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Abstract. In the following we define a set of hyper-naturals on N x N with the lexicographic ordering and a 

novel definition of the arithmetical operation, multiplication. These hyper-naturals are isomorphic to ω
2
 

yet have recursive arithmetical operations defined on them, demonstrating a counter-example to 

Tennenbaum’s Theorem. 

 

 1. Introduction. In what follows we define a set, NH, of hyper-naturals as ordered pairs of 

natural numbers; existence, then, follows from the existence of N x N. We then show that NH is linearly 

ordered by the standard lexicographic ordering and strengthen (NH, <) to well-ordering by 

demonstrating an obvious isomorphism, f:ω2 → NH. Finally, using recursion we demonstrate the 

existence of unique arithmetical operations,+:NH x NH → NH  and *: NH x NH → NH,. 

The existence of NH and unique recursive functions, + and *, defined on it, has profound theoretical and 

philosophical implications for both model theory and mathematics in general. “On Non-Standard 

Models of Peano Arithmetic and Tennenbaum’s Theorem,” [SR] by Samuel Reid, provides a lucid and 

economical review of the pertinent issues. Specifically, we demonstrate that (N, <) is isomorphic to an 

initial segment of (NH, <) excluding the existence of an isomorphism between the standard model of 

Peano Arithmetic (PA) and the model which assumes NH as universe. In spite of this, the arithmetical 

operations, + and *, defined on (NH, <) are recursive, demonstrating a counter-example to 

Tennenbaum’s Theorem. And of course, the hyper-naturals can be extended to the hyper-integers, the 

hyper-integers to the hyper-rationals, the hyper-rationals, using Cauchy Sequences, to a novel set of 

hyper-reals, the hyper2-reals, and the hyper2-reals to the hyper-complex, which induces the 

philosophical question: What makes a model standard? Historical considerations aside, it would seem 

that, with the introduction of the hyper-naturals, the determination of which model is “standard” 

becomes a contextual consideration. 

 Notation. We use the standard notation together with: 

  IH | a hyper-inductive set 

  NH | the set of all hyper-naturals 
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 2. Definitions. We define our mathematical entities using standard terminology: 

Definition 2.01. A hyper-natural number is an ordered pair of natural numbers, (a, b), such that 

(a, b) = a.b. 

Definition 2.02. The hyper-successor of a hyper-natural number has two distinct  components, 

S(a).b = (a U {a}).b = (a + 1).b and a.S(b) = a.(b U {b}) = a.(b + 1) (reference [HJ], Chapter 3, page 

52). These distinct components are independent.  

Definition 2.03. A set, IH, is hyper-inductive if: 

1. 0.0 ϵ IH; 

2. if a.b ϵ IH, then, S(a).S(b) ϵ IH.   

Definition 2.04. The set of all hyper-natural numbers is the set 

NH = {x | x ϵ IH for every hyper-inductive set IH} 

 Definition 2.05. The relation “<” on NH is defined by: 

For all a.b,c.d ϵ NH, a.b < c.d  iff a.b < c.d ˅ (a = c ˄ b < d), where <(a, b) is the 

natural order (reference [HJ], Chapter 3 , page 42 ) and <(a.b, c.d) is the hyper-

natural or lexicographic order (reference [HJ], Chapter 4, page 81).  

 Definition 2.06. The operation “+” (addition) on NH is defined by: 

For all a.b, c.d ϵ NH, a.b + c.d = (a + c).(b + d), where +(a, c) is as defined on the 

set of natural numbers (reference [HJ], Chapter 3, page 52). 

 Definition 2.07. The operation “*” (multiplication) on NH is defined by: 

   For all a.b, c.d ϵ NH, a.b * c.d = a.b * c.a.b * d 

              = a * c.b * c.a * d.b * d 

              = a * c.(b * c) + (a * d) + (b * d), 

where *(a,c) is as defined on the set of natural numbers (reference [HJ], Chapter 

3, page 54) and +(b, d) is as defined immediately above.   

 3.Arguments. We demonstrate our arguments using the standard methods and terminology of 

mathematical logic and ZFC or generalizations thereof. Specific to the current work, we generalize the 

Principle of Induction to the Principle of Hyper-Induction and we reproduce certain arguments, 

verbatim, from reference [HJ]. 

 Theorem 3.01. A hyper-inductive set, IH, defined by Definition 2.07, exists. 

 Proof. This is a direct consequence of a number of facts about the set of natural numbers N: 

1. N exists and is inductive (reference [HJ], Chapter 3, page 41); 

2. By the Axiom of Power set, the power set of N exists (reference [HJ], Chapter 1, page 

10); 
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3. By the definition of ordered pair (reference [HJ], Chapter 2, page 17) and the 

definition of Cartesian product (reference [HJ], Chapter 2, page 21), N x N exists; 

Therefore, by Definition 2.01, 2.02, and 2.03, every hyper-inductive set, IH, is a subset of N x N 

and exists, as desired. □  

Theorem 3.03. NH exists and NH is hyper-inductive. 

Proof. Let X be the family of all hyper-inductive sets IH, then, by the Axiom of Union, the set UX 

exists and, by Definition 2.03, UX is hyper-inductive. By Definition 2.04, UX contains NH, hence, 

NH exists and is hyper-inductive, as desired. □ 

 Theorem 3.04. (The Principle of Hyper-Induction) Let P(x) be a property, and assume that: 

1. P(0.0) is true; 

2. for all n.k ϵ NH, P(n.k) → P[(n + 1).(k + 1). 

Then P holds for all hyper-natural numbers n.k. 

Proof. By Definition 2.03, “1” and “2” above define a hyper-inductive set IH. By Definition 2.04, 

that set, IH, contains NH, as desired. □ 

 Lemma 3.05. For all a.b ϵ NH, a, b ϵ N. 

Proof. This follows immediately from Definition 2.03, Theorem 3.03, and the fact that N is 

inductive (reference [HJ], Chapter 3, page 41), as desired. □ 

 Theorem 3.06. (N, <) is a linearly ordered set. 

Proof. This theorem is reproduced verbatim from reference [HJ] (Chapter 3, page 43) and the 

proof can be found therein, as desired. □ 

Lemma 3.07. For all a.b, c.d ϵ NH: 

1. 0.0 ≤ c.d; 

2. a.b < c.(d + 1) iff a.b ≤ c.d. 

Proof. The proof is in two parts: 

1) We proceed by hyper-induction. Let P(x.y) be the property, “0.0 ≤ x.y,” then: 

 

P(0.0). 0.0 = 0.0, hence, 0.0 ≤ 0.0. 

 

Suppose P(n.k) is true, then 0.0 < n.k or 0.0 = n.k and: 

 

P[(n + 1).(k + 1)]. There are two cases to consider: 

 

Case 1. Suppose 0.0 < n.k, then, by Definition 2.05, 0 < n ˅ (0 = n ˄ 0 < k) and, by Definition 2.02, 

n.k < (n + 1).(k + 1), hence, by Lemma 3.05 and Theorem 3.06, 0.0 < (n + 1).(k + 1). 

 

Case 2. Suppose 0.0 = n.k, then, by Definitions 2.02, 0. 0 < (n + 1).(k + 1). 
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Therefore, P(n.k) → P[(n + 1).(k + 1)] and, by the Principle of Hyper-Induction, for all n.k ϵ NH,   

0.0 ≤ n.k, as desired. □ 

 

2) Suppose a.b < c.(d  + 1), then, by Definition 2.05, a < c ˅ (a = c ˄ b < d +1) and two cases arise: 

 

Case 1. Suppose a < c, then, by Definition 2.05, a.b < c.d. 

 

Case 2. Suppose a = c ˄ b < (d + 1), then, by Lemma 3.05 and Theorem 3.06,                       

a = c ˄ b ≤ d, hence, a.b ≤ c.d. 

 In both cases a.b ≤ c.d, hence, a.b < c.(d + 1) → a.b ≤ c.d. 

Suppose a.b ≤ c.d, then, by Definition 2.05, [a < c ˅ (a = c ˄ b < d)] ˅(a = c ˄ b = d) and three 

cases arise: 

Case 1. Suppose a < c, then, by Definition 2.05, a.b < c.( d + 1). 

Case 2. Suppose (a = c ˄ b < d), then, by Lemma 3.05 and Theorem 3.06, a.b < c.( d + 1). 

Case 3. Suppose (a = c ˄ b = d), then , by Lemma 3.05 and Theorem 3.06, a.b < c.( d + 1).   

 In all three cases a.b < c.( d + 1), hence, a.b ≤ c.d → a.b < c.(d + 1).  

Therefore, a.b < c.(d + 1) iff a.b ≤ c.d, as desired.□ 

 Theorem 3.08. (NH, <) is a linearly ordered set. 

 Proof. The proof is in three parts: 

1) Transitivity. Let k.p, m.q, n.r ϵ NH be arbitrary but such that k.p < m.q ˄ m.q < n.r. Then, by 

Definition 2.05, k < m ˅ (k = m ˄ p < q) and m < n ˅ (m = n ˄ q < r) and four cases arise: 

 

Case 1. Suppose (k < m) ˄ (m < n), then, by Lemma 3.05, Theorem 3.06, and Definition 

2.05, k.p < n.r. 

 

Case 2. Suppose (k < m) ˄ (m = n ˄ q < r), then, by Lemma 3.05, Theorem 3.06, and 

Definition 2.05, k.p < n.r. 

 

Case 3. Suppose (k = m ˄ p < q) ˄ (m < n), then, by Lemma 3.05, Theorem 3.06, and 

Definition 2.05, k.p < n.r. 

 

Case 4. Suppose (k = m ˄ p < q) ˄ (m = n ˄ q < r), then, by Lemma 3.05, Theorem 3.06, 

and Definition 2.05, k.p < n.r. 

 

In all four cases, k.p < n.r, hence, (k.p < m.q ˄ m.q < n.r) → k.p < n.r. 

2) Asymmetry. Let k.p, m.q ϵ NH be arbitrary and suppose, for contradiction, that                             

k.p < m.q ˄ m.q < k.p, then, by transitivity, k.p < k.p, contradicting Definition 2.05. 
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3) Linearity. We proceed by hyper-induction. Let P(x.y) be the property, “for all m.p ϵ NH,              

m.p < x.y ˅ m.p = x.y ˅ x.y < m.p,” then: 

P(0.0). This is an immediate consequence of Lemma 3.07. 

Suppose P(n.k) is true, then for all m.p ϵ NH, m.p <n.k ˅ m.p = n.k ˅ n.k < m.p and: 

P[(n + 1).(k + 1)]. There are three cases to consider: 

Case 1. Suppose m.p < n.k, then, by Definition 2.02, Definition 2.06, Theorem 3.03, and 

Definition 2.05, n.k < (n + 1).(k + 1), hence, by transitivity, m.p < (n + 1).(k + 1). 

Case 2. Suppose m.p = n.k, then, by Definition 2.02, Theorem 3.03, and Definition 2.05,                             

m.p < (n + 1).(k + 1). 

Case 3. Suppose n.k < m.p, then, by Definition 2.05, n < m ˅ (n = m ˄ k < p) and two 

cases arise: 

Case 3a. Suppose n < m, then, by Lemma 3.05 and Theorem 3.06, [(n + 1) < m 

˅(n + 1) = m] ˄ [(k + 1) <p ˅ (K + 1) = p ˅ p < (k + 1)] and four cases arise: 

Case 3a.1. Suppose (n + 1) < m, then, by Definition 2.05,                           

(n + 1).(k + 1) < m.p.  

Case 3a.2. Suppose (n + 1) = m ˄ (k + 1) <p, then, by Definition 2.05,       

(n + 1).(k + 1) < m.p.  

Case 3a.3. Suppose (n + 1) = m ˄ (K + 1) = p, then, (n + 1).(k + 1) = m.p.   

Case 3a.4. Suppose (n + 1) = m ˄ p < (k + 1), then, by Definition 2.05,      

m.p < (n + 1).(k + 1). 

In all four cases, (n + 1).(k + 1) < m.p ˅ (n + 1).(k + 1) = m.p ˅ m.p < (n + 

1).(k + 1), hence, (n.k ϵ m.p ˄ n < m) → [(n + 1).(k + 1) < m.p ˅ (n + 1).(k + 

1) = m.p ˅ m.p < (n + 1).(k + 1)]. 

Case 3b. Suppose (n = m ˄ k < p), then, by Definition 2.02 and Theorem 3.03, 

m.p ≥ (n + 1).(k + 1).  

In both cases, [(n + 1).(k + 1) < m.p ˅ (n + 1).(k + 1) = m.p ˅ m.p < (n + 1).(k + 1)], 

hence, (n.k < m.p) → [(n + 1).(k + 1) < m.p ˅ (n + 1).(k + 1) = m.p ˅ m.p < (n + 

1).(k + 1)]. 

 Therefore, P(n.k) → P[(n + 1).(k + 1)] and, by the Principle of Hyper-Induction, linearity. 

 Therefore, (NH, <) is a linearly ordered set, as desired. □  

Theorem 3.08. (NH, <) is a well-ordered set. 

 Proof. This is an immediate consequence of Lemma 3.06 and Theorem 3.07, as desired. □ 
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Theorem 3.09. (NH, <) is isomorphic to ω2. 

Proof. Let Y = {Si │ i ϵ N} = ran S for some index function S, where each Si is the set of natural 

numbers. Then ω2 = { ai │ ai ϵ Si ˄ for all i,j,a,b ϵ N, ai < bj iff i < j ˅ (i = j ˄ a < b)} and there is an 

obvious isomorphism, f: ω2 → (NH, <), defined by f(ai) = i.a, as desired. □ 

 Theorem 3.10. There is a unique function, +:NH x NH → NH, such that: 

1. +(m.p, 0.0) = m.p, for all m.p ϵ NH; 

2. +(m.p, n.q + 1.0) = +(m.p, n.q) +1.0, for all m.p,n.q ϵ NH. 

Proof. In the parametric version of the Recursion Theorem (reference [HJ], Chapter 3, page 51), 

let a:NH → NH be the identity function, and let g:NH x  NH x NH → NH be defined by g(k.p,m.q,n.r) = 

m.q + 1, for all k.p,m.q,n.r  ϵ NH. Then, by the Recursion Theorem, there exists a unique function, 

f: NH x NH → NH, such that: 

1. f(k.p, 0.0) = a(k.p) = k.p, for all k.p ϵ NH; 

2. f(k.p, m.q + 1.0) = g(k.p, f(k.p, m.q), m.q) = f(k.p, m.q) + 1, for all k.p,m.q ϵ NH. 

Let + = f, as desired. □ 

Theorem 3.11. There is a unique function, *:NH x NH → NH, such that: 

1. *(m.p, 0.0) = 0.0, for all m.p ϵ NH; 

2. *(m.p, n.q + 1.0) = *(m.p, n.q) + m.p, for all m.p,n.q ϵ NH.   

Proof. In the parametric version of the Recursion Theorem (reference [HJ], Chapter 3, page 51), 

let a:NH → NH be the constant function defined by a(m.p) = 0.0, for all m.p ϵ NH, and let              

g:NH x  NH x NH → NH be defined by g(k.p, m.q, n.r) = m.q + n.r, for all k.p,m.q,n.r ϵ NH. Then, by 

the Recursion Theorem, there exists a unique function, f: NH x NH → NH, such that: 

1. f(k.p, 0.0) = a(k.p) = 0.0, , for all k.p ϵ NH; 

2. f(k.p, m.q + 1.0) = g(k.p, f(k.p, m.q), m.q) = f(k.p, m.q) + m.q, for all k.p,m.q ϵ NH. 

Let * = f, as desired. □ 

Theorem 3.12. If (W1, <1) and (W2, <2) are well-ordered sets, then exactly one of the following 

holds: 

1. either W1 and W2 are isomorphic; or 

2. W1 is isomorphic to an initial segment of W2; or  

3. W2 is isomorphic to an initial segment of W1. 

In each case, the isomorphism is unique. 

Proof. This theorem is reproduced verbatim from reference [HJ] (Chapter 6, pages 105 and 106) 

and the proof can be found therein, as desired. □ 

4. Demonstration of counter-example. Let Y be the closed/open interval of NH, [0.0, 1.0), then Y 

is an initial segment of (NH, <) (reference [HJ], Chapter 6, page 104), and there is an obvious 

isomorphism, f:Y → (N, <), defined by, f(m.p) = p, for all m.p ϵ NH. Then, by Theorem 3.12, (N,<) 
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and (NH, <) are not isomorphic yet, by Theorem 3.10 and Theorem 3.11, (NH, <) has recursive 

arithmetical functions, + and *, defined on it. Therefore, a model of Peano Arithmetic with NH as 

universe, represents a counter-example to Tennenbaum’s Theorem (reference [SR], page 11), as 

desired. □   
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