  position 

operators  do no longer commute. To overcome this difficulty, one may use the 

von Roos quantum Hamiltonian formulation [16] to write the Schrödinger 

eigenvalue problem. 

  dxxxMxxV  )1)(()( 2
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2.1. Schrödinger equation with mass M(x) 

In the literature various forms of Hamiltonian related to the von Roos 

formulation [17] 

  )()()()()()()(
4
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where the ambiguity parameters a , b and ,c should satisfy 1 cba , in 

order to render H  Hermitian are used. Indeed, there is no law to fix the value 

of these parameters for a specific system of interest. So, a judicious choice of 

these parameters consists of a prerequisite for an adequate Schrödinger 

equation satisfying the expected performance objective. 

The requirement that it is desired to express the Schrödinger equation solution 

in terms of hypergeometric type polynomials involves to adequately solving the 

ambiguity parameters problem. To successfully perform this task, the set of 

parameters is chosen such that the Schrödinger equation becomes [11] 
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where E  denotes the energy eigenvalue, )(x  the wave function, and the 

prime means derivative with respect to x . Let us now precise the Schrödinger 

equation of interest. 

2.2. Schrödinger equation under study 

As the mass function 
 )1(

)( 0

x

m
xM


 and the potential energy   22

0
2

1
xmxV  , for 

the equation (2), the preceding Schrödinger equation reduces, for 10  m , to 
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The equation (10) constitutes the Schrödinger wave equation with variable 

coefficients related to the classical quadratic Liénard type oscillator equation 

(2). This equation consists of a Sturm-Liouville eigenvalue problem which may 

be exactly solved using the Nikiforov-Uvarov (NU) method. The solution of (10) 

clearly depends on the value of parameter . In this contribution the solution of 

equation (10) will be investigated under ,2 in order to attain the fixed 
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objective. To do this, the mathematical problem to solve should be clearly 

stated. Let us consider the equation (10) on the semi-infinite interval  ,0  

with 0 . The problem of interest can then be formulated as follows. Find the 

bound state solutions )(xn  and associated energy eigenvalues nE  for the 

Schrödinger wave equation 
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, which remains finite for 0x  and ,x  that is 0)( x  for 0x  and 

x . 

3. Exact bound state solutions to Schrödinger equation 

The exact solution of Schrödinger equation (11) with 2 , is exhibited in this 

section using as before mentioned the Nikiforov-Uvarov approach. 

3.1. Discrete energy spectrum 

The exact solution of (11) under the boundary conditions previously mentioned 

may suitably computed using the Nikiforov-Uvarov method. By application of 

the Nikiforov-Uvarov approach [15] the requirement is that the Schrödinger 

wave equation (11) should be written as 
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with 

)()()( xyxx n                                                                                                        (13) 

where )(xyn  becomes the solution of the hypergeometric type differential 

equation 
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so that )(x  and )(~ x  are polynomials at most of second order degree, )(x  

and  )(~ x  are polynomials at most of first degree,    is a constant, and 
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The function )(x  is a polynomial of degree at most one such that 
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The hypergeometric-type function )(xyn  defined as a polynomial of degree n   is 

given by the Rodrigues formula 
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such that the weight function )(x  obeys 
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and nA  is normalization constant. 

With the following definitions 
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the function )(x  which satisfies the requirement that the derivative of )(x  
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Comparing the equations (17)  and (18) one may deduce 
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so that the desired discrete energy eigenvalues become 
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3.2.  Discrete wave functions 

The substitution of )(x and )(x  into (20) yields 
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                                                                                           (28) 

 

with nA a normalization constant. Thus the non-normalized wave function )(xn  

may be written as 
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where   is a constant. The wave function )(xn  may also be written in the 

form 
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where )1(
2
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xL
n

n 
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 designates the associated Laguerre polynomial, and nC   

the new normalization constant.  

4. Numerical results using Matrix Diagonal Method 

In this section, the matrix diagonalisation method is presented to cross check 

the previous analytical calculation [18]. Let us consider the Hamiltonian 

 22)1(
2

1
xpxpH                                                                                               (31) 

in place of equation (8) with 2 , 10 m , and 1 . The very purpose of writing 

the Hamiltonian in this form is that it must be invariant with reference to 

exchange of position and momentum part [18, 19]. Here the eigenvalue 

relation is solved as 

  EH                                                                                                                    (32) 

where  

  mAm                                                                                                                   (33) 

and m is the mth state harmonic oscillator eigenfunction satisfying the relation  

   mmmxp )12(22                                                                                                (34) 

Now, the following recursion relation is solved [19, 20]. 

0421124   mmmmmmmmmmmmm VAUATASARAQAP                                  (35) 

Here 

 4mHmPm                                                                                                            (36) 

 2mHmQm                                                                                                            (37) 

 1mHmRm                                                                                                            (38) 

 1mHmTm                                                                                                             (39) 

 2mHmUm                                                                                                           (40) 

 4mHmVm                                                                                                           (41) 

and  
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  EmmmSm  322
82

1 2
2

                                                                           (42) 

It should be remembered that 0 km  for 4,2k . Further one has to carefully 

go step by step to achieve desired convergency in eigenvalues. The eigenvalues 

for different 5.0;25.0 , are tabulated in table-1.  

Table-1: First four eigenvalues of  ])1([
2

1 22 xpxpH   .  

  Numerical Results using MDM Analytical Results using Eq.(25) 

0.25 0.5 

1.4375 

2.3125 

3.125 

0.5 

1.4375 

2.3125 

3.125 

0.5 0.5 

1.25 

1.75 

2.020942 

0.5 

1.25 

1.75 

2.020942 

 

Further in order to make study complete, 2

n  is plotted in Figure-1 for 25.0 .  

5. Discussion 

The Schrödinger equation with position-dependent mass has shown a more 

adequate ability to describe the quantum features of a rich variety of physical 

systems. In this work the exact quantum mechanics of a quadratic Liénard type 

oscillator equation that exhibits exact harmonic periodic solutions is 

performed. More precisely, the exact quantization of harmonic potential with 

position-dependent mass has been carried out.  By application of the Nikiforov-

Uvarov approach, the discrete eigensolutions and the corresponding energy 

eigenvalues are obtained. The eigensolutions are expressed in function of  

associated Laguerre polynomials. The discrete bound state solutions with 

negative energy eigenvalues, according to (25) are ensured when the 

nonlinearity parameter   . As ,0  0  , as previously mentioned, and 

the classical quadratic Liénard type equation (2) reduces to the classical linear 
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harmonic oscillator so that one may notice that the energy eigenvalues nE  

reduce as expected to those of the quantum harmonic oscillator, viz  

0)
2

1
(  nEn  

For ,0n the equation (25) shows that the ground state energy is that of the    

quantum harmonic oscillator. If the Hermite polynomials can easily be 

transformed into Laguerre polynomials, conversely the transformation of 

Laguerre polynomials into Hermite polynomials is not generally possible, so 

that investigating the limit as 0  of the current wave function )(xn  in terms 

of the Hermite polynomials is not simple to be performed. It is worth to 

mention that numerical results match very well analytical predictions.   

6. Conclusion 

The exact quantization of a quadratic Liénard type oscillator equation having 

exact harmonic periodic solution but with amplitude dependent frequency is 

developed in this work. The discrete bound state solutions to the resulting 

Schrödinger equation are expressed as a function of associated Laguerre 

polynomials. The associated discrete negative energy eigenvalues are found to 

be ensured by the magnitude of the nonlinearity parameter using the 

Nikiforov-Uvarov theory. The work shows that the discrete energy spectrum of 

the quantum harmonic oscillator may be recovered for the zero value of the 

nonlinearity parameter. The numerical results are found to be in consistent 

agreement with analytical predictions. 
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