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ABSTRACT – Inspired in Dimitar Valev proposal that the masses of some elementary 

particles are proportional to their interaction couplings evaluated at very low energies, 

we give estimates for the masses of the three flavors of neutrinos. A procedure 

analogous to the see-saw mechanism is also used to do a second estimate of the 

electron-neutrino mass. From the flavors neutrino masses, we get the differences in the 

squared eigenstates masses, used to fit the solar and atmospheric neutrinos observations. 

1 – Introduction 

 

   The failure on the energetic balance of an experiment on beta decay 

conducted by Chadwick, led Pauli to propose in1930 the existence of an 

undetected particle of spin one-half. Four years later, Fermi incorporated 

with success this new particle in a theoretical account of the beta decay. 

(Please see the paper by Etienne Dreyer [1] and references cited therein). 

Almost three decades later, Reines and Cowan [2] detected antineutrinos 

emitted from a nuclear reactor at USA. 

For a long time neutrinos were considered as mass-less particles, and this 

feature fits nicely in the Standard Model of Particles Physics [3A, 3B]. 

However discovery of neutrinos oscillations by the Super-Kamiokande 

experiment in 1998 [4], has proven that neutrinos have a nonzero mass. 

Dimitar Valev [5] has verified that the ratio between the proton and 

electron masses is close to the strength of the strong coupling evaluated at 

low energies divided by the electromagnetic coupling. Then Valev [5] 

extended this concept in order to estimate the mass of the electron-neutrino. 

It is one of the aims of this work to pursue further on this subject as a 

means to estimate the masses of mu and tau neutrinos.  

Besides this an alternative treatment is proposed here, and the obtained 

neutrino mass is compared with that found by Dermisek [6], which 
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interpreted it through see-saw mechanism [7]. We got two sets of masses 

for the three flavors of neutrinos, and these masses are used to compare 

with the observational findings of solar and atmospheric neutrinos [18, 21].   

 

2 – Valev hypothesis in a sound basis 

 

    Bag models [8,9] seems to be a good starting point as a means to 

estimate the strong coupling at very low energies. The MIT bag model 

[8,9] considers that in nucleons, quarks and gluons are confined inside a 

bag. The interfaces between hadronic matter and the vacuum are 

represented by the walls of the bag. As was pointed out by Jaffe [8] it is 

possible to distinguish a certain region of space in a way consistent with the 

relativity theory, by submitting the frontier of that region to a constant 

pressure B exerted by the neighborhood vacuum over the interface of the 

hadron. In an idealized picture the nucleon looks similar to a gas bubble 

immersed in an isotropic and uniform perfect fluid. The bubble’s dynamics 

is determined by the balance between the external pressure exerted by the 

fluid (vacuum) and the thermodynamic pressure of the confined gas of 

quarks and gluons. However the number of particles in the bag is small, 

rather than the great number of molecules of gas contained in the bubble. 

Next we propose a potential to describe this model. First consider a 

confining potential represented by a harmonic oscillator. We suppose that 

the averaged quark kinetic energy corresponds to half of the mass-energy 

of the quark. Therefore the other half will account in average for its 

potential energy. We write (with ħ = c = 1) 

 

                                            ½ mq = αs ∕ r.                                                    (1) 

 

In (1) mq is the constituent mass of the quark, r is the bubble’s radius, being 

αs the strong coupling. Each quark contributes to the potential with a term 

 

                                           Vq = 2αs ∕ r.                                                       (2) 
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Meanwhile the contribution of the vacuum to the potential reads 

 

                                    Vvac = (4 ∕ 3) π r
3
 B.                                                 (3) 

 

Taking in account that the nucleon is constituted by three quarks we finally 

obtain 

 

                               Vbag =  (4 ∕ 3) π r
3
 B + 6 αs ∕ r.                                      (4) 

 

Minimizing (4) with respect to r, we get at the minimum of radius R 

 

                                     Vbag (R) = 8 αs ∕ R = M.                                          (5) 

 

 

In (5) we have identified the bag potential evaluated at its minimum value 

with the mass-energy of the nucleon. 

On the other hand X. Ji [10] considered three quarks extremely relativistic 

with energy 3 ∕ r and confined by the vacuum pressure given by (3). 

Proceeding in an analogous way we have done before we can write 

 

                                     VX-Ji (R) = 4 ∕ R = M.                                             (6) 

 

Comparing (5) and (6), we find αs = 0.5. This value of the strong coupling 

at energy scale of the nucleon mass, gives an accepted value for the 

nucleon radius, namely 0.84 fm. The strength of the strong coupling here 

evaluated can be compared with αs = 0.465 (from reference [11]) and αs = 4 

∕ 9 (from ref. [12]). 
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An expression for the running coupling constant of the strong interaction 

was obtained in [13,14], through a heuristic approach. It is given by 

 

                           αs(μ) = αs0 ∕ [1 + (αref ∕ 2) ln(μ  ∕ μ0)].                               (7) 

 

In (7), μ is the energy scale which probes the strong interaction and we take 

 

                      μ0 = 940 MeV,          and            αref = 2 αs0.                         (8) 

 

Therefore (7) can be rewritten as 

 

                                αs(μ) = αs0 ∕ [1 + αs0 ln(μ  ∕ μ0)].                                   (9) 

 

Because it was deduced through a heuristic approach [13,14], we think that 

relation (9) will well represent the lower energy sector of the strong 

interaction. This reasoning cannot be warranted in the case of using 

perturbation theory.  

Now let us go back to Valev [5] proposal. Thinking in terms of very low 

energies, we may consider the uncharged pion (π
0
):- the lowest massive 

hadron, having mass-energy equal to 135 MeV. Therefore we write 

 

                                mp ∕ me = 1836 =  αs(135) ∕ α.                                    (10) 

 

Inserting (10) into (9), we obtain 

 

                      1836 ∕ 137 = αs0 ∕ [1 + αs0 ln(135 ∕ 938)].                             (11) 
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Solving equation (11) for αs0, we find 

 

                                           αs0 =  0.4967.                                                  (12) 

 

As can be verified in (12), the obtained value of the strong coupling at the 

energy scale of the nucleon is very close to 0.5, a number we get when eqs. 

(5) and (6) are compared.  We think that this argumentation strongly 

supports the assumption raised by Dimitar Valev [5]. 

 

3 – Mass of electron-neutrino 

 

   The Valev proposal [5] relating mass of elementary particles to 

Extremely Low Energy (ELE) coupling can be written as 

 

                                        mx ∕ me = αx(0) ∕ α.                                             (13) 

 

Indeed, the αx(0) coupling refers to estimate the interaction involving the x-

particle at lowest energy available. For the electron-neutrino case, it seems 

that this corresponds to the energy delivery in the neutron beta decay 

reaction, namely 

 

                                         n → p + e
-
 + ῡe.                                                (14) 

 

The energy delivery in this process reads 

 

                           Eυe = mn – mp – me = .779 MeV.                                    (15) 
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The neutron beta decay is driven by the weak interaction and its coupling 

strength is given by, being Mw the mass of the W-boson 

 

                                 αw(E) = (1 ∕ ξ
2
) α (E ∕ Mw)

 2
.                                     (16) 

 

The unitarity is violated [15] when αw = 1, and this occurs at [16] 

 

                                         E = MF = 1.84 TeV.                                         (17) 

 

Unitarity limit imposed to (16) yields ξ
2
 = 3.823. 

Now let us evaluate the weak coupling at E = .779 MeV. We have 

 

     αw(.779 MeV) = (1 ∕ 3.823) α (.779 ∕ 80,400)
 2
 = α 2.4556 x10

 -11
.      (18) 

 

Pursuing further we get 

 

                     αw(.779 MeV)  ∕ α = mυe ∕ me = 2.4556 x10
 -11

.                     (19) 

 

Solving (19) for the electron-neutrino mass, we find 

 

                                           mυe = 1.25 x 10
 -5

 eV.                                     (20) 

 

This value is somewhat out the range predicted by Dermisek [6] for the 

mass of the lightest neutrino, namely between 5x10
 -5

 eV and 5x10
 -4

 eV. 

The number we have found, also shows a discrepancy with the value of  
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2.1 x 10
 -4

 eV, estimated by Valev [5] for the mass of the electron-neutrino. 

 

4 – The mass of the muon-neutrino 

 

  It is seems that the best way of evaluating the mu-neutrino mass is by 

considering the charged pion weak decay. The reaction reads 

 

                                            π
-
 → μ

-
 + ῡμ.                                                  (21) 

 

The energy delivery is 

 

                                  Eυμ = mπ – mυ = 33.9 MeV.                                     (22) 

 

Working in an analogous way we have done in the electron-neutrino case 

we get 

 

                        αw(33.9 MeV) ∕ α = mυμ ∕ me = 4.65 x10
 -8

.                        (23) 

 

Solving for the mass of the mu-neutrino we find 

 

                                        mυμ = 2.37 x10
 -2

 eV.                                         (24) 

 

 

5 – The mass of the tau-neutrino 
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   Below, we show the tau lepton decay mode which delivers the lowest 

energy [17]  

 

                                      τ
-
 → π

+
 + 2 π

-
 + π

0
 + υτ.                                      (25) 

 

The energy delivery is 

 

                Eυτ = mτ – 3mπ(charged) – mπ(neutral) = 1223 MeV.               (26) 

 

In an analogous way we have worked before we can write 

 

                     αw(1223 MeV) ∕ α = mυτ ∕ me = 6.052 x10
 -5

.                        (27) 

 

Finally solving for the mass of the tau-neutrino, we get 

 

                                            mυτ = 30.9 eV.                                               (28) 

 

 

6 – Neutrinos oscillations 

 

   Neutrinos oscillations are treated in a very friendly fashion in a paper by 

Chris Waltham [18]. An idea advanced by Pontecorvo [19] proposes that if 

neutrinos had small but different masses, during the propagation of a 

neutrino wave, an electron-neutrino could change in a muon-neutrino, due 

to a mixing of different flavors. Neutrinos oscillations were detected in the 

Super-Kamiokande collaboration experiment [4, 20A, 20B], and is 

considered as a proof that neutrinos have mass. 
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However neutrinos flavors are not eigen states of the wave function, and 

the mass terms inferred of the experiment are given as linear combination 

of these flavors. Next we propose a way to verify if the masses of neutrinos 

flavors we have estimated in previous sections are consistent with the 

observational findings. 

We start by proposing a 2X2 non-diagonal symmetric matrix M, whose 

elements are associated to the mass of the neutrinos flavors. We define 

 

           M11 = p      ,       M22 = q       ,        and       M12 = M21 = w.           (29) 

 

The matrix M can be diagonalized by imposing 

 

                                         det [ M – λI ] = 0.                                            (30) 

 

Relation (30), where I is the identity matrix, leads to 

 

                                    (p – λ) (q – λ) = w
2
.                                               (31) 

 

Solving equation (31) for λ, we get 

 

                         2 λ± = (q + p) ± [(q – p)
 2
 + 4 w

 2
]

 1 ∕ 2
.                              (32) 

 

Atmospheric  Neutrinos 

 

   As was pointed out by Waltham [18], the measured flux of υμ’s is about 

half the expected value, while that for υe’s is about right. There are strong 



 

10 
 

indications from Super-Kamiokande that the missing υμ’s are showing up 

as υτ’s. Inspired in this idea we make the choice 

 

             p = mυe = 1.25 x10
 -5

 eV,        q = mυμ = 2.37 x10
 -2

 eV,              (33) 

 

        mμτ = 30.9 eV,     and      w = (mυe mμτ )
1 ∕ 2

 = 1.965 x10
 -2

 eV.          (34) 

 

Inserting these numbers in eq. (32), we find 

 

                                     λ+ ≡ m1 = 3.48 x10
 -2

 eV,                                      (35) 

 

                                   λ- ≡ m2 = - 1.11 x10
 -2

 eV.                                      (36) 

 

From (35) and (36), we find 

 

                          ∆mA
2
 = m1

2
 – m2

2
 = 1.1 x10

 -3
 eV

 2
.                                (37) 

 

The above value must be compared with 3 x10
 -3

 eV
 2
 and 2.5 x10

 -3
 eV

 2
, 

quoted in references [18] and [21], respectively. 

 

Solar Neutrinos 

 

   For the solar neutrino case, we assume a bold hypothesis. We suppose 

that in the presence of matter (the solar core) the two neutrinos flavors with 

the large and the small masses, namely the tau and the electron neutrinos, 

enter the non-diagonal matrix through the geometric average of their 

masses. We define 
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                                         <m> = (mυe mμτ )
1 ∕ 2

.                                         (38) 

 

Next step, we take the four elements of the matrix at equal footing and 

write 

                                    p = q = w = (1 ∕ 4) <m>.                                        (39) 

 

With these considerations eq. (32) takes the form 

 

                                          λ± = w ± w,                                                     (40) 

 

which gives  

 

                            λ+ = 2 w,            and             λ- = 0.                               (41) 

 

Therefore we have 

 

          m2
2
 =0,      and       m1

2
 = λ+

2
 = 4 w

2
 = (1 ∕ 4) (mυe mμτ).                 (42) 

 

Eq. (42) implies 

 

       ∆mS
2
 = m1

2
 = (1 ∕ 4) (30.9 x1.25 x10

 -5
) eV 

2
 = 9.66 x10

 -5
 eV 

2
.       (43) 

 

This value must be compared with 6 x10
 -5

 eV 
2
 quoted in [18], and that 

reported in [21] equal to 7.5 x10
 -5

 eV 
2
. 
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7 – Heuristic evaluation of neutrinos masses 

 

   Motivated by quark-lepton symmetry, Dermisek [6] uses the masses of 

the top quark and that of the grand unification theory (GUT) scale (Mx) as a 

means to estimate the mass of the lightest neutrino (mυ). 

In this section, inspired in Dermisek idea [6], we are going to use a 

heuristic approach in order to evaluate mυ. However, besides using the 

mass scale MX as threshold energy, we will also consider that the weak 

force represented by the W-boson is at work. 

As a starting point let us consider a non-linear Dirac-like equation. We 

write (with ħ = c = 1) 

 

                            ∂ Ψ ∕ ∂x - ∂ Ψ ∕ ∂t = mυ Ψ – Mx Ψ
2
.                              (44) 

 

By imposing that ∂ Ψ ∕ ∂x = ∂ Ψ ∕ ∂t = 0, and solving for Ψ, we find after a 

little algebra 

 

                                              Ψ
2
 = (mυ ∕ Mx)

 2
.                                          (45) 

 

Meanwhile let us consider in a 4-d momentum space a hypercube which 

edge has a size Mw. The fraction F of the 4-volume of this cube occupied 

by a particle of momentum mυ is given by 

 

                                           F = ( mυ  ∕ Mw)
 4
.                                             (46) 

 

Now we make the requirement that Ψ
2
 = F. Doing this and solving for mυ, 

we get 
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                                          mυ = Mw
2
 ∕ Mx.                                                (47) 

 

Putting numbers in (47), Mw = 80.4 GeV, Mx = 2 x10
16

 GeV[6], yieds 

 

                                       mυ = 3.23 x10
-4

 eV.                                            (48) 

 

This is the new estimate for the mass of the electron neutrino, an order of 

magnitude greater than the value previously estimated by us. 

On the other hand Dermisek [6] has obtained the relation 

 

                         mυ1 = [( mtop)
 2
 ∕ MGUT] │Uτ1│

2
.                                       (49) 

 

Making the identification of (47) and (49), we find 

 

                        │Uτ1│ = Mw ∕ mtop = 80.4 ∕ 172 = .467.                             (50) 

 

According to Dermisek [6],  .20 ≤  Uτ1 ≤ .58. 

 

 

8 – Discussion 

 

   The solar neutrino parameter given by the difference of squared masses, 

either in the case of theoretical calculations ( eq. (43)), or in the case of  

fitting it to the observed neutrino oscillations (refs.[18], [21]), can be 

summarized as  
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                                             ∆ms
2
 = f  mυe mυτ.                                         (51) 

 

We notice that f  is a fraction between the limits 1 ∕ 4 and 1∕ (2π). 

We propose that relation (51) is always valid and that a better 

determination of the mass of a first neutrino (the electron-neutrino for 

instance), leads automatically to determination of the mass of the second 

one. With this idea in mind we can write 

 

                                mυe  mυτ = (mυe)
new

   (mυτ)
new

.                                    (52) 

 

If we adopt (mυe)
new

 as the value we get in the previous section (eq. (48)), 

we obtain 

 

                                         (mυτ)
new

 = 1.20 eV.                                           (53) 

 

   Estimations of the mass of the tau-neutrino can be found in references 

[22] and [23], and there a value for few electronvolts for it, can also be 

contemplated.  

   Finally, if we maintain the first result obtained for the muon-neutrino 

mass (eq.(24)), we can display two sets of masses evaluated in this paper 

for the three generations of neutrinos, namely: 

 

         FIRST SET:       1.25x10
 -5

 eV;       2.37x10
 -2

 eV;        30.9 eV.          (54) 

 

    SECOND SET:      3.23x10
 -4

 eV;       2.37x10
 -2

 eV;        1.20 eV.          (55) 
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