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Abstract

In this note we will use Faulhaber’s Formula to explain why the odd
Bernoulli numbers are equal to zero.

1 Introduction
For odd numbers greater than or equal to seven, why are the Bernoulli numbers
equal to zero? Because Faulhaber’s Formula tells us that

∑n
k=1 k

2m+1 is a
polynomial in (

∑n
k=1 k)

2, and (
∑n
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2
= n2+2n3+n4

4 .

2 Faulhaber’s Formula
We might know already
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2
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.
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Through inductive reasoning like that in [6] we might discover further
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(We abbreviate
∑n

k=1 k
m by

∑
km.) The general case is
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If we wish to prove such expressions, by [1, 2, 3] we may proceed using
Pascal’s observation of telescoping sums. Consider the special case of(
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A general expression like(
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we may rewrite as (2) or (3), and then in a proof by mathematical induction we
may pass from n to n+ 1.

What if we want to rewrite the expressions in terms of a particular
∑

k2m+1?
For example, the expressions in (1) we may rewrite as
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By another proof by mathematical induction, this time on the m of (2) or (3),
we may establish the general result of
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where the ai are rational numbers and m = 3. This relationship we will call
Faulhaber’s Formula. (For some of the history of the problem, see [1, 2, 3, 4].)

3 Bernoulli Numbers
By [1, 2, 4, 5] we may define the Bernoulli numbers Bm by

B0 = 1,

n∑
k=0

(
n+ 1

k

)
·Bk = 0,

where n = 1. For example, to find B1 we write
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which implies B1 = − 1
2 . It turns out B3 = B5 = 0. With a bit of work we can
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for which we will assume m = 3.
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4 Conclusion
With regard to the claim at the start, suppose we set (4) and (5) equal to one
another. If we multiply out (4), we see it does not contain the term n. That
means the last term of (5),

− 1

2m+ 2
·
(
2m+ 2

2m+ 1

)
·B2m+1 · n,

must be equal to zero. In other words, for all m = 3, B2m+1 = 0.
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