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ABSTRACT 
 
The present paper shows that a principle known as emergence lies beneath the strong 
Goldbach conjecture. Whereas the traditional approaches focus on the control over the 
distribution of the primes by means of circle method and sieve theory, we give a proof of the 
conjecture that is based on the constructive properties of the prime numbers, reflecting their 
multiplicative character within the natural numbers. With an equivalent but more convenient 
form of the conjecture in mind, we create a structure on the natural numbers. That structure 
leads to arithmetic identities which immediately imply the conjecture, more precisely, an 
even strengthened form of it. Moreover, we can achieve further results by generalizing the 
structuring. Thus, it turns out that the statement of the strong Goldbach conjecture is the 
special case of a general principle. 
 
 
 
 

1. INTRODUCTION 
 
In the course of the various attempts to solve the strong and the weak Goldbach conjecture 
– both formulated by Goldbach and Euler in their correspondence in 1742 – a substantially 
wrong-headed route was taken, mainly due to the fact that two underlying aspects of the 
strong (or binary) conjecture were overlooked. First, that focusing exclusively on the 
additive character of the statement does not take into account its real content, and second, 
that a principle known as emergence lies beneath the statement, a principle any existing 
proof of the conjecture must consider. 
 
Let us discuss some of the most important milestones in the different approaches to the 
problem. 
 
When a proof could not be achieved even for the sum of three primes (the weak conjecture 
for odd numbers) without additional assumptions, in the twenties of the previous century 
mathematicians began to search for the maximum number of primes necessary to 
represent any natural number greater than 1 as their sum. At the beginning, there were 
proofs that required hundreds of thousands (!) of primes (L. Schnirelmann [2]). In 1937 the 
weak conjecture was proven (I. Vinogradov [4]), but only above a constant large enough    
to make available sufficient primes as summands. 
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Almost an entire century passed before the representation for all integers > 1 could be 
reduced to the maximum of five or six summands of primes, respectively (T. Tao [3]).         
In 2013 the huge gap of numbers for the weak Goldbach version was closed, using 
numerical verification combined with a complex estimative proof (H. Helfgott [1]). 
 
The so-called Hardy-Littlewood circle method in combination with sophisticated techniques 
of sieve theory was employed and constantly improved upon in those approaches. 
However, these methods do not reflect the primes’ actual role in the problem as originally 
formulated by Goldbach and Euler, by continuously examining ‘how many’ prime numbers 
are available as summands. As this does not work for the binary Goldbach conjecture, 
concern for that original problem has gradually been sidelined up to the present day, even 
though a solution would definitively resolve the issue of integers represented as the sum of 
primes. 
 
We will show that the solution lies in the constructive characteristics of the prime numbers 
and not in their distribution. 
 
 
 
 

2. THE STRONG GOLDBACH CONJECTURE 
 
Theorem 2.1 (Strong Goldbach conjecture (SGB)). Every even integer greater than 2 can 
be expressed as the sum of two primes. 
 
Moreover, we claim 
 
Theorem 2.2 (SSGB). Every even integer greater than 6 can be expressed as the sum of 
two different primes. 
 
 
Proof. After the initial cases 4 = 2+2 and 6 = 3+3, it suffices to prove SSGB. The basic idea 
of the proof is as follows: SSGB is equivalent to saying that every integer greater than or 
equal to 4 is the arithmetic mean of two different odd primes. Correspondingly, SGB means 
that every composite number is the arithmetic mean of two odd primes. We achieve this 
result by using the constructive properties of the prime numbers within the natural numbers. 
Specifically, we provide a structured representation of the natural numbers starting from 3 
and we deduce arithmetic identities from the properties of this representation. These 
identities lead directly to the above reformulation of SSGB. 
 
 
Notations. Let  denote the natural numbers starting from 1, let n denote the natural 
numbers starting from n > 1 and let 3 denote the prime numbers starting from 3. 
Furthermore, we denote the projections from  x  x  onto the i-th factor by πi, 1 ≤ i ≤ 3. 
 
 
At first, we replace SGB and SSGB with the following equivalent representations: 
 
Every integer greater than 1 is prime or is the arithmetic mean of two different primes, p1 
and p2. 

http://en.wikipedia.org/wiki/Even_and_odd_numbers
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Even_and_odd_numbers
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Prime_number
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and 
 
Every integer greater than 3 is the arithmetic mean of two different primes, p1 and p2. 
 
 
SGB    n  , n > 1 : ( n prime     p1, p2  3   d                                           (2.1) 
                with  p1 + d = n = p2 – d ) 
 
SSGB  n  , n > 3 : (  p1, p2  3   d                                                             (2.2) 
                with  p1 + d = n = p2 – d ) 
 
 
Now, we define 
 

Sg := { (pk, mk, qk) | k, m  ; p, q  3, p < q; m = (p + q) ∕ 2 } 
 
and call Sg the g-structure on 3. 
 
According to (2.2), SSGB is equivalent to saying that all n  4 occur as arithmetic mean m 
in a triple of Sg. 
 
We note that the whole range of 3 is represented by the triple components of Sg. This is a 
simple consequence of prime factorization and is easily verified through the following three 
cases: 
 
The primes p in 3 are represented by components pk with k = 1; the composite numbers  
in 3, different from the powers of 2, are represented by pk with p  3 and k  ; the 
powers of 2 in 3 are represented by mk with m = 4 and k = 1, 2, 4, 8, 16, … . 
 
We call this representation by the components of Sg a ‘covering‘ or also a ‘structuring‘ of 3 
(for a generalization see section 4.). The following examples for the number 42 illustrate the 
redundant character of the covering: 
 
(42, 54, 66) = (7∙6, 9∙6, 11∙6) 
 
(18, 42, 66) = (3∙6, 7∙6, 11∙6) 
 
(30, 36, 42) = (5∙6, 6∙6, 7∙6) 
 
(42, 70, 98) = (3∙14, 5∙14, 7∙14) 
 
(33, 42, 51) = (11∙3, 14∙3, 17∙3) 
 
(38, 42, 46) = (19∙2, 21∙2, 23∙2) 
 
(41, 42, 43) = (41∙1, 42∙1, 43∙1) 
 
(37, 42, 47) = (37∙1, 42∙1, 47∙1) 
 
(5, 42, 79)   = (5∙1, 42∙1, 79∙1) 
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Due to the covering of 3 through Sg, for every arithmetic relation involving integers of 3 
we can replace those integers by components of triples in Sg. Particularly, equations that 
involve those integers can be expressed by pk, mk, qk. We realize that all these equations 
are independent of the existence of any x  4 with x ≠ m for all m generated in Sg, 
because such an x would be equal to pk, mk or qk for some (pk, mk, qk)  Sg. 
 
This independence means that equations consisting of terms represented by pk, mk, qk 
behave equally in either case, that is, if such an x exists or not. Especially, for any two 
triples (pk, mk, qk), (p'k', m'k', q'k')  Sg and any two n, n'  3 with n = pk  n = mk        
n = qk and n' = p'k'  n' = m'k'  n' = q'k', an equality n = n' or an inequality n ≠ n' is 
independent of the existence of such an x above. 
 
On the other hand, the numbers m generated in Sg have two crucial properties: m is always 
the arithmetic mean of two odd primes p, q and all generating pairs (p, q) are used in Sg. 
So, in the case of non-existence of such x above, these two properties imply the following 
statements for equations n = n': 
 

n  5  n = pk with p  3, k      y  4  pk = yk' with k'                                 (2.3) 
 (p'k', m'k', q'k')  Sg    y = m' 

 
and 
 

n  4  n = 4k with k      y  4  4k = yk' with k'                                             (2.4) 
 (p'k', m'k', q'k')  Sg    y = m' 

 
 
We note that we could not state (2.3) and (2.4) if not all pairs (p, q) of odd primes were 
used in Sg, since in that case there might exist n = pk with pk = yk' or n = 4k with 4k = yk' 
such that y = x where x = (px + qx) ∕ 2, px, qx  3, (pxk', xk', qxk')  Sg and x ≠ m for all     
(pk, mk, qk)  Sg. 
 
Finally, (2.3) and (2.4) yield SSGB while setting k' = 1, as (2.3) then says that every n  5 
different from the powers of 2 is the arithmetic mean of two odd primes and (2.4) states the 
same for every n  4 that is a multiple of 4, including the powers of 2. 

                                                                                                                                               □ 

 
 
 
Alternative view. In the following we give an alternative view on the formal proof above. 
 
Apart from the covering of 3, we observe the following two properties of Sg that we used 
in the proof: 
 
Equidistance: The successive components in the triples of Sg are always equidistant. So, 
we call these triples as well as the structure Sg equidistant. We note that the numbers m in 
the triples are uniquely determined by the pairs (p, q) as the arithmetic mean of p and q. 
 
Maximality: Actually, for a complete covering of 3 it would be sufficient if we chose       
(3k, 4k, 5k) together with triples (pk, mk, qk) in which all other odd primes occur as p, q or 
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m. However, for our purpose we use the structure Sg that is based on all pairs (p, q) of odd 
primes with p < q. We call this the maximality of the structure Sg. 
 
The structure Sg can be written as a ((i, j) x k) - matrix, where each row is formed by the 
triple components pi∙k, mij∙k, qj∙k with pi < qj running through 3 and mij = (pi + qj) ∕ 2 for a 
fixed k ≥ 1. The matrix starts as follows: 
 
(3∙1, 4∙1, 5∙1), (3∙1, 5∙1, 7∙1) … (5∙1, 6∙1, 7∙1), (5∙1, 8∙1, 11∙1) ... 
(3∙2, 4∙2, 5∙2), (3∙2, 5∙2, 7∙2) … (5∙2, 6∙2, 7∙2), (5∙2, 8∙2, 11∙2) ... 
… 
… 
… 
 
Written down the complete matrix, what we see is the whole 3 in redundant form, i.e.       
a structured 3. 
 
 
Now, we check if it is possible to insert an additional nk, n ≥ 3, for any fixed k ≥ 1 in the k-th 
row of the matrix or if this is not possible. If not, according to (2.1), SGB is proved. 
 
(a) Due to the complete covering through the Sg matrix, it is already excluded the option to 
place nk in a subset of 3 that is not covered by the matrix. 
 
Note: In case of complete covering, for a composite n > 5 a representation of nk as           
nk = n'k', k' ≠ k, in the matrix (with n'  3 when nk not a power of 2; with n' = 4 when nk a 
power of 2) is always possible. However, inserting an additional nk in the k-th row of the 
matrix means that it is based on the fixed factor k in the decomposition nk. 
 
(b) Due to the equidistance of all triples in Sg, also the option is excluded that we can place 
the nk (like the mk too in a non-equidistant structure) anywhere between pk and qk. 
 
(c) Due to the maximality of Sg, also the option is excluded that we can place the additional 
nk as mk in a triple (pk, mk, qk) that is based on a pair of primes (p, q) not used in Sg. 
 
Due to the construction of the Sg matrix, i.e. the pairs (p, q) are the exclusive parameters in 
the triples for each k, we don't have any further option to place the nk and since the whole 
matrix represents 3, any nk added to the matrix would be left over for that fixed k. In other 
words: The structure Sg leaves no space in 3 for that decomposition nk with fixed factor k. 
Therefore, such additional nk can not exist. 
 
 
So, we realize that the three properties, covering, equidistance and maximality, that we 
identified in our structure Sg, lead to the following consequence: 
 
The multiples in the triple form (pk, mk, qk) already represent all multiples nk, n ≥ 3, of a 
fixed k ≥ 1. More specifically, the triples are divided into two types: First, all triples (pk, mk, 
qk) where m is composite, and second, all remaining triples (pk, mk, qk) where m is prime. 
The first type yields SGB and the second type, together with the first, implies SSGB. 

                                                                                                                                               □ 
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Note. The structure Sg reveals that a principle known as emergence lies beneath the 
Goldbach statement: For a given nk, n ≥ 4, k ≥ 1, the existence of two odd primes p, q such 
that nk is the arithmetic mean of pk and qk becomes visible only when we consider all odd 
primes and all k simultaneously. The triple form (pk, mk, qk) for all multiples nk, n ≥ 3, of a 
fixed k ≥ 1 is an effect that emerges from the interaction of all such triples when k runs 
through . See also the Remark 5.3. 
 
 
 
 

3. EXAMPLES FOR SGB AND SSGB 
 
In the previous chapter we have seen that the multiples of the numbers k in 3 are strictly 
set by our structure Sg. Let us call these multiples the occurrences of k within the structure. 
In the proof it was essential to understand that the representation of a nk, where n > 5 is 
composite, as nk = n'k', n'  3 or n' = 4, k' ≠ k, constitutes two distinct occurrences, i.e. one 
of the number k and another of the number k'. The occurrences of both, k and k', are ruled 
by the triples separately. 
 
3.1.  n = 14 and k = 3: 
Let us assume that n is not the arithmetic mean of two primes. For nk = 42, we find for 
example (pk', mk', qk') = (3∙6, 5∙6, 7∙6), which is part of the occurrence of 6 in the structure. 
But there is no triple (p∙3, m∙3, q∙3) that contains n∙3. Thus, n∙3 violates the occurrence of 3 
in the structure. 
 
This contradiction can be resolved only if n = m, that is, n must be the arithmetic mean of, 
for example, 11 and 17. 
 
 
3.2.  n = 9 and k = 3: 
Let us assume that n is not the arithmetic mean of two primes. For nk = 27, we only 
find (pk', mk', qk') = (3∙9, m∙9, q∙9), which is part of the occurrence of 9 in the structure. But 
there is no triple (p∙3, m∙3, q∙3) that contains n∙3. Thus, n∙3 violates the occurrence of 3 in 
the structure. 
 
This contradiction can be resolved only if n = m, that is, n must be the arithmetic mean of, 
for example, 7 and 11. 
 
 
3.3.  n = 19 and k = 3: 
Let us assume that n is not the arithmetic mean of two primes. For nk = 57, we find for 
example (p'k, m'k, q'k) = (17∙3, 18∙3, 19∙3), which is part of the occurrence of 3 in the 
structure. But there is no triple (p∙3, m∙3, q∙3) with p < 19 < q that contains n∙3. Thus, n∙3 
violates the occurrence of 3 in the structure. 
 
This contradiction can be resolved only if n = m, that is, n must be the arithmetic mean of 7 
and 31. 
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4. GENERALIZATION AND FURTHER RESULTS 
 
First, we will embed the structure used in the proof of SSGB in a general concept. We give 
the following definitions: 
 
Definition 4.1. Let T be a non-empty subset of 3 x 3 x 3. A triple structure, or simply, 
structure S in 3 is a set defined by S := { (t1∙k, t2∙k, t3∙k) | (t1, t2, t3)  T; k   }. 
 
Definition 4.2. Let S be a structure in 3, given by the triples (s1, s2, s3). Then, a set          
N  3 is covered by the structure S if every n  N can be represented by at least one si,  
1 ≤ i ≤ 3; that is, n  N   si, 1 ≤ i ≤ 3, such that n = si. We say that the structure S provides 
a covering of N. 
 
 
Based on these definitions, we can make the following elementary statement: 
 
Lemma 4.3.  Let S be a structure based on the set T. Then, 3 is covered by S if and only 

if   3  { 4 }      πi(T). 
                       1 ≤ i ≤ 3 

 
 
Proof.  Let the union of the sets πi(T), 1 ≤ i ≤ 3, contain all odd primes and the number 4. 
 
Then, every prime number in 3 is represented by a component ti∙k with ti  3  and k = 1. 
 
Furthermore, every composite number n, different from the powers of 2, has a prime 
decomposition n = pk with p  3 and k  , and as such, is represented by a triple 
component ti∙k of S. 
 
The powers of 2 are represented by ti∙k with ti = 4 and k = 1, 2, 4, 8, 16, … . 
 
So, the whole range of 3 is covered by S. On the other hand, if any odd prime or the 
number 4 is missing in the union of the sets πi(T), 1 ≤ i ≤ 3, at least one of the 
representations described above is no longer possible. 

                                                                                               □ 

 
 
For the structure Sg, used in chapter 2., that covers 3 we have π1(Tg) = 3 and 4  π2(Tg). 
Based on the above definitions, we can generalize Sg in the following manner: 
 
Let P be a subset of the set of all odd numbers in 3 with at least two elements. For a 
subset TP  P x 3 x P, where p < m < q  for all (p, m, q)  TP, we then define the structure 
SP := { (pk, mk, qk) | k  ; (p, m, q)  TP }. We call the structure SP maximal if all pairs    
(p, q)  P x P with p < q are used in TP. Furthermore, we call the structure SP distance-
preserving if for all (p, m, q)  TP : (q – m) – (m – p) = c with a constant c. Specifically, we 
call SP equidistant if c = 0. We note that in a distance-preserving SP the component mk is 
uniquely determined by pk, qk. In the case of an equidistant SP, we obtain the arithmetic 
mean for m. 
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In order to get a covering of 3  { powers of 2 } through the components pk, qk of SP,        
P must contain all odd primes. In this case, due to the construction of SP, a maximal and 
distance-preserving SP covers 3 and is equidistant because the triples (3k, 4k, 5k) are 
contained. We then obtain the structure Sg by setting P = 3 and we realize that 3 is the 
smallest subset of odd numbers in 3 that enables such a complete covering of 3 through 
the triples (pk, mk, qk) with p, q  3. 
 
 
Now, for a generalization in terms of the numbers m we consider functions f : 3 x 3  .           
To achieve useful results, we define the following restrictions on f: 
 
First, we restrict f with the condition (f1): For all pairs (p, q)  3 x 3 with p < q the triples 
(p, q, f(p,q)) have the same numerical ordering and the difference between the two 
distances of successive components remains constant. I.e., the resulting triples (t1, t2, t3) 
satisfy: t1 < t2 < t3 and (t3 – t2) – (t2 – t1) = c with a constant c. 
 
Additionally, we set the condition (f2):  (p, q)  3 x 3, p < q, with f(p,q) = 4. So, the 
powers of 2 are contained when we consider the triples (pk, qk, f(p,q)k) for all k ≥ 1. 
Therefore, according to Lemma 4.3, the whole range of 3 is covered by the components 
of these triples. 
 
For the function f with the conditions (f1), (f2) we then define a f-specific, distance-
preserving, structure which covers 3 by 
 

Sf := { (pk, qk, f(p,q)k) | k  ; p, q  3, p < q; f(p,q)  3 } 
 
and call it the f-structure. Also here we use the maximality considering all pairs (p, q) of odd 
primes with p < q. And again the pairs (p, q) are the exclusive parameters in the triples   
(pk, qk, f(p,q)k) for each k. Moreover, for each fixed k the triples (pk, qk, f(p,q)k) distribute 
their components uniformly in accordance with (f1). 
 
 
From this we obtain the following: 
 
Any function f as above generates exactly one of three possible classes of numbers: only 
even numbers or only odd numbers or both. We call this the f-class. In case of odd 
numbers, f cannot satisfy (f2) so that the f-structure would not yield a complete covering of 

3. So, f is restricted to be a function which generates either only even numbers or both 
even and odd numbers. Furthermore, we notice that a f-structure provides a distribution 
exclusively for f(p,q)k by means of the triples (pk, qk, f(p,q)k) for each k. If, for example,       
f produces only even numbers, only such even multiples of k are being distributed through 
the structure Sf. In this case, we would have no information regarding the odd multiples 
which are not prime. 
 
 
A few observations on the special case when f is the arithmetic mean: 
 
In the proof of SSGB we used the function f = g that determines the arithmetic mean           
g(p,q) = (p + q) ∕ 2 = m.  g generates even and odd numbers and satisfies the conditions    
(f1) and (f2) for building the g-structure on 3. In this case, c = 0 so that distance-
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preserving means equidistance. The pairs (pk, qk) are expanded into triples (pk, mk, qk) 
including the powers of 2 through (3k, 4k, 5k). As is easily verified, the arithmetic mean is 
the only function fulfilling (f1) and (f2) that has its values in the middle component of the 
ordered triples and that generates even and odd numbers. 
 
 
For the definition of Sf we replaced the arithmetic mean m used in the structure Sg by 
numbers f(p,q)  3 determined by a function f with the conditions (f1), (f2). Now, we apply 
the proof of SSGB to the triples (pk, qk, f(p,q)k) replacing the argument of m being 
constantly the arithmetic mean by the condition (f1), where the parameters n, x  4 used 
in that proof are now of the f-class. Then, based on the f-structure Sf, we obtain the 
following property as a generalization of SSGB: 
 
 

(F)  For each fixed k ≥ 1 the triples (pk, qk, f(p,q)k) form a distribution of all nk, 
                 n ≥ 4, n of the f-class, with respect to pk, qk  that is determined by (f1). 
 
 
Let us now consider other functions f which satisfy the conditions (f1) and (f2) and build a   
f-structure on 3, with the outcome that f(p,q) represents all even integers greater than 2. 
Due to (f2), in this case f(p,q) is always the first component in the ordered triples. 
 
For example, we can state 
 
Corollary 4.4. All even positive integers are of the form 2p – q + 1 with odd primes p < q. 
 
Proof.  For the number 2 we have: 2 = 2∙3 – 5 + 1. For all even numbers in 3 we apply our  
concept of the f-structure. 
 
As is easily verified, f(p,q) = 2p – q + 1 satisfies the conditions (f1) and (f2) for building a     
f-structure on 3. We consider only those f(p,q) which lie in 3 and we note that by the 
Bertrand-Chebyshev theorem: p  3, p > 3,  q  3, q > p, such that  f(p,q)  3. 
 
We now assume that there is an even integer n > 2 which is not of the form n = 2p – q + 1 
with two odd primes p, q. We then consider the multiple nk for any k ≥ 1 and note that nk 
belongs to none of the triples ((2p – q + 1)k, pk, qk). This causes a contradiction to (F) and 
proves the corollary. 

                                                                                               □ 

 
 
Note. If we interchange the primes p, q and consider f ' (p,q) = 2q – p + 1, then f ' also 
satisfies the condition (f1) for building a f-structure. But for a complete covering of 3 the 
number 4 is missing, and we can easily verify that there are other even numbers in 3 
which cannot be represented by f '(p,q). 
 
Another interesting example is f(p,q) = 2p – q – 3 versus f ' (p,q) = 2q – p – 3. f satisfies all 
conditions, including the covering, and therefore represents all even numbers, whereas f ' 
satisfies the covering because of f ' (3,5) = 4, but it violates numerical ordering and 
distance-preserving. There are even numbers in 3 which cannot be represented by           
f ' (p,q). 
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5. REMARKS 

 
5.1. Due to the unpredictable way that the primes are distributed, all studies on the 
representation of natural numbers as the sum of primes are problematic when they use 
approaches based on the distribution of the primes. 
 
Despite tremendous efforts over the centuries, the best result so far was five summands. I 
was always convinced that the solution must lie in the constructive characteristics of the 
prime numbers and not in their distribution. 
 
 
5.2. The statement in the binary Goldbach conjecture actually is nothing more than the 
symmetric structure (pk, mk, qk) used in the proof. As we have shown, it is in fact a specific 
case of a general distribution principle within the natural numbers. Furthermore, we note 
that the property of the prime numbers and their infinitude are merely used to guarantee the 
complete covering of 3 through the structure. 
 
In order to discard the usual interpretation of the conjecture that focuses on the sums of 
primes and thus opposes their multiplicative character, we have tackled the problem 
differently after shifting to the triple form: Instead of searching for primes which determine 
the needed arithmetic mean equal to a given n, we have approached the issue from the 
opposite direction. Based on the multiplicative prime decomposition, we identify nk as the 
component of a structure, in this case determined by the arithmetic mean. 
 
A key point in the proof is the dual role of the numbers k: As multiplier they generate 
composite numbers while their own multiples in 3 are strictly set by the used structure. 
 
 
5.3. In other subject areas, the effect of the formation of new properties after the transition 
from single items to a whole system is called emergence (‘The whole is more than the sum 
of its parts.’). The structure Sg reveals that such principle lies beneath the Goldbach 
statement: For a given nk, n ≥ 4, k ≥ 1, the existence of two odd primes p, q such that nk is 
the arithmetic mean of pk and qk becomes visible only when we consider all odd primes 
and all k simultaneously. There is a remarkable aspect of this emergence: The two primes 
which form the so-called Goldbach partition of a given even number 2n are located before 
2n, however, the reason for the existence of that partition also involves the primes beyond 
2n. 
 
It can be expected that also other questions in number theory own a solution based on this 
underlying principle. 
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