
Dissecting the Dyre Loader

JASON REAVES

November 25, 2015

Abstract

Dyre or Dyreza, is a pretty prominent figure in the world of financial
malware. The Dyre of today comes loaded with a multitude of mod-
ules and features while also appearing to be well maintained. The first
recorded instance of Dyre I have found is an article in June 2014 and the
sample in question is version 1001, while at the time of this report Dyre
is already up to version 1166. While the crypters and packers have varied
over time, for at least the past 6 months Dyre has used the same loader
to perform it’s initial checks and injection sequence. It is the purpose of
this report to go through the various techniques and algorithms present
in the loader, and at times reverse them to python proof of concepts.

Keywords - Reverse Engineering, Malware Analysis, Dyreza, Banking Tro-
jan

1



Figure 1: Processor Check

1 Introduction

The Dyre banking trojan has evolved significantly since it’s emergence in June
of 2014 and, while it was by no means considered simple for it’s time it has
definitely grown in its capabilities. While some groups and bankers out there use
more advanced techniques and tools any banking trojan has the goal of stealing
enough information while utilizing enough tools in its arsenal to ultimately
perform fraud against the institutions it is targeting. I would consider the Dyre
of today to be among the more advanced forms of malware in the area of banking
trojans. In this report we go through the loader used by Dyre, a loader is simply
a program used to load various other things(code, other programs, DLLs, etc.).

2 Dyre Loader

The loader first performs a simple check on the number of processors in the sys-
tem which appears to be targeting sandboxes(Figure 1). This check was added
around April 2015.

Next the loader begins decrypting the dll and function names that it will need.
Each step the loader takes will be outlined below.

2.1 String Decrypt

The main function for the string decryption process is called with an index
number as an argument indicating which string the calling code wants returned.
This function when called puts every offset of every encoded string onto the
stack. It then uses the index passed to it to then copy the encoded string into
another section of memory, the end of the string is reached when a NULL byte
is hit. We can this happening in Figure 2.

After this is done the code passes the section of memory with the encoded
string and the length to the function responsible for decrypting it. In Figure 3
we can see the heart of what appears to be a single byte XOR loop over an
8 byte key unless the bytes are the same in which case that byte is left alone.
The byte checking portion is turned on or off with flag that gets passed to the
routine, it is an attempt at making it safe for unicode strings. However since
the unicode strings have their null byte XORd it appears that same check is not
done during the encoding process, making the check itself possibly useless code.

2



Figure 2: Finding which string to decode

Figure 3: Main string decoding section

A proof of concept example of this can be seen in Figure 4, and decrypting
all of the strings at every offset can give us insight into how the loader might
operate(Figure 5).
Taking out the same byte check and running the script against the encoded
unicode strings also gives us some interesting strings(Figure 6).

2.2 File Name Generation

Next the loader compares its own privilege level with the first svchost it finds
in the process list, the check is performed by comparing the SIDs from the
processes respective TOKEN USER structures. If the comparison is successful
then the loader checks if it’s running from C:\windows if it’s not successful
then the loader checks if it’s running from %APPDATA%\local. In either case
a random 15 character filename is generated using a custom Psuedo-Random

3



import b i n a s c i i

key = bytearray ( b i n a s c i i . a2b hex ( ’ 1622 f36a8541ca84 ’ ) )
encoded = bytearray ( b i n a s c i i . a2b hex ( ’ 7 d478104e02df9b638469f06 ’ ) )

def d e c r y p t s t r i n g ( data , key ) :
for i in range ( len ( data ) ) :

i f data [ i ] != key [ i%len ( key ) ] :
data [ i ] ˆ= key [ i%len ( key ) ]

print ( data )

d e c r y p t s t r i n g ( encoded , key )
#>>> kerne l32 . d l l

Figure 4: Loader String Decrypt Example

Figure 5: Decrypted strings

function based on the Microsoft variation LCG algorithm(Figure 7).
Breaking this routine down we can see that ultimately the routine is just

generating a random number between 0 and 24 and depending on the outcome
of the first loop being even or odd this will be an index into the ascii character
set of either the lowercase or the uppercase alphabet. A proof of concept of this
in python can be seen in Figure 8.
After copying itself the loader then excutes itself from the new location with its
original location as the parameter.

4



Figure 6: Decrypted unicode strings

Figure 7: Pseudo-Random filename generate function

2.3 Mutex Generation

After starting from either %APPDATA%\local or C:\Windows the loader goes
through the same checks and then checks if it temp is in it’s path. If not
it starts building out it’s mutex value. The mutex is based on the following
information

1. GetCompuerNameW

2. RtlGetVersion - Build Number

Passes the computer name, 0x31 and the machines build number to a wsprintfW
call producing the following unicode string: < computername > 49 < buildnumber >.

A SHA1 hash is then performed on the unicode string but it only takes the
first 16 bytes of the output and then passes it to wsprintfW with the format
string ”%08x%08x%08x%08x”. This string is appended to Global\ and checked
using OpenMutexW(Figure 9).

2.4 Rsrc Decoding and Injection

Statically looking at the loader we can see 3 resource sections(Figure 10), first
it loads the smaller of the three resource sections which is 256 bytes in length,
the next resource section loaded depends on if the system is 32 bit or 64 bit.

5



temp = 0
va l = c i n t 6 4 ( )

re sp = ””
for i in range ( 1 5 ) :

for j in range ( 2 ) :
w ind l l . Kernel32 . QueryPerformanceCounter ( byre f ( va l ) )
p e r f = va l . va lue

temp ˆ= per f >>32
temp ˆ= p e r f & 0xFFFFFFFF

temp ∗= int ( ’ 343 fd ’ ,16)
temp = temp & 0xFFFFFFFF

temp = temp + int ( ’ 269 ec3 ’ ,16)
temp2 = temp
temp = ( temp ∗ int ( ’ 343 fd ’ , 16 ) ) & 0xFFFFFFFF
temp2 >>= 16
temp += int ( ’ 269 ec3 ’ ,16)
i f j == 0 :

i f temp2 % 2 == 1 :
even = True

else :
even = False

temp = temp & 0xFFFF0000
temp = temp | temp2
remain = temp % 25

i f even :
remain += int ( ’ 61 ’ ,16)

else :
remain += int ( ’ 41 ’ ,16)

resp += chr ( remain )

print ( re sp )

Figure 8: Pseudo-Random filename generation

Depending on the outcome of that check the loader loads in one of the remaining
resource sections.

After loading the proper resource the loader will find the appropriate process

6



Figure 9: Mutex

Figure 10: Resource Sections

Figure 11: Large Resource

Figure 12: Resource Section Decode POC

to inject. In the event the loader is running from APPDATA then it will inject
explorer.exe, if however the loader is running from the Windows directory then
it will inject svchost.exe.

7



The loader will perform the injection by creating a handle to a empty file
mapping object using CreateFileMappingW and attain the base address with
MapViewOfFile. The encoded data(Figure 11) is then copied over to this mem-
ory section before the loader maps the section into the remote process using
ZwMapViewOfSection. Next an APC thread is created using the processes
main thread id, this is attained using NtQuerySystemInformation.

The loader calls NtQuerySystemInformation for the SystemProcessInforma-
tion option which will pull in a giant linked list of SYSTEM PROCESS INFORMATION
structures. After enumerating this list to find its target by comparing process
ids, the loader will then check if the number of threads is <= 0 and if so it
will continue enumerating the list. If number of threads is < 0 however then
it will jump 0xDC bytes into the structure which lands you at 4 bytes into the
CLIENT ID structure within the SYSTEM THREAD INFORMATION struc-
ture which is located at the bottom of the relevant SYSTEM PROCESS INFORMATION
structure. The loader checks that the threadState is 5 and then reads in the
thread id from the CLIENT ID structure.

After queueing the APC thread the loader will decode the injected code. The
decoding is done using the smaller resource section as a lookup table. The two
larger resource sections are the 32 bit and 64 bit encoded injects respectively
and this can be proven with a simple proof of concept as in Figure 12. In the
previous figure we can see the decoded inject appears to be a dll wrapped in
shellcode.

3 Conclusions

Sample SHA256: ffd0c9571d4a76618c8a970f71bb17a7b0e3b9e2244704ced368bfe276614e63

References

[1] Hex-Rays Decompiler, http://www.hex-rays.com/products/decompiler/index.shtml.

[2] Python, https://www.python.org/

8


