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Abstract. I argue that maximal extension makes improbable assumptions about fu-
ture conditions. I start by looking at the Schwarzschild metric, and showing that it
does not quite represent the exterior of a collapsed star, although it is easy to argue
that the mismatch is immaterial. I then look at the collapse of a cloud of dust us-
ing the Robinson Walker metric, which might seem to justify using the Schwarzschild
metric to describe the exterior of a black hole. I then show how the Schwarzschild
metric is modified when the interior is a collapsed dust cloud, and finally show how
the maximal extension of a Schwarzschild black hole makes unrealistic assumptions
about the future.

I apologise to the reader who feels that much of the argument is a statement of the
obvious.

1. The Schwarzschild metric

The Schwarzschild metric describes the empty space surrounding a star. It assumes the
star is isolated in asymptotically flat space and deduces the line element:

ds2 = (1− 2m/r)dt2 − dr2/(1− 2m/r)− r2(dθ2 + sin2(θ)dφ2)

In this coordinate system the surface described by a constant value of r at some time t
is a sphere of area 4πr2 positioned symmetrically about the star. This encourages us to
think of r as a radius.

The coordinate system fails to describe space inside the sphere corresponding to r=2m,
but we can describe the space if we swap to (for example) an isotropic coordinate sys-
tem1with line element:

ds2 =
(2r −m)2

(2r +m)2
dt2 − (2r +m)4

(2r)4
(dr2 + r2(dθ2 + sin2(θ)dφ2)

The r coordinate now continues down to r=0, but r=0 is not the centre of a star, nor
is it a curvature singularity. The Schwarzschild coordinate system describes one half
of an Einstein Rosen Bridge: the isometric coordinate system describes both halves,
one in the space covered by r ≥ 2m, and the other mapped into the space covered by
0 < r ≤ 2m.

Date: April 19, 2017.
1See for example Ray d’Inverno ”Introducing Einstein’s Relativity” page 189-190, available at

http://documents.mx/documents/ray-dinverno-introducing-einsteins-relativitypdf.html
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The Schwarzschild metric does not represent a collapsed star, it represents a space/time
that contains no mass whatsoever. In either coordinate system, a constant value of t
represents the whole of space at a coordinate defined instant of time, and that space is
empty by construction. The singularity encountered when this space/time is maximally
extended (in, say, Kruskal coordinates) is not formed by a concentration of the Einstein
tensor, but by a concentration of the Weyl tensor.

Nevertheless the Schwarzschild coordinates or some modification thereof are used to
represent the exterior of a black hole.

2. A collapsing dust cloud

The Schwarzschild metric describes only the empty space surrounding a star, and cannot
follow the progress of a star as it collapses. The Robertson Walker metric was developed
to describes a universe filled with dust as it collapses from infinity to a singularity, but
it also describes a sphere of dust as it collapses into a singularity.

The following is a simplified Robertson Walker line element:

ds2 = dt2 − S(t)2(dr2 − r2(dθ2 + sin2(θ)dφ2)) where dS/dt = −S−0.5.

It uses co-moving coordinates, meaning that (for example) the sphere of dust at radius
r=1 remains at r=1, S goes from plus infinity at time t=minus infinity, when the cloud
is infinitely big, to S=0 at t=0 when the cloud forms a singularity.

The statement that dS/dt = −S−0.5 is a simplification of Friedmann’s equation, chosen
so that if the outermost radius of the dust cloud is r=1, then the dust cloud becomes a
black hole at S=1, and so the co-moving mass (the ’mass at infinity’) of the dust cloud
is 0.5.

3. An external view of a collapsing dust cloud

I want to develop a line element for the dust cloud which includes a stationary region
where an observer can stay at a ’safe’ distance from the dust cloud. To this end I
replace the inner portion of the Schwarzschild metric with a remapped Robertson Walker
metric.

Any spherically symmetric space can be described by a global coordinate system whose
line element has the form:

(1) ds2 = A2dT 2 −B2dR2 −R2(dθ2 + sin2(θ)dφ2).

Outside the cloud the metric becomes the Schwarzschild metric for a star of mass 0.5,
so A2 = 1 − 1/R and B2 = 1/(1 − 1/R). Inside the dust cloud, where R ≤ S, the
space/time is also described by co-moving coordinates with line element:

(2) ds2 = SdS2 − S2dr2 −R2(dθ2 + sin2(θ)dφ2) where R = Sr.

I have used dS/dt = −S−0.5 to replace t with S as the time coordinate: S better reflects
the state of the cloud at a point.
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If the boundary of the cloud is at R = RT at time T, then inside the cloud

R = rRT + (r − r3)/2.

Supporting calculations are given in an appendix, but to interpret, when the cloud has
collapsed, then in the Schwarzschild coordinate system the majority of the cloud particles
will be clustered near the edge of the cloud. When RT = 1.01, meaning that R is just 1%
bigger than the asymptotic value, 22% of the dust particles have still not fallen through
R=1.

In the limit, when RT = 1, 23% of the particles have still not fallen through R=0.99
and the co-moving density of the cloud (1/S3) is over 3 times as great at edge than at
the centre. To a distant observer the entire mass is concentrated in the outer skin of the
dust cloud, since the particles there are moving at the speed of light.

4. A black hole in context

Suppose we now wish to study the evolution of a collection of stars, including one or more
nominal black holes. In such a system, the internal evolution of the stars we call black
holes will be suspended, but they may still interact with other stars. In the Autumn of
2016, gravity waves were detected from what is believed to be the merger of two black
holes. That merger must have occurred long before the formation of a singularity, and
the internal evolution of the star would be utterly unlike the evolution predicted by the
maximal extension of an isolated black hole. The maximal extension is, in effect, making
extremely improbable assumptions about the future.

5. Appendix: a Robertson Walker interior and a Schwarzschild exterior

Since the θ and φ coordinates are common to both metrics, we need only consider the
surface formed by a radial line over time. The two metrics reduce to:

for R ≤ S:

(3) ds2 = SdS2 − S2dr2, where R = rS

and everywhere, including for R ≤ S:

(4) ds2 = A2dT 2 −B2dR2.

Let T a, Ra, Sa, ra be the tangent vectors for the various coordinates, and Ta, Ra, Sa, ra
be the corresponding cotangents. So, given the simplicity of the line elements:

T aTa = 1/A2

RaRa = −1/B2

SaSa = 1/S and

rara = −1/S2.
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R = Sr =⇒ dR = rdS + Sdr =⇒ Ra = rSa + Sra so:

RaR
a = r2SaS

a + S2rar
a

−1/B2 = (r2)/S − (S2)/S2(5)

B2 = 1/(1− r2/S)

= 1/(1− r3/R)

r3 is proportional to the co-moving mass contained in the sphere of radius r. At the
boundary of the cloud, and hence everywhere, the locally measured ’mass at infin-
ity’2contained in the sphere of area 4πR2 is r3/2.

We have two coordinate systems which at any given point are in relative motion v,
where v = d(rS)/dt = −r/S0.5. If (for example) a vector aSa + bra is parallel to Ra,
then the Lorentz transform tells us that a2SaSa = −v2b2rara. Equation (5) conforms to
this.

If a vector aSa+bra is parallel to T a, then the Lorentz transform tells us that v2a2SaSa = −b2rara,
so Sa + rra is parallel to T a and orthogonal to Ra. Thus SaRa + rraRa = 0.

So working with a line at constant T:

dS

dR
+ r

dr

dR
= 0

and integrating:
S + r2/2 = f(T )

where f(T) is the constant of integration. If the size of the cloud at time T is RT , then
at r = 1, S = RT , so:

f(T ) = RT + 0.5.

(6) S + r2/2 = RT + 0.5

At the centre of the cloud, at r=0, S is 0.5 greater than at the edge, so in the limit
the particles are (3/2)3 = 3.375 more dense around the edge of the cloud than at the
centre.

From equation (6) together with R = Sr:

R = rRT + (r − r3)/2

So (for example) when the edge of the cloud is at R = RT = 1.1, 65% of the particles
have still not fallen through R=1.

When the cloud has collapsed further, and RT = 1.01, 22% of the particles have still not
fallen through R=1.

In the limit, when RT = 1, 23% of the particles lie outside R=0.99.

2The term ’mass at infinity’ is a way of describing the curvature on the surface of a stationary sphere
which makes assumptions about the space outside the sphere. By ’locally measured mass at infinity’,
I mean that the curvature is that which could be so described if the surrounding space satisfied the
implied assumptions.
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