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Abstract

In our previous publications we argue that finite mathematics is funda-
mental, classical mathematics (involving such notions as infinitely small/large,
continuity etc.) is a degenerate special case of finite one, and ultimate quan-
tum theory will be based on finite mathematics. We consider a finite quantum
theory (FQT) based on a finite field or ring with a large characteristic p and
show that standard continuous quantum theory is a special case of FQT in the
formal limit p → ∞. Space and time are purely classical notions and are not
present in FQT at all. In the present paper we discuss how classical equations of
motions arise as a consequence of the fact that p changes, i.e. p is the evolution
parameter.
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1 The problem of space-time in quantum theory

Although quantum theory exists for more than 90 years, the problem of its foundation
is still widely debated. Although it is now obvious that physical intuition based on
classical physics usually does not work for explaining quantum phenomena, quantum
theory inherited several important notions from classical one.

For example, a rather strange feature of fundamental quantum theories
(QED, QCD and electroweak theory) is that their derivation is based on local space-
time Lagrangians but the final formulation involves only the S-matrix in momentum
representation and space-time is not present in this formulation at all. This is in the
spirit of the Heisenberg S-matrix program where description of quantum states at
each moment of time t is treated as unphysical and only the description of evolution
from the infinite past when t → −∞ to the distant future when t → +∞ has a
physical meaning.

In many cases fundamental quantum theories give impressive agreements
with experiment but nevertheless the problem of substantiation of those theories re-
mains open. The main inconsistency of the theories is that they contain divergent
expressions for the S-matrix elements. The main reason is that the Lagrangian den-
sities contain products of local operator fields at the same space-time points. As
explained even in textbooks on local quantum field theories (see e.g. Ref. [1]), in-
teracting local quantum fields can be treated only as operator distributions, and a

1



known fact from the theory of distributions is that their product at the same points
is not a correct mathematical operation.

A usual justification of the presence of such products is that they are
needed to preserve locality. However, this argument is not consistent for the following
reason. Although the construction of the local quantized field ψ(x) (where x is a
point in Minkowski space) is based on a single-particle field, the quantized field is
an operator in the Fock space for a system with an infinite number of particles, and
the argument x does not refer to any particle. It is only an integration parameter for
the full Lagrangian. Probably the ”strongest” justification is that the philosophy of
the absolute majority of physicists is that agreement with experiment is much more
important than mathematical rigor.

Let us note that even in classical mechanics particle coordinates and time
can be treated in different ways. A standard treatment of this theory is that its
goal is to solve equations of motion and get classical trajectories where coordinates
and momenta are functions of time t. In Hamiltonian mechanics the action can be
written as S = S0 −

∫
Hdt where H is the Hamiltonian, S0 does not depend on t

and is called the abbreviated action. Suppose now that one wishes to consider a
problem which is usually treated as less general: to find not the dependence of the
coordinates and momenta on t but only possible forms of trajectories in the phase
space without mentioning time at all. If the energy is a conserved physical quantity
then, as described in textbooks, this problem can be solved by using the Maupertuis
principle involving only S0.

However, the latter problem is not less general than the former one. For
illustration we first consider the one-body case. Suppose that by using the Maupertuis
principle one has solved the problem with some initial values of coordinates and
momenta. Let s be a parameter characterizing the particle trajectory, i.e. the particle
radius-vector r, the momentum p and the energy E are functions of s. The particle
velocity v in units c = 1 is defined as v(s) = p(s)/E(s). At this stage the problem
does not contain t yet. One can define t by the condition that dt = |dr|/|v| and
hence the value of t at any point of the trajectory can be obtained by integration.
Hence the general problem of classical mechanics can be initially formulated without
mentioning t while if for some reasons one prefers to work with t then its value can
flow only in the positive direction since dt > 0.

Another point of view is that, at least on classical level, time is a primary
quantity while the coordinates r of each free particle should be defined in terms of
momentum and time as

dr = vdt =
p

E
dt (1)

where E = (m2 + p2)1/2 and m is the particle mass. Such a definition of coordinates
is similar to that in General Relativity (GR) where distances are defined in terms of
time needed for light to travel from one point to another.

On quantum level the treatment of particle coordinates and time becomes
much more complicated. The postulate of quantum theory is that for any physical
quantity there should exist a corresponding selfadjoined operator. As noted by Pauli
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(see p. 63 of Ref. [2]), at early stages of quantum theory some authors treated time
t as an operator commuting with H as [H, t] = ih̄, i.e. H and t are canonically
conjugated. However, there are several reasons why such a treatment is not correct.
For example (see e.g. Ref. [3]), the conjugated operators should necessarily have the
same spectrum, time has the continuous spectrum in the range (−∞,+∞) while the
Hamiltonian is usually bounded below and a part of its spectrum may be discrete.

It is usually assumed that in quantum theory the quantity t can be only a
classical parameter describing evolution of a quantum system by the time dependent
Schrödinger equation. The usual justification of this equation is that in the formal
limit h̄→ 0 it becomes the Hamilton-Jacobi equation. Moreover, the justification of
standard choice for different operators (e.g. coordinate, momentum, angular momen-
tum operators and others) is that such a choice has a correct classical limit. However,
the correct classical limit does not guarantee the correct behavior on quantum level.
For example, if A and B are two operators such that B becomes zero in classical limit
then the operators A and A + B have the same classical limit but on quantum level
they may have considerably different properties.

A problem arises why the principle of quantum theory that every physical
quantity is defined by an operator does not apply to time. In the literature the
problem of time is also often formulated such that ”the time of GR and of ordinary
Quantum Theory are mutually incompatible notions” (see e.g. Ref. [4]). As noted
by several authors, (see e.g. Refs. [5, 6, 7]), t cannot be treated as a fundamental
physical quantity. The reason is that all fundamental physical laws do not require
time and the quantity t is obsolete on fundamental level.

In quantum theory a problem arises ”how to forget time” (by analogy
with the Maupertuis principle), construct a theory (in particular quantum gravity)
which does not involve time at all and in what approximations classical time can be
reconstructed. This is a very complicated problem which has been discussed in detail
in Refs. [5, 6].

One can also consider a situation when a quantum system under consider-
ation is a small subsystem of a big system where the big subsystem - the environment,
is strongly classical. Then one can define t for the environment as described above.
The author of Ref. [7] considers a scenario when the system as a whole is described
by the stationary Schrödinger equation HΨ = EΨ but the small quantum subsystem
is described by the time dependent Schrödinger equation where t is defined for the
environment as t = ∂S0/∂E. In this scenario it is clear why a quantum system is
described by the Schrödinger equation depending on the classical parameter t which
is not an operator: because t is the physical quantity characterizing not the quan-
tum system but the environment. This scenario seems also natural because it is in
the spirit of the Copenhagen interpretation of quantum theory: the evolution of a
quantum system can be characterized only in terms of measurements which in the
Copenhagen interpretation are treated as interactions with classical objects. How-
ever, this scenario encounters several problems. For example, the environment can
be a classical object only in some approximation and, as noted in Ref. [7], the above
scenario does not solve the problem of quantum jumps.
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The authors of Ref. [3] state that the Pauli objection can be circumvented
if one uses an external system to track time, so that ”time arises as correlations
between the system and the clock”. In this case, the time operator can be defined.
It is not conjugate to the system Hamiltonian, but its eigenvalues still satisfy the
Schrödinger equation for arbitrary Hamiltonians. Such an approach is to some extent
in the spirit of Ref. [7]. The authors of Ref. [3] refer to the extensive literature where
the time operator has been discussed. In any case, the problem to deal or not with
the time operator depends on the physical situation and there is no universal choice
of the time operator which follows from first principles of quantum theory.

In contrast to time, it is usually believed that in quantum theory the posi-
tion operator has a clear physical meaning. For example, in nonrelativistic quantum
mechanics the position and momentum operators are related to each other by the
Fourier transform. As a consequence, we have the famous Heisenberg uncertainty
relations or vice versa, from these relations it follows that the operators are related
to each other by the Fourier transform. Many authors (including Heisenberg, Dirac
and others) gave different arguments in favor of such relations. A great success of
the early quantum theory was that the nonrelativistic Schrödinger equation gives a
good description of the hydrogen energy levels and the Dirac equation gives a good
description of the fine structure of those levels in the approximation (v/c)2.

However, from the point of view of the present knowledge, the Schrödinger
and Dirac equations should be treated as follows. As follows from Feynman diagrams
for the one-photon exchange, in the approximation up to (v/c)2 the electron in the
hydrogen atom can be described in the potential formalism where the potential acts
on the wave function (WF) in momentum space. So for calculating energy levels one
should solve the eigenvalue problem for the Hamiltonian with this potential. This is
an integral equation which can be solved by different methods. One of the convenient
methods is to apply the Fourier transform and get standard Schrödinger or Dirac
equation in coordinate representation with the Coulomb potential. Hence the fact
that the results for energy levels are in good agreement with experiment shows that
QED defines the potential correctly and standard coordinate Schrödinger and Dirac
equations are only convenient mathematical ways of solving the eigenvalue problem
in the approximation up to (v/c)2. For this problem the physical meaning of the
position operator is not important at all. One can consider other transformations
of the original integral equation and define other position operators. The fact that
for non-standard choices one might obtain something different from the Coulomb
potential is not important on quantum level.

The Schrödinger and Dirac equations work with a high accuracy because
the fine structure constant α is small and, as a consequence, the effects beyond the
single-particle approximation (e.g. the Lamb shift) are small. However, consider a
hypothetical situation where a Universe is such that the value of α is of the order
of unity or greater. Although it is not known (even if α is small) whether the per-
turbation series of QED converges or not, the logical structure of QED remains the
same. At the same time, the single-particle approximation is not valid anymore and
the Schrödinger and Dirac equations do not define the hydrogen energy levels even
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approximately. In other words, in this situation the application of those equations
for calculating the hydrogen energy level does not have a physical meaning.

The fact that in our world the Schrödinger and Dirac equations describe
the hydrogen energy level with a high accuracy, is usually treated as a strong argument
that the coordinate and momentum representations should be related to each other
by the Fourier transform. However, as follows from the above considerations, this fact
takes place only because we are lucky that the value of α in our Universe is small.
Therefore this argument is not physical and cannot be used.

As shown by Newton and Wigner [8], relativistic position operator differs
from the nonrelativistic one but the basic feature that the momentum and posi-
tion operators are related to each other by the Fourier transform remains in the
Newton-Wigner construction as well. This postulate is a good illustration of the fact
mentioned at the beginning of this section that quantum theory inherited many its
features from the classical one. The relation between the coordinates and momenta
is analogous to the one between the coordinates and wave vectors in classical elec-
trodynamics. A known effect here is the wave packet spreading (WPS). In classical
electrodynamics the wave packet consists of many particles but in quantum theory
the effect takes place even for a single-particle WF.

At the very beginning of quantum theory several physicists (e.g. de
Broglie) argued that the WPS effect should not take place in quantum theory and the
single particle should not be described by the time dependent Schrödinger equation.
On the other hand, as shown by Darwin [9], for macroscopic particles the WPS effect
is negligible. It is also believed that in experiments with atoms and elementary par-
ticles the time is so small that the WPS effect does not manifest itself. Probably for
those reasons the majority of physicists do not treat the WPS effect as a drawback
of the theory.

However, photons from distant stars can travel to Earth even for billions
of years and for them the WPS effect cannot be neglected. As shown in Ref. [10], the
WPS effect for such photons results in a fundamental quantal paradox that predictions
of the theory contradict our experience on how we observe stars. The paradox can be
resolved if the position operator is essentially different from the standard one and the
coordinate and momentum representations are not related by the Fourier transform.

One can discuss different choices of the position operator but in any case
the choice is not dictated by first principles of quantum theory. History of physics
tells us that in any theory it is desirable to have the least possible amount of notions.
Quantum theory is believed to be more general than classical one and so at some
conditions it should reproduce all the results of classical theory including classical
equations of motion. However, it does not mean that quantum theory should explicitly
involve particle coordinates and time.

The main results of the paper are described in Sec. 8. Here it is shown
that there exist scenarios when classical equations of motion can be obtained from
quantum theory without using any classical notions such as coordinates, time, position
operator, standard semiclassical approximation etc. The goal of the preceding sections
is to prepare the reader for understanding these results. Here the consideration is
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based on the results obtained in our previous publications, mainly in Refs. [11, 12, 13].
Those results have been obtained with extensive calculations but in this paper we
explain the meaning of the results and argue that they are very natural.

2 Why quantum theory should be based on finite

mathematics

A belief of the overwhelming majority of scientists is that classical mathematics (in-
volving the notions of infinitely small/large, continuity etc.) is fundamental while
finite mathematics is something inferior what is used only in special applications. In
our publications (see e.g. Refs. [11, 13, 14]) we argue that the situation is the oppo-
site: finite mathematics is fundamental, classical mathematics is a degenerate special
case of finite one and ultimate quantum theory will be based on finite mathematics.
In this section we give basic arguments in favor of this statement.

Historically the notions of infinitely small/large, continuity etc. have
arisen from a belief based on everyday experience that any macroscopic object can
be divided into arbitrarily large number of arbitrarily small parts. Classical physics
is based on classical mathematics developed mainly when people did not know about
existence of elementary particles. However, from the point of view of the present
knowledge those notions look problematic.

For example, a glass of water contains approximately 1025 molecules. We
can divide this water by ten, million, etc. but when we reach the level of atoms and
elementary particles the division operation loses its meaning and we cannot obtain
arbitrarily small parts. So, any description of macroscopic phenomena using conti-
nuity and differentiability can be only approximate. In nature there are no continuous
curves and surfaces. For example, if we draw a line on a sheet paper and look at this
line by a microscope then we will see that the line is strongly discontinuous because
it consists of atoms.

The official birth of quantum theory is 1925, and even the word ”quantum”
reflects a belief that nature is discrete. The founders of this theory were highly edu-
cated physicists but they used only classical mathematics and even now mathematical
education at physics departments does not involve discrete and finite mathematics.
In view of the above remarks it is reasonable to think that in quantum theory clas-
sical mathematics might be used for solving special problems but ultimate quantum
theory should not be based on classical mathematics.

Classical mathematics is not in the spirit of the philosophy of quantum
theory and the Viennese school of logical positivism that ”A proposition is only cog-
nitively meaningful if it can be definitively and conclusively determined to be either
true or false”. For example, it cannot be determined whether the statement that
a + b = b + a for all natural numbers a and b is true or false. Let us also pose a
problem whether 10+20 equals 30. Then we should describe an experiment which
will solve this problem. Any computer can operate only with a finite number of bits
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and can perform calculations only modulo some number p. Say p = 40, then the ex-
periment will confirm that 10+20=30 while if p = 25 then we will get that 10+20=5.
So the statements that 10+20=30 and even that 2 · 2 = 4 are ambiguous because
they do not contain explicit information on how they should be verified. On the other
hand, the statements

10 + 20 = 30 (mod 40), 10 + 20 = 5 (mod 25), 2 · 2 = 4 (mod 5), 2 · 2 = 2 (mod 2)

are well defined because they do contain such an information. So only operations
modulo some number are well defined. This example shows that classical mathemat-
ical is based on the implicit assumption that in principle one can have any desired
amount of resources and, in particular, one can work with computers having as many
bits as desired.

Classical mathematics starts from natural numbers and the famous Kro-
necker’s expression is: ”God made the natural numbers, all else is the work of man”.
However here only addition and multiplication are always possible. In order to make
addition invertible we introduce negative integers and their only goal is to get the
ring of integers Z. However, if instead of all natural numbers we consider only a set
Rp of p numbers 0, 1, 2, ... p − 1 where addition and multiplication are defined as
usual but modulo p then we get a ring without adding new elements.

For example, if p is odd then one can consider Rp as a set of elements
{0,±i} (i = 1, ...(p − 1)/2) and such elements are called minimal residues. For
elements a ∈ Rp such that |a| � p the addition, subtraction and multiplication
are the same as in Z, i.e. such elements do not feel the existence of p. When p
increases, the bigger and bigger part of Rp becomes the same as Z. Hence Z can be
treated as a degenerate case of Rp in the formal limit p → ∞ because in this limit
operations modulo p disappear. Therefore, at the level of rings standard mathematics
is a degenerate case of finite one when formally p→∞.

The transition from Rp to Z is similar to the procedure, which in group
theory is called contraction. This notion is used when the Lie algebra of a group with
a lower symmetry can be treated as a formal limit of the Lie algebra of a group with
a higher symmetry when some parameter goes to zero or infinity. Known examples
are the contraction from the de Sitter to the Poincare group and from the Poincare
to the Galilei group.

The above construction has a well-known historical analogy. For many
years people believed that the Earth was flat and infinite, and only after a long
period of time they realized that it was finite and curved. It is difficult to notice
the curvature when we deal only with distances much less than the radius of the
curvature. Analogously one might think that the set of numbers describing physics
in our Universe has a ”curvature” defined by a very large number p but we do not
notice it when we deal only with numbers much less than p.

One might argue that introducing a new fundamental number p is not
justified. However, history of physics tells us that more general theories arise when
a parameter, which in the old theory was treated as infinitely small or infinitely
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large, becomes finite. For example, nonrelativistic physics is the degenerate case of
relativistic one in the formal limit c→∞ and classical physics is the degenerate case
of quantum one in the formal limit h̄ → 0. Therefore, it is natural to think that in
quantum physics the number p should be not infinitely large but finite.

It is known that if p is prime then Rp becomes the field Fp where it is
also possible to divide by numbers not equal to zero. In general, division in Fp is
considerably different from the division in the field of rational numbers. For example,
1/2 equals (p − 1)/2, i.e. a large number if p is large. However, this does not mean
that quantum theory cannot be based on a finite field. This is clear from the fact
that spaces in quantum theory are projective (see Refs. [11, 13, 14]).

On the other hand, the above remarks indicate that division is not a fun-
damental operation. Since history of physics tells us that it is desirable to introduce
the least necessary number of notions, one might think that the ultimate quantum
theory will be based on a finite ring, not field. This problem is discussed in Refs.
[13, 14].

From mathematical point of view, standard quantum theory can be treated
as a theory of representations of special real Lie algebras in complex Hilbert spaces.
In Refs. [11, 13] and other publications we have proposed an approach called FQT
(Finite Quantum Theory) when Lie algebras and representation spaces are over a
finite field or ring with characteristic p. It has been shown that in the formal limit
p → ∞ FQT recovers predictions of standard continuous theory. Therefore classical
mathematics describes many experiments with a high accuracy as a consequence
of the fact that the number p is very large. However, since classical mathematics
has foundational problems by its own nature (as follows, for example, from Gödel’s
incompleteness theorems), ultimate quantum theory cannot be based on classical
mathematics.

In physics p is the standard notation for the momentum but in number
theory it is the standard notation for the characteristic of a ring or field. In what
follows it will be obvious in what context the notation p is used.

3 Symmetry on quantum level

In relativistic quantum theory the usual approach to symmetry on quantum level
follows. Since the Poincare group is the group of motions of Minkowski space, quan-
tum states should be described by representations of this group. This implies that
the representation generators commute according to the commutation relations of the
Poincare group Lie algebra:

[P µ, P ν ] = 0 [P µ,Mνρ] = −i(ηµρP ν − ηµνP ρ)

[Mµν ,Mρσ] = −i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) (2)

where µ, ν = 0, 1, 2, 3, P µ are the operators of the four-momentum and Mµν are
the operators of Lorentz angular momenta. This approach is in the spirit of Klein’s
Erlangen program in mathematics. However, as we argue in Refs. [13, 15] and Sec.
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1, quantum theory should not be based on classical space-time background and the
approach should be the opposite. Each system is described by a set of independent
operators. By definition, the rules how they commute with each other define the
symmetry algebra. In particular, by definition, Poincare symmetry on quantum level
means that the operators commute according to Eq. (2). This definition does not
involve Minkowski space at all.

Such a definition of symmetry on quantum level has been proposed by
Leonid Avksent’evich Kondratyuk during our collaboration. I believe that this re-
placement of the standard paradigm is fundamental for understanding quantum the-
ory, and I did not succeed in finding a similar idea in the literature. This idea is to
some extent in the spirit of Ref. [16]. Here Dirac proposed different forms of rela-
tivistic dynamics which are defined by choosing which operators in Eq. (2) are free
and which of them are interaction dependent.

Analogously, the definition of the de Sitter (dS) symmetry on quantum
level should not involve the fact that the dS group is the group of motions of the dS
space. Instead, the definition is that the operators Mab (a, b = 0, 1, 2, 3, 4, Mab =
−M ba) describing the system under consideration satisfy the commutation relations
of the dS Lie algebra so(1,4), i.e.,

[Mab,M cd] = −i(ηacM bd + ηbdMac − ηadM bc − ηbcMad) (3)

where ηab is the diagonal metric tensor such that η00 = −η11 = −η22 = −η33 =
−η44 = 1. The definition of the AdS symmetry on quantum level is given by the
same equations but η44 = 1.

With such a definition of symmetry on quantum level, dS and AdS sym-
metries look more natural than Poincare symmetry. In the dS and AdS cases all the
ten representation operators of the symmetry algebra are angular momenta while in
the Poincare case only six of them are angular momenta and the remaining four op-
erators represent standard energy and momentum. If we define the operators P µ as
P µ = M4µ/R where R is a parameter with the dimension length then in the formal
limit when R→∞, M4µ →∞ but the quantities P µ are finite, Eqs. (3) become Eqs.
(2). This procedure is called contraction and in the given case it is the same for the
dS or AdS symmetry.

In the literature, Poincare, dS and AdS symmetries are usually associated
not with the corresponding algebras but (in the spirit of the Erlangen program) with
the background space invariant under the action of the corresponding group. Those
spaces are characterized by the curvature called the cosmological constant Λ (CC)
such that Λ = 0, Λ > 0 and Λ < 0 respectively. The expressions for Λ in terms of R
are Λ = 0, Λ = 3/R2 and Λ = −3/R2, respectively.

It is obvious that FQT can involve only numbers and cannot contain any
dimensionful quantities. Equations (3) contain no parameters and it is often said that
those expressions are written in units h̄ = c = 1. This phrase might create a wrong
impression that expressions with h̄ and c are primary while Eqs. (3) are secondary,
but the situation is the opposite. Let us make a few remarks on this question.
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Consider a measurement of a component of angular momentum. The
result depends on the system of units. As shown in quantum theory, in units h̄/2 = 1
the result is given by an integer 0,±1,±2, .... We can reverse the order of units and
say that in units where the angular momentum is an integer l, its value in kg ·m2/sec
is (1.05457162 · 10−34 · l/2)kg ·m2/sec. Which of those two values has more physical
significance? In units where the angular momentum components are integers, the
commutation relations between the components are

[Mx,My] = 2iMz [Mz,Mx] = 2iMy [My,Mz] = 2iMx (4)

and they do not depend on any parameters. Then the meaning of l is clear: it shows
how big the angular momentum is in comparison with the minimum nonzero value 1.
At the same time, the measurement of the angular momentum in units kg ·m2/sec
reflects only a historic fact that at macroscopic conditions on the Earth in the period
between the 18th and 21st centuries people measured the angular momentum in such
units.

For quantum theory itself the quantity h̄ is not needed. Classical theory
is a good approximation for quantum one when all angular momenta in question are
very large. From the formal point of view h̄ is needed only as a formal intermediate
step for getting classical theory from quantum one: we first write quantum theory
with h̄ and then take the limit h̄→ 0.

Analogous remarks can be given on the quantity c (see e.g. Ref. [13]).
Nonrelativistic theory is a good approximation for relativistic one when all velocities
in question are much less than unity. Relativistic theory by itself does not need c. It
is needed only as a formal intermediate step for getting nonrelativistic theory from
relativistic one: we first write relativistic theory with c and then take the limit c→∞.

In the literature the ch̄G cube of physical theories is sometimes discussed
with the meaning that any relativistic theory should contain c, any quantum the-
ory should contain h̄ and any gravitational theory should contain the gravitational
constant G. The problem of G will be discussed below but as far as c and h̄ are
concerned, the situation is the opposite: relativistic theory should not contain c and
quantum theory should not contain h̄. The impression that nonrelativistic classi-
cal theory without gravitation does not contain parameters is not correct because it
contains three parameters: (kg,m, s).

Let us now define the notion of elementary particle. Although theory of
elementary particles exists for a rather long period of time, there is no commonly
accepted definition of elementary particle in this theory. In the spirit of the above
definition of symmetry on quantum level and Wigner’s approach to Poincare symme-
try [17], a general definition, not depending on the choice of the classical background
and on whether we consider a local or nonlocal theory, is that a particle is elementary
if the set of its WFs is the space of an irreducible representation (IR) of the symmetry
algebra in the given theory.

The explicit construction of IRs of the dS and AdS algebras describing
elementary particles (see e.g. Refs. [11, 13]) shows that it is possible to find a basis
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where the spectrum of all the representation operators is discrete. Therefore such IRs
can be used in both, standard theory and FQT. At the same time, for IRs describing
elementary particles in Poincare invariant theory the spectrum of some operators is
necessarily continuous. Therefore such IRs cannot be used in FQT.

By definition, the tensor product of IRs corresponding to N particles de-
scribes a system where those particles are free. The representation operators for the
free N -particle systems are sums of the corresponding single-particle operators. In
the present paper we consider only systems of free particles, i.e. there is no interac-
tion between the particles. A problem arises whether the cosmological repulsion and
gravity can take place in systems of free particles.

In standard nonrelativistic approximation, gravity is characterized by the
term −Gm1m2/r in the mean value of the two-particle mass operator. Here m1 and
m2 are the particle masses and r is the distance between the particles. Since the
kinetic energy is always positive, the free nonrelativistic mass operator is positive
definite and therefore there is no way to obtain gravity in the framework of the
free theory. Analogously, in Poincare invariant theory the spectrum of the free two-
particle mass operator belongs to the interval [m1 + m2,∞) while the existence of
gravity necessarily requires that the spectrum should contain values less than m1+m2.

In theories where the symmetry algebra is the AdS algebra so(2,3), the
structure of IRs is well-known (see e.g. Refs. [11, 13]). In particular, for positive
energy IRs the AdS Hamiltonian has the spectrum in the interval [m,∞) and m has
the meaning of the AdS mass. Therefore the situation is pretty much analogous to
that in Poincare invariant theories. In particular, the free two-particle mass operator
again has the spectrum in the interval [m1 +m2,∞) and therefore there is no way to
reproduce gravitational effects in the free AdS theory.

In contrast to the situation in Poincare and AdS theories, the free two-
particle mass operator in dS theory is not bounded below by the value of m1 + m2.
The results of Ref. [12, 13] show that this property by no means implies that the
theory is unphysical. In addition, the existing experimental data (see e.g. Ref. [18])
practically exclude the possibility that Λ ≤ 0. As shown in Ref. [12] (see also the
next section) the cosmological repulsion naturally arises in free systems described in
the framework of the dS theory. Therefore if one has a choice between Poincare, AdS
and dS symmetries then the only chance to describe the cosmological repulsion and
gravity in a free theory is to choose dS symmetry.

4 A system of two particles in standard quantum

dS theory

As shown in Ref. [12], by using the results of the book [19] on IRs of the dS group one
can explicitly construct IRs of the dS algebra describing elementary particles. In this
paper we are interested not in elementary particles but in macroscopic bodies. If we
consider systems of particles such that the distances between them are much greater
than their sizes then the internal structure of the particles is not important and it
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suffices to describe each particle only by the variables characterizing the motion of
each particle as a whole. The WFs describing such a motion are the same as for
elementary particles i.e. we can use IRs of the dS algebra. Since spin is a pure
quantum notion which disappears in classical limit, we will consider only spinless IRs
and will not consider massless and tachyon representations.

In Poincare theory any massive IR can be implemented in the Hilbert
space of functions χ(v) on the Lorenz 4-velocity hyperboloid with the points v =
(v0,v), v0 = (1 + v2)1/2 such that

∫
|χ(v)|2dρ(v) < ∞ and dρ(v) = d3v/v0 is the

Lorenz invariant volume element. For positive and negative energy IRs the value of
energy is E = ±mv0 respectively where m is the particle mass defined as the positive
square root (E2 −P2)1/2. Therefore for massive IRs, m > 0 by definition.

It is usually assumed that the energy for real particles should be positive.
However, the choice of the energy sign is only the matter of convention but not the
matter of principle. It is only important that the energy sign for all the particles in
question is the same because otherwise the conservation of energy will not take place.
In the literature the positive energy IRs are usually associated with particles and the
negative energy IRs — with the corresponding antiparticles. Then after the second
quantization the energies of both, particles and antiparticle become positive.

In contrast to Poincare theory, IRs in dS theory can be implemented only
on two Lorenz hyperboloids, i.e. the Hilbert space for such IRs consist of sets of two
functions (χ1(v), χ2(v)) such that∫

(|χ1(v)|2 + |χ2(v)|2)dρ(v) <∞

In Poincare limit one dS IR splits into two IRs of the Poincare algebra with positive
and negative energies. In Ref. [12] we argue that this implies that one IR of the dS
algebra describes a particle and its antiparticle simultaneously. Since in the present
paper we do not deal with antiparticles, we give only expressions for the action of the
operators on the upper hyperboloid [12]:

M = l(v), N = −iv0
∂

∂v
, B = mdSv + i[

∂

∂v
+ v(v

∂

∂v
) +

3

2
v]

E = mdSv0 + iv0(v
∂

∂v
+

3

2
) (5)

where M = {M23,M31,M12}, N = {M01,M02,M03}, B = {M41,M42,M43}, l(v) =
−iv × ∂/∂v, E = M40 and mdS is a positive quantity.

This implementation of the IR is convenient for the transition to Poincare
limit. Indeed, the operators of the Lorenz algebra in Eq. (5) are the same as in the
IR of the Poincare algebra. Suppose that the limit of mdS/R when R → ∞ is finite
and denote this limit as m. Then in the limit R → ∞ we get standard expressions
for the operators of the IR of the Poincare algebra where m is the standard mass,
E = E/R = mv0 and P = B/R = mv. For this reason mdS has the meaning of
the dS mass. In contrast to m, mdS is dimensionless. Since Poincare symmetry is a
special case of dS one, mdS is more fundamental than m. Since Poincare symmetry
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works with a high accuracy, the value of R is supposed to be very large. Then even
dS masses of elementary particles are very large.

For example, according to Ref. [18], R ≈ 1026m. The conclusion of this
work on R is based not on the consideration of the dS algebra but from the fit to
the Friedman-Robertson-Walker model. This value of R is in the spirit of modern
cosmology that the Universe has approximately the same size. However, the model
depends on parameters and therefore the validity of the conclusion cannot be accepted
for granted. In particular, the value of R may be much greater than 1026m. However,
even for this value of R the dS masses of the electron, the Earth and the Sun are
of the order of 1039, 1093 and 1099, respectively. The fact that even the dS mass of
the electron is very large poses a question whether the electron is a true elementary
particle.

Consider the non-relativistic approximation when |v| � 1. If we wish to
work with units where the dimension of velocity is meter/sec, we should replace v by
v/c. If p = mv then it is clear from the expression for B in Eq. (5) that p becomes
the real momentum P only in the limit R → ∞. At this stage we do not have
any coordinate space yet. However, if we assume that semiclassical approximation is
valid, then, by analogy with standard quantum mechanics, we can define the position
operator r as i∂/∂p.

In classical approximation we can treat p and r as usual vectors. Then as
follows from Eq. (5)

P = p +mcr/R, H = p2/2m+ cpr/R, N = −mr (6)

where H = E−mc2 is the classical nonrelativistic Hamiltonian. As follows from these
expressions,

H(P, r) =
P2

2m
− mc2r2

2R2
(7)

The last term in Eq. (7) is the dS correction to the non-relativistic Hamil-
tonian. It is interesting to note that the non-relativistic Hamiltonian depends on c
although it is usually believed that c can be present only in relativistic theory. This
illustrates the fact mentioned in Sec. 3 that the transition to nonrelativistic theory
understood as |v| � 1 is more physical than that understood as c → ∞. The pres-
ence of c in Eq. (7) is a consequence of the fact that this expression is written in
standard units. In nonrelativistic theory c is usually treated as a very large quantity.
Nevertheless, the last term in Eq. (7) is not large since we assume that R is very
large.

As follows from Eq. (7) and the Hamilton equations, in dS theory a free
particle moves with the acceleration given by

a = rc2/R2 (8)

where a and r are the acceleration and the radius vector of the particle, respectively.
Since R is very large, the acceleration is not negligible only at cosmological distances
when |r| is of the order of R. The result (8) can be obtained not only from Hamilton

13



equations but by different ways. For example, assuming that the Hamiltonian is a
conserved physical quantity, this result can be obtained from the Maupertuis principle
or from Eq. (1) as noted in Sec. 1.

Let us now consider whether the result (8) is compatible with GR. The
dS space is a four-dimensional manifold in the five-dimensional space defined by

x21 + x22 + x23 + x24 − x20 = R2 (9)

In the formal limit R → ∞ the action of the dS group in a vicinity of the point
(0, 0, 0, 0, x4 = R) becomes the action of the Poincare group on Minkowski space.
The dS space can be parameterized without using the quantity R at all if instead of
xa (a = 0, 1, 2, 3, 4) we define dimensionless variables ξa = xa/R. It is also clear that
the elements of the SO(1,4) group do not depend on R since they are products of
conventional and hyperbolic rotations. So the dimensionful value of R appears only
if one wishes to measure coordinates on the dS space in terms of coordinates of the
flat five-dimensional space where the dS space is embedded in. This requirement does
not have a fundamental physical meaning. Therefore the value of R defines only a
scale factor for measuring coordinates in the dS space.

With the parameterization of dS space as in Eq. (9) the metric tensor on
this space is

gµν = ηµν − xµxν/(R2 + xρx
ρ) (10)

where µ, ν, ρ = 0, 1, 2, 3, ηµν is the Minkowski metric tensor, and a summation over
repeated indices is assumed. It is easy to calculate the Christoffel symbols in the
approximation where all the components of the vector x are much less than R: Γµ,νρ =
−xµηνρ/R2. Then a direct calculation shows that in the nonrelativistic approximation
the equation of motion for a single particle is the same as in Eq. (8).

Another way to show that Eq. (8) is compatible with GR follows. The
known result of GR is that if the metric is stationary and differs slightly from the
Minkowskian one then in the nonrelativistic approximation the curved space-time can
be effectively described by a gravitational potential ϕ(r) = (g00(r)− 1)/2c2. We now
express x0 in Eq. (9) in terms of a new variable t as x0 = t+ t3/6R2− tx2/2R2. Then
the expression for the interval becomes

ds2 = dt2(1− r2/R2)− dr2 − (rdr/R)2 (11)

Therefore, the metric becomes stationary and ϕ(r) = −r2/2R2 in agreement with Eq.
(8).

Consider now a system of two free particles in dS space. Let (ri, ai) (i =
1, 2) be their radius vectors and accelerations, respectively. Then Eq. (8) is valid for
each particle if (r, a) is replaced by (ri, ai), respectively. Now if we define the relative
radius vector r = r1 − r2 and the relative acceleration a = a1 − a2 then they will
satisfy the same Eq. (8) which shows that the dS antigravity is repulsive. It terms of
Λ it reads a = Λrc2/3 and therefore in the AdS case we have attraction rather than
repulsion.
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Let us now consider a system of two free particles in the framework of the
representation of the dS algebra. The particles are described by the variables Pj and
rj (j = 1, 2). Define the standard nonrelativistic variables

P12 = P1 + P2, q = (m2P1 −m1P2)/(m1 +m2)

R12 = (m1r1 +m2r2)/(m1 +m2), r = r1 − r2 (12)

Then, as follows from Eq. (6), in the nonrelativistic approximation the two-particle
quantities P, E and N are given by

P = P12, E = M +
P2

12

2M
− Mc2R2

12

2R2
, N = −MR12 (13)

where

M = M(q, r) = m1 +m2 +Hnr(r,q), Hnr(r,q) =
q2

2m12

− m12c
2r2

2R2
(14)

and m12 is the reduced two-particle mass. Here the operator M acts in the space of
functions χ(q) such that

∫
|χ(q)|2d3q <∞ and r acts in this space as r = i∂/∂q.

It now follows from Eq. (5) that M has the meaning of the two-body
mass. This can also be shown ([12, 13]) from the fact that M is the Casimir operator,
i.e. it commutes with all representation operators. As follows from Eq. (3), in the
dS case the Casimir operator of the second order is

I2 = −1

2

∑
ab

MabM
ab = E2 + N2 −B2 − J2 (15)

According to the known Schur lemma in representation theory, all elements in the
space of IR are eigenvectors of the Casimir operators with the same eigenvalue. A
direct calculation shows that for the operators (5) the numerical value of I2 is m2

dS +
9/4. One can also show [12] that for IRs with spin I2 = m2

dS − s2 + 9/4 where s is the
spin operator. Then the explicit calculation [12] shows that for the two-body system
I2 = M2 − S2 + 9/4 where S is the spin operator for the two-body system, i.e. the
angular momentum in the rest frame. Therefore M(q, r) is the internal two-body
Hamiltonian. Then, by analogy with the derivation of Eq. (8), in can be shown in
different ways that in semiclassical approximation the relative acceleration is given
by the same expression (8) but now a is the relative acceleration and r is the relative
radius vector.

The fact that two free particles have a relative acceleration is known for
cosmologists who consider dS symmetry on classical level. This effect is called the
dS antigravity. The term antigravity in this context means that the particles repulse
rather than attract each other. In the case of the dS antigravity the relative accelera-
tion of two free particles is proportional (not inversely proportional!) to the distance
between them. As shown above, this classical result is a direct consequence of GR.

The experimental results obtained in 1998 (see e.g. Ref. [18]) is that R is
of the order of 1026m, i.e. Λ is very small but, as stated in Ref. [18]), the accuracy
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of the experiment is of the order of 5% and therefore the cases Λ ≤ 0 are practically
excluded. This created the following problem.

In textbooks written before 1998 (when the cosmological acceleration was
discovered) it is often claimed that Λ is not needed since its presence contradicts
the philosophy of GR: matter creates curvature of space-time, so in the absence of
matter space-time should be flat (i.e. Minkowski) while empty dS space is not flat.
This philosophy has historical roots in view of the well-known fact that first Einstein
introduced Λ into his equations and then said that it was the greatest blunder of his
life. The problem whether the empty space-time may have a nonzero curvature was
also discussed in the dispute between Einstein and de Sitter.

However, such a philosophy has no physical meaning since the curvature
is only a mathematical way to describe the motion of real bodies and therefore the
curvature does not have a physical meaning for the empty space-time. However, in
view of the above statement, in the literature, the discovery of the fact that Λ 6= 0
has ignited many discussions. The most popular approach is as follows. One can
move the term with Λ in the Einstein equations from the left-hand side to the right-
hand one. Then the term with Λ is treated as the stress-energy tensor of a hidden
matter which is called dark energy. With such an approach one implicitly returns to
Einstein’s point of view that a curved space-time cannot be empty. In other words,
this is an assumption that the Poincare symmetry is fundamental while the dS one
is emergent. With the observed value of Λ this dark energy contains approximately
75% of the energy of the Universe. In this approach G is treated as a fundamental
constant and one might try to express Λ in terms of G. The existing quantum theory
of gravity cannot perform this calculation unambiguously since the theory contains
strong divergences. With a reasonable cutoff parameter, the result for Λ is such that
in units where h̄ = c = 1, GΛ is of the order of unity. This result is expected from
dimensionful considerations since in these units, the dimension of G is length2 while
the dimension of Λ is 1/length2. However, this value of Λ is greater than the observed
one by 122 orders of magnitude. In supergravity the disagreement can be reduced
but even in best scenarios it exceeds 40 orders of magnitude. This problem is called
the CC problem or dark energy problem.

Several authors criticized this approach from the following considerations.
GR without the contribution of Λ has been confirmed with a good accuracy in ex-
periments in Solar System. If Λ is as small as it has been observed then it can have a
significant effect only at cosmological distances while for experiments in Solar System
the role of such a small value is negligible. The authors of Ref. [20] titled ”Why All
These Prejudices Against a Constant?”, note that since the solution of the Einstein
equations depends on two arbitrary constants G and Λ it is not clear why we should
think that only a special case Λ = 0 is allowed.

In our approach the result for the cosmological acceleration has been ob-
tained without using dS space, its metric, connection etc. The fact that Λ 6= 0 is a
consequence of dS symmetry on quantum level: since dS symmetry is more general
than Poincare one then on classical level Λ must be nonzero. This has nothing to do
with gravity, existence or nonexistence of dark energy and with the problem whether
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or not empty space-time should be necessarily flat. The parameter R is fully analo-
gous to c and h̄. This parameter should not be used in pure dS theory and its only
purpose is to get a less general theory (Poincare one) as a formal limit R → ∞ of
dS theory. The question of why R is as it is, is not a matter of fundamental physics
since the answer is: because we want to measure distances in meters. In particular,
there is no guaranty that the CC is really a constant, i.e. does not change with time.

At the same time, our derivation depends on two assumptions. The result
r = i∂/∂q follows from the assumption that the momentum and position operators
are related to each other by the Fourier transform. As noted in Sec. 1, such a
choice of the position operator is problematic in view of the WPS effect. It has been
noted that for macroscopic bodies this effect is negligible. However, from the first
principles of quantum theory it is not clear whether there exists a universal choice of
the position operator and whether this operator is needed at all. Another problem is
that since the meaning of time on quantum level is not clear, the physical meaning
of the prescription on how classical equations of motion arise from quantum theory
is not clear as well.

5 Construction of IRs in discrete basis

As noted in Sec. 3, for IRs of the so(1,4) algebra it is possible to find a basis such
that all representation operators have only discrete spectrum. This is important for
understanding the relation between standard theory and FQT.

First of all, to make relations between standard theory and FQT more
straightforward, we will modify the commutation relations (3) by writing them in the
form

[Mab,M cd] = −2i(ηacM bd + ηbdMac − ηadM bc − ηbcMad) (16)

One might say that these relations are written in units h̄/2 = c = 1. However, as
noted in Sect. 3, fundamental quantum theory should not involve quantities h̄ and c
at all, and Eq. (16) indeed does not contain those quantities. The reason for writing
the commutation relations in the form (16) rather than (3) is that in this case the
minimum nonzero value of the angular momentum is 1 instead of 1/2. Therefore the
spin of fermions is odd and the spin of bosons is even. This will be convenient in
FQT where 1/2 is a very large number (see Sec. 2). As noted in Sec. 4, for our goals
it suffices to consider massive spinless IRs.

By analogy with the method of little group for constructing standard IRs,
we first define the rest states and then the other states can be obtained from them
by the action of representation operators. As noted in the preceding section, for the
operators (5) the numerical value of I2 is m2

dS + 9/4. However, if the commutation
relations are defined by Eq. (16) then the relation betweem I2 and mdS is I2 = m2

dS+9.
In spinless case the space of rest states is one-dimensional and its basis

consists of only one vector which we denote as e0. Since B is the dS analog of P (see
Sec. 4) and in the spinless case the angular momentum of the rest state is zero, we

17



define e0 as the vector satisfying the conditions

Be0 = Je0 = 0, I2e0 = (w + 9)e0 (17)

i.e. w has the meaning of m2
dS.

We define e1 = 2Ee0 and

en+1 = 2Een − [w + (2n+ 1)2]en−1 (18)

These definitions make it possible to find en for any n = 0, 1, 2....
We use the notation Jx = J1, Jy = J2, Jz = J3 and analogously for the

operators N and B. Instead of the (xy) components of the vectors it is convenient to
use the ± components such that Jx = J+ + J−, Jy = −i(J+ − J−) and analogously
for the operators N and B. We now define the elements enkl as

enkl =
(2k + 1)!!

k!l!
(J−)l(B+)ken (19)

It can be shown [13] that enkl is the eigenvector of the operator B2 with the
eigenvalue 4n(n+2)−4k(k+1), the eigenvector of the operator J2 with the eigenvalue
4k(k+1) and the eigenvector of the operator Jz with the eigenvalue 2(k−l). Therefore
different vectors enkl are mutually orthogonal. It can be shown [13] that the scalar
product compatible with the Hermiticity of the operators (E ,B,N,J) can be defined
such that

(enkl, enkl) = (2k + 1)!C l
2kC

k
nC

k
n+k+1

n∏
j=1

[w + (2j + 1)2] (20)

where Ck
n = n!/[(n − k)!k!] is the binomial coefficient. At this point we do not

normalize basis vectors to one since, as will be discussed below, the normalization
(20) has its own advantages. At a fixed value of n, k takes the values k = 0, 1, ...n, l
takes the values l = 0, 1, ...2k and if l and k are not in this range then enkl = 0.

Instead of l we define a new quantum number µ = k − l which can take
values −k,−k + 1, ...k. Each element of the representation space can be written as
x =

∑
nkµ c(n, k, µ)enkµ where the set of the coefficients c(n, k, µ) can be called the

WF in the (nkµ) representation. Assuming that we work with a finite field, a direct
calculation (see Ref. [13]) shows that

Ec(n, k, µ) =
n− k

2n
c(n− 1, k, µ) +

n+ 2 + k

2(n+ 2)
[w + (2n+ 3)2]c(n+ 1, k, µ)

Jzc(n, k, µ) = 2µc(n, k, µ) (21)

and for the expressions for other representation operators see Ref. [13]. It is seen
from the second expression that the meaning of the quantum number µ is such that
c(n, k, µ) is the eigenfunction of the operator Jz with the eigenvalue 2µ, i.e. µ is the
standard magnetic quantum number.
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We use c̃(n, k, µ) to denote the WF in the basis where the basis elements
are normalized to one. Then a direct calculation [13] shows that the action of the
representation operators is given by

E c̃(n, k, µ) =
1

2
[
(n− k)(n+ k + 1)

n(n+ 1)
(w + (2n+ 1)2)]1/2c̃(n− 1, k, µ) +

1

2
[
(n+ 1− k)(n+ k + 2)

(n+ 1)(n+ 2)
(w + (2n+ 3)2)]1/2c̃(n+ 1, k, µ)]

Nz c̃(n, k, µ) = − i
2

[
(k − µ)(k + µ)

(2k − 1)(2k + 1)(n+ 1)
]1/2

{[ (n+ k)(n+ k + 1)

n
(w + (2n+ 1)2)]1/2c̃(n− 1, k − 1, µ)−

[
(n+ 2− k)(n+ 1− k)

n+ 2
(w + (2n+ 3)2)]1/2c̃(n+ 1, k − 1, µ)} −

i

2
[

(k + 1− µ)(k + 1 + µ)

(2k + 1)(2k + 3)(n+ 1)
]1/2

{[ (n− k)(n− k − 1)

n
(w + (2n+ 1)2)]1/2c̃(n− 1, k + 1, µ)−

[
(n+ k + 2)(n+ k + 3)

n+ 2
(w + (2n+ 3)2)]1/2c̃(n+ 1, k + 1, µ)]}

Bz c̃(n, k, µ) = −2[
(k − µ)(k + µ)(n+ 1− k)(n+ 1 + k)

(2k − 1)(2k + 1)
]1/2c̃(n, k − 1, µ)

−2[
(k + 1− µ)(k + 1 + µ)(n− k)(n+ k + 2)

(2k + 1)(2k + 3)
]1/2c̃(n, k + 1, µ) (22)

and for the expressions for other representation operators see Ref. [13].
As noted in Secs. 4, the operator B is the dS analog of the usual momen-

tum P such that in Poincare limit B = 2RP (the factor 2 arises because we now use
the commutation relations (16) instead of (3)). At the same time, the operator J has
the same meaning as in Poincare invariant theory.

Consider now the semiclassical approximation in the normalized basis. In
view of the usual understanding of the structure of semiclassical WFs (see e.g. Ref.
[13]) a necessary condition for the semiclassical approximation is that the quantum
numbers (nkµ) are much greater than 1. We assume that a state is semiclassical if
its WF has the form

c̃(n, k, µ) = a(n, k, µ)exp[i(−nϕ+ kα− µβ)] (23)

where a(n, k, µ) is an amplitude, which is not small only in some vicinities of n = n0,
k = k0 and µ = µ0. We also assume that when the quantum numbers (nkµ) change
by one, the main contribution comes from the rapidly oscillating exponent. Then, as
follows from the first expression in Eq. (22), the action of the dS energy operator can
be written as

E c̃(n, k, µ) ≈ 1

n0

[(n0 − k0)(n0 + k0)(w + 4n2
0)]

1/2cosϕc̃(n, k, µ) (24)
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Therefore the semiclassical WF is approximately the eigenfunction of the dS energy
operator with the eigenvalue

1

n0

[(n0 − k0)(n0 + k0)(w + 4n2
0)]

1/2cosϕ.

When n0 � k0 and ϕ � 1 the eigenvalue equals (w + 4n2
0)

1/2. Since w = m2
dS, this

result shows that n is the dS analog of the magnitude of the momentum, i.e. in
Poincare approximation n ≈ R|P|.

6 System of two particles in discrete basis

Consider now a system of two free particles in dS theory. Then the two-particle
operator Mab is a sum of the corresponding single-particle operators and the two-
body Casimir operator can be defined by Eq. (15) with the two-particle operators
Mab. By analogy with the single-particle case, one can define the two-body operator
W which is an analog of the quantity w:

I2 = W − S2 + 9 (25)

where S is the two-body spin operator.
By analogy with standard theory, it is convenient to consider the two-body

mass operator if individual particle dS momenta n1 and n2 are expressed in terms of
the total and relative dS momenta N and n. In the c.m. frame we can assume that
B1 is directed along the positive direction of the z axis and then B2 is directed along
the negative direction of the z axis. Therefore the quantum number N characterizing
the total dS momentum can be defined as N = n1− n2. In nonrelativistic theory the
relative momentum is defined as q = (m2p1 −m1p2)/(m1 + m2) and in relativistic
theory as q = (E2p1−E1p2)/(E1 +E2). Therefore, taking into account the fact that
in the c.m. frame the particle momenta are directed in opposite directions, one might
define n as n = (m2n1 + m1n2)/(m1 + m2) or n = (E2n1 + E1n2)/(E1 + E2). These
definitions involve Poincare masses and energies. Another possibility is n = (n1 +
n2)/2. In all these cases we have that n→ (n+1) when n1 → (n1 +1), n2 → (n2 +1)
and n → (n − 1) when n1 → (n1 − 1), n2 → (n2 − 1). In what follows, only this
feature is important.

Consider the space of functions c̃(n) such that

∞∑
n=0

|c̃(n)|2 <∞

Let B be the operator which acts in this space as

Bc̃(n) =
1

2
[c̃(n+ 1) + c̃(n− 1)] (26)

and G = 1−B. As shown in Ref. [13], in the approximation when nj � kj (j = 1, 2)

W = W0 − 2(w1 + 4n2
1)

1/2(w2 + 4n2
2)

1/2G (27)
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where
W0 = w1 + w2 + 2(w1 + 4n2

1)
1/2(w2 + 4n2

2)
1/2 − 2B1B2 (28)

This operator can be represented as W0 = 4R2M2
0 where M2

0 = (p1+p2)
2, pj (j = 1, 2)

is the standard Poincare four-momentum of particle j and therefore M2
0 is the free

mass operator squared in Poincare invariant theory.
Since classical mechanics works with a very high accuracy at macroscopic

level, one might think that the validity of semiclassical approximation at this level
is beyond any doubts. However, to the best of our knowledge, this question has not
been investigated quantitatively. In quantum theory a physical quantity is treated
as semiclassical if its uncertainty is much less than its mean value. Consider WFs
describing the motion of macroscopic bodies as a whole (say the WFs of the Sun,
the Earth, the Moon etc.). It is obvious that uncertainties of coordinates in these
WFs are much less than the corresponding macroscopic dimensions. What are those
uncertainties for the Sun, the Earth, the Moon, etc.? What are the uncertainties of
their momenta?

If A is a physical quantity then we use ∆A to denote the uncertainty of this
quantity in some state. In standard quantum mechanics, the validity of semiclassical
approximation is defined by the product ∆r∆p while each uncertainty by itself can
be rather large. It is known that if, for example, the coordinate and momentum WFs
are Gaussian then ∆r∆p is of the order of unity. On the other hand, as noted in Sec.
1, the validity of the standard position operator is problematic. Do we know what
scenario for the distribution of momenta and coordinates takes place for macroscopic
bodies?

In view of the correspondence between standard theory and FQT we will
consider only WFs with a finite support. One might think that a necessary condition
for the validity of semiclassical approximation is that the exponent in the semiclassical
WF makes many oscillations in the region where the WF is not small. We will consider
WFs ψ(n) containing exp(−iϕn) such that ψ(n) can be different from zero only if
n ∈ [nmin, nmax]. Then, if δ = nmax − nmin, the exponent makes |ϕ|δ/2π oscillations
on [nmin, nmax] and ϕ should satisfy the condition |ϕ| � 1/δ. The problem arises
whether this condition is sufficient.

As already noted, a quantity can be semiclassical only if its means value is
much greater than its uncertainty. In particular, a quantity cannot be semiclassical
if its mean value is zero or very small. In Poincare theory the exponent is written
as exp(−ipr). Since n is the Poincare analog of Rp, one might think that ϕ is the
Poincare analog of r/R. Since Poincare limit is treated as R → ∞, in Poincare
limit ϕ is not zero only for cosmological distances. This poses the problem whether
ϕ can be semiclassical for non-cosmological distances. The dS analog of ∆r∆p is
∆ϕ∆n = ∆ϕδ and the problem arises whether there exist states where this product
is of the order of unity.

In Ref. [13] we discussed in detail the choice of the two-body relative
distance operator. Since the functions c̃(n) are discrete and have a finite support, we
now do not have an option to choose the momentum and coordinate WFs Gaussian.
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As shown in Ref. [13], if the coordinate r is treated as ϕR and r � R then even
for favorable scenarios ∆ϕ is of the order of 1/δ1/2. Therefore ∆ϕδ is a very large
value of the order of δ1/2 and this is unacceptable. We argue that the coordinate is
semiclassical if exp(−iϕn) is replaced by exp(−iθn) where θ = const/(δϕ)1/2.

The mean value of the operator W can be written as W = 4R2M2
0 + ∆W

where the last term is the dS correction to the result in Poincare theory.
If the exponent in the internal WF is exp(−iϕn), ϕ is understood as r/R

and ϕ� 1 then as follows from Eq. (27) [13]

∆W = −4R2[(m2
1 + p2

1)(m
2
2 + p2

2)]
1/2ϕ2 (29)

As noted above, this can be justified if r is cosmological but still much less than the
parameter R. As follows from Eq. (29), in the nonrelativistic approximation we get
the same result as in Eq. (14).

If the exponent in the internal WF is exp(−iθn), θ � 1 then as follows
from Eq. (27) [13]

∆W = −const2[(w1 + 4n2
1)(w2 + 4n2

2)]
1/2 δ1 + δ2
δ1δ2|ϕ|

(30)

and the result for the classical nonrelativistic Hamiltonian is

H(r,q) =
q2

2m12

− m1m2Rconst
2

2(m1 +m2)r
(

1

δ1
+

1

δ2
) (31)

where δj (j = 1, 2) is the width of the n-distribution for particle j. We see that the
correction disappears if the width of the dS momentum distribution for each body
becomes very large. In standard theory (over complex numbers) the only limitation
is that the width of the dS momentum distribution should be much less than the
mean value of this momentum. This is not a serious restriction and the width can
be arbitrarily large. In the next section we argue that in FQT it is natural that the
width of the momentum distribution for a macroscopic body is inversely proportional
to its mass. Then we recover the Newton gravitational law. Namely, if

δj =
R

mjG′
(j = 1, 2), const2G′ = 2G (32)

then

H(r,q) =
q2

2m12

−Gm1m2

r
(33)

In Ref. [13] we also discussed relativistic corrections to the Newton law. We conclude
that in our approach gravity is not an interaction but simply the dS correction to
standard free nonrelativistic Hamiltonian.

As noted above, classical equations of motions can be obtained from the
Hamiltonian in different ways. If m2 � m1 then the Newton law for particle 1 can
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be obtained from the single-particle operators discussed in the preceding section. In
this case δ1 � δ2 and, as follows from Eqs. (31) and (32),

H(r,q) =
q2

2m1

−Gm1m2

r
(34)

if

δ2 =
Rconst2

2m2G
(35)

Therefore for particle 1 the presence of the heavy body is manifested such that the
single-particle width δ1 should be replaced by the width of the n-distribution which
equals δ2.

7 Semiclassical states in FQT

For any new theory there should exist a correspondence principle that at some condi-
tions this theory and standard well tested one should give close predictions. As noted
in Sec. 2, we treat standard quantum theory as a special case of FQT in the formal
limit p→∞. A detailed discussion of FQT has been given in Refs. [11, 13, 14]. Here
we describe only basic facts needed for further presentation.

In conventional quantum theory the state of a system is described by a
vector x̃ from a separable Hilbert space H. We use a ”tilde” to denote elements of
Hilbert spaces and complex numbers while elements of linear spaces over a finite ring
or field and elements of the corresponding ring or field will be denoted without a
”tilde”.

Let (ẽ1, ẽ2, ...) be a basis in H. This means that x̃ can be represented as

x̃ = c̃1ẽ1 + c̃2ẽ2 + ... (36)

where (c̃1, c̃2, ...) are complex numbers. It is assumed that there exists a complete
set of commuting selfadjoint operators (Ã1, Ã2, ...) in H such that each ẽi is the
eigenvector of all these operators: Ãj ẽi = λ̃jiẽi. Then the elements (ẽ1, ẽ2, ...) are
mutually orthogonal: (ẽi, ẽj) = 0 if i 6= j where (...,...) is the scalar product in H. In
that case the coefficients can be calculated as

c̃i =
(ẽi, x̃)

(ẽi, ẽi)
(37)

Their meaning is that |c̃i|2(ẽi, ẽi)/(x̃, x̃) represents the probability to find x̃ in the
state ẽi. In particular, when x̃ and the basis elements are normalized to one, the
probability equals |c̃i|2.

Let us note that the Hilbert space contains a big redundancy of elements,
and we do not need to know all of them. Indeed, with any desired accuracy we can
approximate each x̃ ∈ H by a finite linear combination

x̃ = c̃1ẽ1 + c̃2ẽ2 + ...c̃nẽn (38)
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where (c̃1, c̃2, ...c̃n) are rational complex numbers. This is a consequence of the known
fact that the set of elements given by Eq. (38) is dense in H. In turn, this set is
redundant too. Indeed, we can use the fact that Hilbert spaces in quantum theory are
projective: ψ and c̃ψ (c̃ 6= 0) represent the same physical state. Then we can multiply
both parts of Eq. (38) by the common denominator of the numbers (c̃1, c̃2, ...c̃n). As
a result, we can always assume that in Eq. (38) c̃j = ãj + ib̃j where ãj and b̃j
are integers. The meaning of the fact that Hilbert spaces in quantum theory are
projective is very clear because not the probability itself but the relative probabilities
of different measurement outcomes have a physical meaning.

In FQT we can consider complex analogs of finite rings or fields. For
example, we can consider the rings Rp2 = Rp + iRp or fields Fp2 = Fp + iFp. The
latter definition is valid if p is prime and p = 3 (mod 4) but quadratic extensions of
Fp can be also used if p = 1 (mod 4) [11, 13].

Since complex conjugation is the automorphism of Rp2 (and Fp2) then, by
analogy with conventional quantum theory, in FQT it is possible to formally consider
situations when linear spaces over Rp2 (or Fp2) used for describing physical states, are
supplied by a scalar product and it is also possible to consider analogs of Hermitian
operators.

Summarizing this discussion, we conclude that if p is large then there
exists a correspondence between the description of physical states on the language of
Hilbert spaces and self-adjoint operators in them on one hand, and on the language
of linear spaces over Rp2 and Hermitian operators in them on the other. However, in
FQT probabilistic interpretation can be only approximate: it is valid only for states
the norm of which is much less than p.

As noted in Sec. 5, a single-particle WF can be written as

x =
∑
nkµ

c(n, k, µ)enkµ

For the validity of semiclassical approximation the condition∑
nkµ

||e(n, k, µ)||2|c(n, k, µ)|2 � p (39)

should be satisfied. A detailed analysis in Ref. [13] shows that if n � k then this
condition can be satisfied if

δlnw � lnp (40)

Therefore not only the number p should be very large, but even lnp should be very
large. Note that in finite mathematics there is no logarithm but in number theory it
is rather often used for estimations. For example, the famous prime number theorem
describing the asymptotic distribution of primes involves logarithm.

For elementary particles the condition (40) is always valid without any
doubts. Consider now what happens in the case of a macroscopic body which consists
of many elementary particles. In quantum theory, state vectors of a system of N
bodies belong to the Hilbert space which is the tensor product of single-body Hilbert
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spaces. This means that state vectors of the N -body systems are all possible linear
combinations of functions

ψ(n1, k1, l1, ...nN , kN , lN) = ψ1(n1, k1, l1) · · ·ψN(nN , kN , lN) (41)

By definition, the bodies do not interact if all representation operators of the sym-
metry algebra for the N -body systems are sums of the corresponding single-body
operators. For example, the energy operator E for the N -body system is a sum
E1 +E2 + ...+EN where the operator Ei (i = 1, 2, ...N) acts nontrivially over its ”own”
variables (ni, ki, li) while over other variables it acts as the identity operator.

If we have a system of noninteracting bodies in standard quantum theory,
each ψi(ni, ki, li) in Eq. (41) is fully independent of states of other bodies. However,
in FQT the situation is different. Here, as shown in the preceding section, a necessary
condition for the WF to have a probabilistic interpretation is given by Eq. (40). As
noted above, for elementary particles this is not a serious restriction. However, if a
system consists of N components, a necessary condition that the WF of the system
has a probabilistic interpretation is

N∑
i=1

δilnwi � lnp (42)

where δi = ∆ni and wi = 4R2m2
i where mi is the mass of the subsystem i. This

condition shows that in FQT the greater the number of components is, the stronger
is the restriction on the width of the dS momentum distribution for each component.
This is a crucial difference between standard theory and FQT. A naive explanation
is that if p is finite, the same set of numbers which was used for describing one body
is now shared between N bodies. In other words, if in standard theory each body in
the free N -body system does not feel the presence of other bodies, in FQT this is not
the case. This might be treated as an effective interaction in the free N -body system.

The existing quantum theory does not make it possible to reliably calculate
the width of the total dS momentum distribution for a macroscopic body and at best
only a qualitative estimation of this quantity can be given. The above discussion
shows that the greater the mass of the macroscopic body is, the stronger is the
restriction on the dS momentum distribution for each subsystem of this body. Suppose
that a body with the mass M can be treated as a composite system consisting of
similar subsystems with the mass m. Then the number of subsystems is N = M/m
and, as follows from Eq. (42), the width δ of their dS momentum distributions should
satisfy the condition Nδlnw � lnp where w = 4R2m2. Since the greater the value
of δ is, the more accurate is the semiclassical approximation, a reasonable scenario is
that each subsystem tends to have the maximum possible δ but the above restriction
allows to have only such value of δ that it is of the order of magnitude not exceeding
lnp/(Nlnw).

The next question is how to estimate the width of the total dS momentum
distribution for a macroscopic body. For solving this problem one has to change
variables from individual dS momenta of subsystems to total and relative dS momenta.
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Now the total dS momentum and relative dS momenta will have their own momentum
distributions which are subject to a restriction similar to that given by Eq. (42). If we
assume that all the variables share this restriction equally then the width of the total
momentum distribution also will be a quantity not exceeding lnp/(Nlnw). Suppose
that m = N1m0 where m0 is the nucleon mass. The value of N1 should be such
that our subsystem still can be described by semiclassical approximation. Then the
estimation of δ is

δ = N1m0lnp/[2Mln(2RN1m0)] (43)

Suppose that N1 can be taken to be the same for all macroscopic bodies. For example,
it is reasonable to expect that when N1 is of the order of 103, the subsystems still
can be described by semiclassical approximation but probably this is the case even
for smaller values of N1.

In summary, although calculation of the width of the total dS momentum
distribution for a macroscopic body is a very difficult problem, FQT gives a reasonable
qualitative explanation why this quantity is inversely proportional to the mass of the
body. With the estimation (43), the result given by Eq. (31) can be written in the
form (33) where

G =
2constRln(2RN1m0)

N1m0lnp
(44)

In Sec. 3 we argued that in theories based on dS invariance there should
be no dimenful quantities. In particular, neither the gravitational nor cosmological
constant can be fundamental. In units h̄/2 = c = 1, the dimension of G is length2

and its numerical value is l2P where lP is the Planck length (lP ≈ 10−35m). Equation
(44) is an additional indication that this is the case since G depends on R (or the
cosmological constant) and there is no reason to think that it does not change with
time. Since GdS = GΛ is dimensionless in units h̄/2 = c = 1, this quantity should
be treated as the gravitational constant in dS theory. If µ = 2Rm0 is the dS nucleon
mass then Eq. (44) can be written as

GdS =
12const ln(N1µ)

N1µlnp
(45)

As noted in Sect. 4, standard cosmological constant problem arises when one tries to
explain the value of Λ from quantum theory of gravity assuming that this theory is
QFT, G is fundamental and dS symmetry is a manifestation of dark energy (or other
fields) on flat Minkowski background. Such a theory contains strong divergences and
the result depends on the value of the cutoff momentum. With a reasonable assump-
tion about this value, the quantity Λ is of the order of 1/G and this is reasonable
since G is the only parameter in this theory. Then Λ is by more than 120 orders of
magnitude greater than its experimental value. However, in our approach we have
an additional fundamental parameter p. Equation (45) shows that GΛ is not of the
order of unity but is very small since not only p but even lnp is very large. For a
rough estimation, we assume that the values of const and N1 in this expression are
of the order of unity. Then if, for example, R is of the order of 1026m, we have that µ
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is of the order of 1042 and lnp is of the order of 1080. Therefore p is a huge number of
the order of exp(1080). As noted in Sec. 4, the value of R may be even much greater
than 1026m and in that case the value of p will be even much greater than exp(1080).

Concluding this section we would like to make remarks about the hierarchy
of physical theories. As discussed in Secs. 3 and 4, transition from a more general
theory to a less general one can be accomplished such that the more general theory
can be written with some finite parameter and the less general theory is obtained
as a formal limit when this parameter goes to zero or infinity. From this point of
view, FQT is the most general theory since all other theories can be obtained from
FQT by this procedure. Since FQT is based on finite mathematics it should depend
on a finite parameter p which is roughly the greatest possible number in the theory
and no physical quantity can exceed this number. As noted above, in our approach
gravity is a consequence of the fact that p is finite. It is also obvious that FQT
should not depend on any dimenful parameters. When we take a formal limit p→∞
we obtain standard dS or AdS theories. They still do not depend on dimensionful
quantities. However, when we introduce the quantity R and take the limit R → ∞
we obtain quantum Poincare theory in which the dimensionful parameters can have
only the dimension of length or its powers. When we take the limit h̄→ 0 or c→∞
we obtain less general theories with greater number of dimensions. The less general
theory is classical nonrelativistic theory which depend on dimensions (kg,m, s).

8 Classical equations of motions in FQT

8.1 Preliminary remarks

In standard quantum theory a necessary condition for a WF to be semiclassical is
that it contains a rapidly oscillating exponent. However, in finite mathematics there
is no exponent. In view of the discussion in Sec. 1, a problem arises whether classical
equations of motion can be derived from quantum theory without using classical
notions of space-time or even without using classical notions at all. In this section
we propose a possible approach for tackling this very difficult problem. This area of
quantum theory is terra incognita and probably the problem can be solved only with
fundamentally new ideas. History of physics tells us that in any theory it is desirable
to use the least necessary number of notions. For this reason we first discuss which
notions of the present quantum theory might be obsolete in the future theory.

We first discuss whether it is necessary that quantum theory should involve
complex numbers. The present quantum theory is based on complex numbers for
several reasons. First, the theory involves momenta and coordinates which are related
to each other by the Fourier transform. As noted in Sec. 1, this property is inherited
from classical electrodynamics and in quantum theory it is problematic. Another
reason is that quantum theory involves selfadjoined operators in Hilbert spaces and,
according to the spectral theorem, the spectral decomposition for them is always valid
only in complex Hilbert spaces.
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However, if we accept arguments given in Sec. 2 then fundamental quan-
tum theory can be based only on finite mathematics. The field of complex numbers C
is algebraically closed, i.e. any equation of the nth power in C has exactly n solutions.
On the other hand, no finite ring or field is algebraically closed; in particular here an
equation of the nth power may have no solution at all. However, in single-particle
IRs on finite rings or fields discussed in Ref. [11, 13] the spectrum of all necessary
physical operators in question is defined explicitly by construction and therefore the
fact that finite rings and fields are not algebraically closed is not important in this
case.

If A is the operator of a vector quantity then in quantum theory one
can discuss the operators (Ax, Ay, Az) representing projections of the vector quantity
on coordinate axes. However, the notion of coordinate axes is pure classical and
it does not seem natural that this notion is present in quantum theory. In classical
approximation A becomes a vector and in this approximation quantum theory should
determine the projection of the vector on coordinate axes but the notion of coordinate
axis should be used only on classical level.

As an example, consider the operators of the so(3) (or su(2)) algebra.
They satisfy the commutation relations (4) which necessarily involve i because the
operators are selfadjoined. However, from the point of view of theory of Lie algebras,
the most natural basis of operators in the representation space is not (Mx,My,Mz)
but the Cartan-Weyl basis (M+,M−,M0) where M0 is the representation operator of
the basis element of the Cartan subalgebra and M± are the representation operators of
the root elements in the algebra. The commutation relations between these operators
are:

[M0,M−] = −2M−, [M0,M+] = 2M+, [M+,M−] = M0 (46)

and the Casimir operator is

K = M2
0 − 2M0 + 4M+M− = M2

0 + 2M0 + 4M−M+ (47)

These relations do not involve i and if the basis of the representation space consists
of eigenvectors of the operator M0 then the matrix elements of all representation
operators are real.

If we now define Mz = M0, Mx = M+ +M−, My = −i(M+−M−) then the
relations (46) become (4) and K = M2. We expect that in classical approximation the
operators (Mx,My,Mz) become real values but it is clear that if the representation
is considered in the space over real numbers then it is possible to obtain real values
only for (Mx,Mz,M

2) but not for My. However, the real value for the magnitude
of My can be found since M2

y = M2 −M2
x −M2

z and so only the sign of My is not
defined. It seems unnatural that for defining only the sign of My we must extend the
representation space to the space over complex numbers. A problem arises whether
the real WF has a property which defines the direction of My in classical limit. Below
we discuss a similar problem and show that such a property does exist.

For the dS algebra, the commutation relations in the Cartan-Weyl basis
and the relations between the Cartan-Weyl operators and the operators Mab are given
in Ref. [13].
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8.2 One-dimensional model

Consider a system of two particles with the masses m1 and m2 such that m2 � m1.
Then, as noted at the end of Sec. 6, particle 1 can be considered in the framework of
single-particle problem but the width of the n1 distribution should be replaced by the
width of the n distribution which equals δ = δ2. For simplicity we will consider the
case when on classical level the particle is moving along the z-axes. The corresponding
semiclassical WF is the eigenstate of the operator Jz with the eigenvalue µ = 0 and
such that the parameter α in Eq. (23) is zero or π. Our goal is to obtain classical
results without using standard semiclassical approximation, position operators and
time but proceeding only from quantum states. However, the semiclassical results give
a hint that if k � n then a simple case which we can consider is the one-dimensional
model where the WF c(n) depends only on n and, as follows from the first expression
in Eq. (21)

Ec(n) =
1

2
c(n− 1) +

1

2
[w + (2n+ 3)2]c(n+ 1) (48)

Although we work in FQT, it will be helpful to compare the results with those ob-
tained in standard theory because our physical intuition is based on that theory.
Here, as follows from Eq. (22), the dS energy operator acts on the normalized WF as

E c̃(n) =
1

2
[(w + (2n+ 1)2)]1/2c̃(n− 1) +

1

2
[w + (2n+ 3)2)]1/2c̃(n+ 1) (49)

For the correspondence with standard theory, in FQT it is desirable to
work with least possible numbers in order to avoid comparisons modulo p whenever
possible. We now use n1 and n2 to define the minimum and maximum values of n in
the support of c(n). Then by using the fact that the space of states is projective, as
follows from Eq. (20), the normalization of the elements en can be chosen as

(en, en) =
n∏

j=n1+1

[w + (2j + 1)2] (n ∈ [n1, n2]) (50)

Then up to a normalization factor the relation between the WFs in FQT and in
standard theory can be written in the form

c̃(n2 − l) = c(n2 − l)W−l/2{
l−1∏
m=0

1

W
[w + (2n2 − 2m+ 1)2]}−1/2 (51)

where l = n2 − n and W = w + (2n2 + 1)2.
Since c(n) has a finite support it cannot be the eigenstate of the operator E .

For example, c(n2 + 1) = 0 but, as follows from Eq. (48), Ec(n2 + 1) = c(n2)/2 6= 0.
We will see below that the uncertainty of E is minimal when Ec(n) = λc(n) for
n ∈ [n1, n2]. Since the norm of en is maximal when n = n2, we want to work with
least possible numbers, the states are projective, the minimum possible value of c(n2)
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in FQT is c(n2) = ±1 then we choose c(n2) = 1. Then, as follows from Eq. (48), for
n ∈ [n1, n2] all the values c(n) can be found consecutively:

c(n− 1) = 2λc(n)− [w + (2n+ 3)2]c(n+ 1) (52)

In particular, c(n2− 1) = 2λ, c(n2− 2) = 4λ2−W etc. However, it is problematic to
find an explicit expression for c(n) if n ia arbitrary.

In the nonrelativistic case w � n2
2 and for semiclassical WFs δ = (n2 −

n1)� n2. So one might think that a good approximation is to neglect the variations
of [w+(2n+1)2] at n ∈ [n1, n2] and consider the following approximation of Eq. (52):

c(n− 1) = 2λc(n)−Wc(n+ 1) (53)

Then it is easy to prove by induction that

c(n2 − l) =
∑
m=0

(−1)m(l −m)!

m!(l − 2m)!
(2λ)l−2mWm (54)

where the upper limit is defined by the condition that 1/(l − 2m)! = 0 if l < 2m. As
follows from Eq. (51), in this approximation

c̃(n2 − l) = C(l) = C(l, x) =
∑
m=0

(−1)m(l −m)!

m!(l − 2m)!
(2x)l−2m (55)

where x = λ/W 1/2. This is the Gegenbauer polynomial which in the literature is
denoted as C1

l (x), and it is known that if x = cosθ then C(l) = sin((l + 1)θ)/sinθ.
Suppose that sin((δ+ 2)θ) = 0. Then (δ+ 2)θ = kπ where k is an integer,

sin((δ + 1)θ) = (−1)k+1sinθ and

Norm2 =
δ∑
l=0

C(l)2 =
1

sin2θ

δ∑
l=0

sin2((l + 1)θ) =
δ + 2

2sin2θ
(56)

In this case E c̃(n) = λc̃(n) for all n ∈ [n1, n2], λ is exactly the mean value of the
operator E :

Ē =
1

Norm2
(c̃, E c̃) =

1

Norm2

n2∑
n=n1

c̃(n)E c̃(n) = λ, (57)

and the uncertainty of E is

∆E =
1

Norm
(c̃, (E − Ē)2c̃)1/2 =

1

Norm
||(E − Ē)c̃|| = (

W

δ + 2
)1/2|sinθ| (58)

Note that (E − Ē)c̃(n) is not zero only if n = n1 − 1 or n = n2 + 1.
As already noted, the choice of the energy sign is only the matter of conven-

tion but not the matter of principle. Consider, for example, the case of nonrelativistic
classical mechanics. Here the Hamiltonian is H = p2/(2m) + U(r) where U(r) is the
potential energy. The equations of motions can be obtained from the minimum action

30



principle. However, if we define H = −p2/(2m)− U(r) then the same equations can
be obtained from the maximum action principle. Also, if we require that the energy
is a conserved physical quantity and coordinates and momenta are related to each
other by Eq. (1) then the sign of H is not important at all. Let us note that in finite
mathematics the notions of <, >, minimum and maximum can be only approximate
in some situations. They become well defined only in the degenerate case when we
take the limit p→∞.

As follows from Eq. (21), if k � n then the energy of the dS particle which
is far from other particles is E ≈ ±W 1/2 and, as follows from Eqs. (7) and (34), for
nonrelativistic particles the interaction gives a small correction to |E|. Therefore λ
can be positive or negative but |λ|/W 1/2 is close to 1 but is less than 1. Therefore
one can choose θ such that cosθ = λ/W 1/2 and θ is close to zero or π. Therefore, as
follows from Eq. (58), ∆E/|Ē | ≈ |sinθ|/δ1/2 is very small because δ is very large and
|sinθ| is small. Indeed, a simple estimation shows that if the kinetic and potential
energies are of the same order then θ is of the order of v/c and for the cosmological
repulsion θ is of the order of r/R. As a consequence, the particle state is strongly
semiclassical.

As follows from Eq. (51), in FQT the WF also makes many oscillations on
[n1, n2]. In finite mathematics there is no sine function and Eq. (43) is not the exact
prescription for δ but an estimation. In view of the above discussion it is reasonable
to think that within this estimation the semiclassical function tends to choose such a
value of δ that the formal result (55) for c(n1 − 1) tends to be as small as possible.

We denote y = 2n2 + 1. Since w + (2n + 3)2 = W − 4(l − 1)y + 4(l − 1)2

and 4(l − 1)2 � 4(l − 1)y � W , one might think that the first-order correction in y
will give a small correction to the solution of Eq. (48) given by Eq. (55). We now
denote c(0)(n) the zero-order solution given by Eq. (55) and c(1)(n) the first-order in
y. Then, as follows from Eq. (48)

c(1)(n2 − l) = 2y(l − 2)
∑
m=0

(−1)m(l −m− 1)!

m!(l − 2m− 2)!
(2λ)l−2m−2Wm =

−2y(l − 2)
d

dW
{
∑
m=0

(−1)m(l −m)!

m!(l − 2m)!
(2λ)l−2mWm} (59)

We are interested in cases where l is order of δ, i.e. is very large. Then,
as follows from Eqs. (55), (59) and (51), that if the terms linear in y are taken into
account then in first order in y the result in standard theory is

C(l) = (1− l2y

W
)
sin((l + 1)θ)

sinθ
− 2yl

W l/2

d

dW
{sin((l + 1)θ)

sinθ
W l/2} =

sin((l + 1)θ)

sinθ
− ylλ

W (W − λ2)1/2
[l
cos((l + 1)θ)

sinθ
− sin((l + 1)θ)

sin2θ
cosθ] (60)

If lsinθ � 1 then the last term can be neglected and with the same accuracy

C(l) =
1

sinθ
sin[(l + 1)θ − l2ycosθ

Wsinθ
] (61)
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Note that the term with y depends on the sign of λ because cosθ = λ/W 1/2.
The above calculation is based on the assumption that the terms linear in

y give small corrections to the main term, in particular we assumed that yl2/W � 1.
The value of W is the Poincare analog of the energy squared: W = 4R2(m2 + p2),
n2 is the Poincare analog of R|p| and, as follows from Eq. (35), δ is of the order of
R/rg where rg is the gravitational (Schwarzschild) radius of the heavy body. Then
if l is of the order of δ and R is of the order of 1026m then indeed yl2/W � 1.
However, as noted above, the value of R may be much greater than 1026m, Poincare
limit is defined as R → ∞ and in the formal limit R → ∞, yδ2/W → ∞. So there
is no guaranty that the second term of the argument of sine in Eq. (61) is small. In
addition, as noted above, if the kinetic energy is of the same order that the potential
one then θ is of the order of v/c but for the cosmological repulsion θ is of the order
of r/R. Therefore only the exact solution of Eq. (48) can solve the problem.

Nevertheless, regardless of the relation between the first and second terms
in the argument of sine, the function given by Eq. (61) is an approximate solution
of Eq. (49) if E c̃(n) = λc̃(n) for n ∈ [n1, n2]. Indeed, we can neglect the difference
between [w + (2n + 1)2]1/2 and [w + (2n + 3)2]1/2 because it is very small and, since
y/(Wsinθ)� 1 we have

C(l + 1) = sin[(l + 1)θ − l2ycosθ

Wsinθ
+ θ − 2lycosθ

Wsinθ
]

C(l − 1) = sin[(l + 1)θ − l2ycosθ

Wsinθ
− θ +

2lycosθ

Wsinθ
] (62)

and therefore

C(l + 1) + C(l − 1) = 2sin[(l + 1)θ − l2ycosθ

Wsinθ
]cos(θ − 2lycosθ

Wsinθ
) (63)

Then Eq. (49) will be satified if

[w + 4(n+ 1)2]1/2cos(θ − 2lycosθ

Wsinθ
) = λ (64)

Since yl� W then

[w + 4(n+ 1)2]1/2 ≈ W 1/2(1− 2ly/W ), cos(θ − 2lycosθ

Wsinθ
) ≈ cosθ(1 + 2ly/W ) (65)

and Eq. (64) is indeed satisfied in first order in yl/W .
However, the fact that the function given by Eq. (61) is an approximate

solution does not mean that this solution is unique. The argument of the sine can
contain additional terms which are not small but the function still will satisfy Eq.
(49). Meanwhile, the solution should be unique because it is fully defined by the
conditions c(n2) = 1, c(n2 − 1) = 2λ. We conclude that even in the one-dimensional
model discussed above the problem of finding the exact solution of Eq. (48) is very
difficult.
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8.3 Classical equations of motion

As already noted, Eq. (43) gives the estimation of the width of the relative dS
momentum if the mass of particle 2 is much greater than the mass of particle 1. It
also follows from Eq. (44) that not only p is a very large number but even lnp is very
large. Suppose now that p changes. We do not say that p changes with time because
time is a classical notion while we are considering a pure quantum problem. Below
we propose a scenario that classical time arises as a consequence of the fact that p
changes. As noted in Ref. [13], there are reasons to think that at early stages of the
Universe p was much less than now i.e. p is increasing.

If p changes by ∆p then ∆p cannot be infinitely small because, roughly
speaking, p is an integer. Moreover, a possible scenario is that at every step p is
multiplied by a number k and if k � 1 then ∆p � p. However, in that case lnp
changes by ∆lnp = lnk. This quantity also cannot be infinitely small but it is
possible that ∆lnp/lnp is a very small real number. As follows from Eq. (43),
∆δ/δ = ∆lnp/lnp. Therefore ∆δ/δ does not depend on the heavy mass and depends
only on the change of p. Since time is a dimensionful parameter, we define time
such that its variation is given by ∆t = R∆lnp/lnp. In that case ∆t also cannot be
infinitely small but can be very small in comparison with macroscopic times.

In view of Eq. (44) and the definition of time the following problem arises.
If p changes then does it mean that G changes? In our approach the number p is
fundamental while G is not. In view of the remarks in Secs. 3 and 7, a problem also
arises whether dimensionful quantities can be fundamental. In particular, as noted
in Sec. 7, the quantity GdS given by Eq. (45) is more fundamental than G because it
is dimensionless. Equation (44) shows that G depends not only on p but also on R.
This parameter has the dimension of meter because people want to deal with Poincare
momenta and not with dimensionless dS angular momenta. So it is not even clear
whether R expressed in meters changes or not. In any case, among the constants
which are treated as fundamental, G is measured with the least accuracy and its
value is known only for approximately 300 years. If ∆lnp � lnp then it is quite
possible that the change of G could not be noticed for such a short period of time.
In view of these remarks we assume that relative variations of such quantities as R
and δ are much smaller than relative variations of standard momenta and coordinates
characterizing the particle under consideration. In what follows we use p to denote
the magnitude of standard momentum.

The problem arises how n2 changes with the change of δ. Understanding
this problem is very difficult because, as discussed in the preceding subsection, even
the problem of finding exact solutions of Eq. (48) is very difficult. For this reason
we can only make assumptions about the dependence of the variation of n2 on the
variation of δ. We assume that the ratio c(n2 − 1)/c(n2) does not change with the
change of δ and then, since the ratio is 2λ, λ is the conserved quantity. For simplic-
ity, in what follows we will write n instead of n2 and consider only nonrelativistic
approximation.

33



Consider first a possibility that

∆n = ±(W − λ2)1/2∆δ

2δ
(66)

where the sign depends on whether λ is positive or negative, respectively. In nonrel-
ativistic approximation cosθ ≈ ±1 depending on the sign of λ and Eq. (61) contains
ycosθ. Therefore it is natural to think that the sign of ∆n depends on the sign of λ.
We treat Eq. (66) as an approximate consequence of FQT formulated in terms of real
numbers and so we can use classical mathematics for treating this expression with a
good approximation.

Consider a situation in standard theory when a particle is moving along
the z-axis and is attracted or repulsed by a body in the origin. Then the sign of
the change of the distance to the origin depends on whether the particle momentum
and radius-vector are parallel or antiparallel. In standard dS theory the values of
the momentum and radius-vector are defined by the operators Bz and Nz (see Eq.
(22)). However, the expressions for Nz contains i and this is not in the spirit of the
discussion in subsection 8.1. As noted in this discussion, in standard theory complex
numbers are necessary only for defining the direction of My. In standard theory it is
assumed that the energy is always positive while, as noted in Subsec. 8.2, the energy
sign maybe positive and negative as well. Now we see that in the above scenario the
sign of λ defines whether the variation of n is positive or negative.

If θ is defined such that cosθ = λ/W 1/2 and sinθ is positive then θ is closed
to 0 or π. In the last case we replace π− θ by θ. Then θ ≈ sinθ = (1−λ2/W )1/2 and

λ ≈ ±W 1/2(1− θ2/2) ≈ 2R(m+ p2/2m−mθ2/2), p∆p = m2θ∆θ (67)

The last relation follows from the fact that λ is a conserved quantity. Finally, if we
define r = Rθ and note that n = Rp then, as follows from the definition of time and
Eqs. (66) and (67)

∆p = ±mr
R2

∆t, ∆r = ± p

m
∆t (68)

In view of the remarks on Eq. (1), the second expression shows that the quantity r
defined above indeed has the meaning of the coordinate. Since the quantities p and r
are positive by construction, it is clear that in our one-dimensional model the sign is
± when the momentum and radius-vector are collinear and anticollinear, respectively.

In the approximation when ∆t in Eq. (68) can be treated as infinitely
small, we get ṗ = ±mr/R2, ṙ = ±p/m, i.e. exactly the Hamilton equations obtained
from the Hamiltonian H = p2/(2m) − mr2/(2R2). It follows from these relations
that r̈ = r/R2 in agreement with Eq. (8) (taking into account that we work in units
where c = 1). Therefore we have repulsion as it should be in accordance with the
consideration in Sec. 4. Here it has been noted that the result for dS antigravity is
compatible with the prescription of standard quantum theory that the coordinate and
momentum representations should be related to each other by the Fourier transform.

Consider now a possibility that

∆n = ± (W − λ2)2

4const2W 3/2
∆δ (69)
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where const is the same as in Eq. (32). We can define θ, assume that θ � 1 and use
Eq. (67) as above. Then ∆n = ±W 1/2θ4∆δ/(4const2). However, if we define r as
above then this quantity will not satisfy the second condition in Eq. (68), i.e. it will
not have the meaning of coordinate. Therefore in the given case the momenta and
coordinates cannot be related by the Fourier transform. In accordance with Sec. 6,
we now define θ = const/(δϕ)1/2 where ϕ = r/R. Then as follows from the definition
of time and Eqs. (32) and (67)

∆p = ±MmG

r2
∆t, ∆r = ∓ p

m
∆t (70)

where M is the mass of the heavy particle 2. As follows from the second expression,
the quantity r has now the meaning of the coordinate in view of the remarks on Eq.
(1). We conclude that the sign in Eq. (69) should be opposite to that in Eq. (66): it is
± when the momentum and radius-vector are anticollinear and collinear, respectively.
In the approximation when ∆t is infinitely small we get ṗ = ±MmG/r2, ṙ = ∓p/m
and r̈ = −MG/r2. The last relation shows that in this case we have attraction as it
should be for gravity.

We have considered two cases when ∆n is given by Eqs. (66) and (69),
respectively. The first case reproduces standard dS antigravity and the second case
— standard gravity. The comparison of those expressions shows that the first case
takes place when δθ3 � 1 and the second case — in the opposite situation when
δθ3 � 1. As follows from Eq. (32), δ is of the order R/rg where rg is the gravitational
radius of the heavy particle 2. As shown above, θ = r/R in the first case and
θ = const(R/δr)1/2 ≈ (rg/r)

1/2 in the second one. Therefore the above conditions are
indeed satisfied if R is very large.

9 Conclusion

In Secs. 1 and 2 we argue that, although quantum theory exists for more than 90
years and it is now clear that classical physical intuition typically does not work
here, quantum theory inherited many its notions from classical theory. Quantum
theory is treated as more general as classical one and at some conditions quantum
theory should reproduce all results of classical theory, including classical equations
of motions. However, in quantum theory the notion of space-time is unnatural and
should not be present at all. In addition, quantum theory is based on the results of
classical mathematics developed mainly when people did not know about the existence
of atoms and elementary particles. From the point of view of quantum theory, the
notions of infinitely small/large, continuity etc. also are unnatural and the theory
should be based on finite mathematics.

A natural generalization of standard quantum theory is such that quan-
tum states are elements of a finite ring or field with the characteristic p such that no
physical quantity exceeds p. This number is a fundamental parameter defining phys-
ical laws. However, this does not mean that this number is always the same in the
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history of Universe. We do not say that the number is the same at all times because
time is a pure classical notion and should not be present in quantum theory. We
argue that the existence of classical time is a consequence of the fact that p changes
and in Sec. 8 we define time such that its variation ∆t is related to the variation of
p as

∆t =
R

c

∆lnp

lnp
(71)

where R is the de Sitter (dS) radius. Then as shown in Subsec. 8.3, there exist
scenarios when classical equations of motions can be obtained from pure quantum
notions without using space, time and standard semiclassical approximation.

In this scenario the goal of quantum theory is to determine how mean
values of dS angular momenta change when the widths of their distribution change.
As shown in Subsec. 8.2, even in the one-dimensional model discussed in this sub-
section the problem of finding exact solutions is very difficult. However, in Subsec.
8.3 we consider two possibilities when classical equations of motion in standard dS
antigravity and standard gravity can be obtained from pure quantum theory without
involving any classical notions and standard semiclassical approximation.

Acknowledgement: I am grateful to Volodya Nechitailo who told me the
idea that the number p may be related to time.
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