Spin-rotation coupling of the angularly accelerated rigid body

Louai Hassan Elzein Bashier

Khartoum, Sudan.
Postal code:11123
E-mail: louaielzein@gmail.com
Abstract

This paper is prepared to show that a rigid body which undergoes an angular acceleration relative to a fixed point must simultaneously accelerate angularly relative to its center of mass. Formulae which coupling of the angular momentum and kinetic energy due to this spin motion to the angular momentum and kinetic energy due to the rotational motion of the same spinning rigid body have been derived. The paper also bringing to light the nature of the force which causes this spin motion and the formula which coupling of this highlighted force to the force which causes the rotation of the rigid body has been also derived.

Keywords: Classical mechanics · Rotational dynamics
PACS: 45.20.dc

I. Introduction

One can define the problem by the following statement: “division of the total angular momentum into its orbital and spin parts is especially useful because it is often true (at least to a good approximation) that the two parts are separately conserved.”[1] —John Taylor. The statement briefs the common understanding within scientific community about spin-rotation relation for a rigid body in circular motion. Hence, here we are going to prove that the negation of this statement is what is true.

We beginning with the distinction between rotational and spinning motion therefore we define rotation with the motion of the rigid body circularly around a fixed point or a center of rotation which is different from its center of mass while the spinning is the rotation of the rigid body around its center of mass. Another thing is that the analysis is going to be with planar rigid body in planar motion over Euclidean space.

II. Analysis

II.1. Coupling of the spinning and rotational angular momentum

Referring to figure(1), a rigid body “A” of a mass m is free to rotate relative to its center of mass CM as it is also can be, simultaneously, free to rotate relative to the point O. Thus, it is pivoted at these two points. It is known that the total angular momentum \(L \) of the rigid body “A” in its circular motion is given by[2]:

\[
L = r_o \times p + \sum_i \rho_i \times \dot{\rho}_i m_i
\]

where \(r_o \) is the vector position of the center of mass of the rigid body relative to the axis of rotation \(O \), \(p \) is the linear momentum and \(\rho_i \) is the vector position of the element mass \(m_i \) relative to the center of mass of the rigid body. The first term is the angular momentum (relative to \(O \)) of the motion of the center of mass. The second is the angular momentum of the motion relative to the center of mass. Thus,
we can re-express equation (1) to say \[2\]
\[
L = L_{\text{motion of CM}} + L_{\text{motion relative to CM}}
\]

Since the mass is constrained to a circle, the tangential velocity of the mass of the rigid body “A” is \(\omega \hat{k} \times r_o\) — where \(\omega \hat{k}\) is the rotational angular velocity of the rigid body relative to the axis of rotation \(O, \hat{k}\) is a unit vector perpendicular to the plane of the motion — and since \(p = m\omega \hat{k} \times r_o\), the total angular momentum equation (equation (1)) becomes (assuming the motion is planar hence both axises of rotation, \(O\) and \(CM\), are parallel):
\[
L = r_o \times (m\omega \hat{k} \times r_o) + \sum_i \rho_i \times (\Omega \hat{k} \times \rho_i)m_i
\]
(3)

where \(\Omega \hat{k}\) is the rigid body spinning angular velocity (arbitrary) relative to its center of mass. Taking the first term in the RHS and using the fact that \(r_o = r_i - \rho_i\), one finds
\[
r_o \times (m\omega \hat{k} \times r_o) = r_i \times (m\omega \hat{k} \times (r_i - \rho_i)) \nonumber \\
= (r_i - \rho_i) \times (m\omega \hat{k} \times r_i - m\omega \hat{k} \times \rho_i) \nonumber \\
= (r_i - \rho_i) \times (m\omega \hat{k} \times r_i) - (r_i - \rho_i) \times (m\omega \hat{k} \times \rho_i) \nonumber \\
= r_i \times (m\omega \hat{k} \times r_i) - \rho_i \times (m\omega \hat{k} \times r_i) - r_i \times (m\omega \hat{k} \times \rho_i) \nonumber \\
+ \rho_i \times (m\omega \hat{k} \times \rho_i),
\]

since \(m = \sum_i m_i\), therefore
\[
r_o \times (m\omega \hat{k} \times r_o) = \sum_i r_i \times (m_i \omega \hat{k} \times r_i) - \sum_i \rho_i \times (m_i \omega \hat{k} \times r_i) \nonumber \\
- \sum_i r_i \times (m_i \omega \hat{k} \times \rho_i) + \sum_i \rho_i \times (m_i \omega \hat{k} \times \rho_i),
\]

farther mathematical simplification can be done by doing the cross product using the Cartesian coordinate system and converting the summation to integration over the whole body[3][4]. Therefore, one will find
\[
r_o \times (m\omega \hat{k} \times r_o) = I_o \omega \hat{k} + I_{cm} \omega \hat{k} - \sum_i \rho_i \times (m_i \omega \hat{k} \times r_i) \nonumber \\
- \sum_i r_i \times (m_i \omega \hat{k} \times \rho_i),
\]
(4)

where \(I_o\) is the moment of inertia relative to the axis of rotation \(O\) which is a perpendicular distance \(r_o\) from the centre of mass and \(I_{cm}\) is the moment of inertia of the rigid body relative to its center of mass. Continue the mathematical simplification using the identity \(A \times (B \times C) = (A \circ C)B - (A \circ B)C\), we finds
\[
r_o \times (m\omega \hat{k} \times r_o) = I_o \omega \hat{k} + I_{cm} \omega \hat{k} - \sum_i \left[(\rho_i \circ r_i) m_i \omega \hat{k} - (\rho_i \circ m_i \omega \hat{k}) r_i \right] \\
- \sum_i \left[(r_i \circ \rho_i) m_i \omega \hat{k} - (r_i \circ m_i \omega \hat{k}) \rho_i \right],
\]
since \(\mathbf{p}_i \) and \(\hat{k} \) are mutually orthogonal and so are \(\mathbf{r}_i \) and \(\hat{k} \) then we have
\[
\mathbf{r}_o \times (m \hat{k} \times \mathbf{r}_o) = I_o \omega \hat{k} + I_{\text{CM}} \omega \hat{k} - \sum_i m_i \mathbf{r}_i \mathbf{p}_i \mathbf{r}_i - \sum_i (\mathbf{r}_i \mathbf{p}_i) m_i \omega \hat{k},
\]
\[
= I_o \omega \hat{k} + I_{\text{CM}} \omega \hat{k} - 2 \sum_i (\mathbf{r}_i \mathbf{p}_i) m_i \omega \hat{k},
\]
\[
= I_o \omega \hat{k} + I_{\text{CM}} \omega \hat{k} - 2 \sum_i (\mathbf{r}_i \mathbf{p}_i + \mathbf{p}_i) m_i \omega \hat{k},
\]
\[
= I_o \omega \hat{k} + I_{\text{CM}} \omega \hat{k} - 2 \sum_i (\mathbf{r}_o \mathbf{p}_i) m_i \omega \hat{k} - 2 \sum_i (\mathbf{p}_i \mathbf{p}_i) m_i \omega \hat{k},
\]
\[
= I_o \omega \hat{k} + I_{\text{CM}} \omega \hat{k} - 2 \sum_i m_i \mathbf{p}_i \mathbf{r}_o \cos \gamma \omega \hat{k} - 2 \sum_i m_i \mathbf{p}_i^2 \omega \hat{k},
\]
where \(\gamma \) is the angle between \(\mathbf{r}_o \) and \(\mathbf{p}_i \), \(\sum_i m_i \mathbf{p}_i = 0 \) (property of the center of mass), and \(\sum_i m_i \mathbf{p}_i^2 = I_{\text{CM}} \). Hence we have
\[
\mathbf{r}_o \times (m \hat{k} \times \mathbf{r}_o) = I_o \omega \hat{k} - I_{\text{CM}} \omega \hat{k}. \quad (5)
\]
Thus the total angular momentum (equation(3)) becomes
\[
\mathbf{L} = I_o \omega \hat{k} - I_{\text{CM}} \omega \hat{k} + \sum_i \mathbf{p}_i \times (\Omega \hat{k} \times \mathbf{p}_i)m_i,
\]
\[
= I_o \omega \hat{k} - I_{\text{CM}} \omega \hat{k} + I_{\text{CM}} \Omega \hat{k}. \quad (6)
\]
where \(-I_{\text{CM}} \omega \hat{k}\) is an additional angular momentum term relative to the center of mass of the rigid body (spinning) and occurs due to the rigid body rotational or circular motion relative to the axis of rotation \(O \).

The term \(I_{\text{CM}} \Omega \hat{k} \) can be consider as the initial spinning angular momentum that the rigid body acquired before it start its circular motion and since \(\Omega \hat{k} \) is arbitrary, so that it can be zero and therefore have not to be a mandatory term of equation(6). Hence, we can rewrite equation(6) as:
\[
\mathbf{L} = I_o \omega \hat{k} - I_{\text{CM}} \omega \hat{k},
\]
\[
\mathbf{L} = \mathbf{L}_r + \mathbf{L}_s. \quad (7)
\]
where \(\mathbf{L} = \mathbf{r}_o \times (m \omega \hat{k} \times \mathbf{r}_o) \) is the total angular momentum, \(\mathbf{L}_r = I_o \omega \hat{k} \) is the rotational angular momentum and \(\mathbf{L}_s = -I_{\text{CM}} \omega \hat{k} \) is the spinning angular momentum.

Since the total angular momentum (equation(7)) is conserved then that implies the rotational and spinning angular momentum are mutually exchangeable in order to conserve it, that is
\[
\mathbf{L} = \updownarrow \mathbf{L}_r + \updownarrow \mathbf{L}_s. \quad (8)
\]
This property (equation(8)) negate the above statement which we have begin with.

Another thing we can notice is that if we simplify the term \(\mathbf{r}_o \times (m \omega \hat{k} \times \mathbf{r}_o) \) in equation(5) using the identity \(\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \circ \mathbf{C}) \mathbf{B} - (\mathbf{A} \circ \mathbf{B}) \mathbf{C} \) and rearrange it, that yields
\[
I_o \omega \hat{k} = \left((\mathbf{r}_o \mathbf{p}_o) m \omega \hat{k} - (\mathbf{r}_o \mathbf{p}_o) m \omega \hat{k} \right) r_o) + I_{\text{CM}} \omega \hat{k},
\]
since motion is planar then \(r_o \) and \(\hat{k} \) are mutually orthogonal, so that
\[
I_o \omega \hat{k} = m r_o^2 \omega \hat{k} + I_{cm} \omega \hat{k} ,
\]
dividing by \(\omega \) and dotted with \(\hat{k} \), we have
\[
I_o = m r_o^2 + I_{cm} .
\]
(9)
which is nothing other than the parallel axis theorem. Thus the theorem display
the coupling of spin and rotation moment of inertia which leads to the coupling of
spinning and rotational motion of a rigid body when moves circularly.

II.2. Coupling of the effected forces
At this section we will explore the coupling between the force causes the rotation of
the rigid body “\(A \)” and the force causes its spin. Referring to figure(1) if an external
force \(F \) acts on the center of mass of the rigid body “\(A \)” such that it causes it to
angularly accelerate with angular acceleration \(\alpha \hat{k} = (d\omega/dt) \hat{k} \) relative to the axis of
rotation \(O \) —where \(\omega \) is the angular velocity of rotation of the center of mass of the
rigid body relative to the axis of rotation \(O \) — and since the mass \(m \) is constrained
to a circle, the tangential acceleration of the mass of the rigid body “\(A \)” is
\[\alpha \hat{k} \times r_o \]
and since \(F = ma \), the total torque equation is given by:
\[
\tau = r_o \times F ,
\]
\[
= r_o \times (ma \hat{k} \times r_o) .
\]
(10)
where \(\tau \) is the total torque and \(r_o \) is the vector position of the center of mass of the
rigid body relative to the axis of rotation \(O \). From figure(1) we have \(r_o = r_i - \rho_i \). Hence one can write
\[
\tau = (r_i - \rho_i) \times (ma \hat{k} \times (r_i - \rho_i)) ,
\]
\[
= r_i \times (ma \hat{k} \times (r_i - \rho_i)) - \rho_i \times (ma \hat{k} \times (r_i - \rho_i)) ,
\]
\[
= r_i \times (ma \hat{k} \times r_i) - r_i \times (ma \hat{k} \times \rho_i)
\]
\[
- \rho_i \times (ma \hat{k} \times r_i) + \rho_i \times (ma \hat{k} \times \rho_i) ,
\]
since \(m = \sum_i m_i \), therefore we have
\[
\tau = r_i \times \left(\sum_i m_i a \hat{k} \times r_i \right) - r_i \times \left(\sum_i m_i a \hat{k} \times \rho_i \right)
\]
\[
= r_i \times \left(\sum_i m_i a \hat{k} \times r_i \right) - (r_o + \rho_i) \times \left(\sum_i m_i a \hat{k} \times \rho_i \right)
\]
\[
- \rho_i \times \left(\sum_i m_i a \hat{k} \times (r_o + \rho_i) \right) + \rho_i \times \left(\sum_i m_i a \hat{k} \times \rho_i \right) ,
\]
\[
\tau = \sum_i r_i \times (m_i \alpha \hat{k} \times r_i) - r_o \times \left(\alpha \hat{k} \times \sum_i m_i \rho_i \right) - \sum_i \rho_i \times (m_i \alpha \hat{k} \times \rho_i) - \sum_i m_i \rho_i \times (\alpha \hat{k} \times r_o) - \sum_i \rho_i \times (m_i \alpha \hat{k} \times \rho_i) + \sum_i m_i \rho_i \times (\alpha \hat{k} \times \rho_i),
\]

from the properties of the center of mass we have \(\sum_i m_i \rho_i = 0 \). Therefore, one finds

\[
\tau = \tau_r + \tau_s
\]

Equation (11) can be mathematically simplified by doing the cross product using the Cartesian coordinate system and converting the summation to integration over the whole body. Therefore one will find

\[
r_o \times (m \alpha \hat{k} \times r_o) = \sum_i r_i \times (m_i \alpha \hat{k} \times r_i) - \sum_i \rho_i \times (m_i \alpha \hat{k} \times \rho_i). \tag{11}
\]

where \(I_o \) is the moment of inertia relative to the axis of rotation \(O \) which is a perpendicular distance \(r_o \) from the centre of mass and \(I_{CM} \) is the moment of inertia of the rigid body relative to its center of mass. We can write it as:

\[
\tau = \tau_r + \tau_s \tag{13}
\]

where \(\tau = \tau_o \times (m \alpha \hat{k} \times r_o) \) is the total torque. \(\tau_r = I_o \alpha \hat{k} \) is the rotation torque and \(\tau_s = -I_{CM} \alpha \hat{k} \) is the spin torque. Thus the total torque \(\tau \) is a synthesis of two torques; the rotation torque \(\tau_r \) and the spin torque \(\tau_s \).

There is another thing that has to be notice in equation (12) when we rearrange it as following:

\[
I_o \alpha \hat{k} = r_o \times (m \alpha \hat{k} \times r_o) + I_{CM} \alpha \hat{k},
\]

and using the identity \(A \times (B \times C) = (A \circ C) B - (A \circ B) C \) to obtain

\[
I_o \alpha \hat{k} = [(r_o \circ r_o) m \alpha \hat{k} - (r_o \circ m \alpha \hat{k}) r_o] + I_{CM} \alpha \hat{k},
\]

since motion is planar then \(r_o \) and \(\hat{k} \) are mutually orthogonal, so that

\[
I_o \alpha \hat{k} = m r_o^2 \alpha \hat{k} + I_{CM} \alpha \hat{k},
\]

dividing by \(\alpha \) and dotted with \(\hat{k} \), we get

\[
I_o = m r_o^2 + I_{CM}. \tag{14}
\]

Again we obtained the parallel axis theorem.
2.2.1. How one can understand the negative sign of the spin torque τ_s

Referring to equations (12) and (13) we find $\tau_s = -I_{CM} \alpha \hat{k}$ and the crucial question is; Does the negative sign assign to the magnitude α or to the direction \hat{k}? or in another words; Does the spin of the rigid body is de-acceleration in the same direction of its rotation or acceleration in opposite direction of its rotation? To answer this question we are going to take another approach to find the same term that assigned to the spin τ_s.

Referring to figure (1) and since the rigid body “A” is angularly accelerates relative to the axis of rotation O therefore an inertial force F_i will occur at any element mass m_i that composes its total mass m. This inertial force is known as Euler force[5], F_{Euler}, such that:

$$ F_i = F_{Euler} = -m_i \frac{d\omega}{dt} \hat{k} \times r_i \tag{15} $$

where $\alpha \dot{k} = (d\omega/dt)\dot{k}$ is the same angular acceleration of rotation of the center of mass of the rigid body relative to the axis of rotation O and r_i is the vector position of the point where the acceleration is measured relative to the axis of the rotation O. We know that the Euler force is an inertial force which implies that it acts in a direction opposite to the direction of the force applied (the active force). Therefore, the negative sign that occurs in equation (15) is assigned to the direction \hat{k}. Thus, we can rewrite it:

$$ F_i = m_i \alpha (-\hat{k}) \times r_i \tag{16} $$

The torque that acts on any element mass m_i due to the Euler force F_i is given with:

$$ \tau_i = \rho_i \times F_i \tag{17} $$

where τ_i is the torque of any element mass m_i relative to the center of mass of the rigid body “A” —which occurs due to Euler force F_i— and ρ_i is the vector position of the same element mass m_i, relative to the center of mass of the rigid body. Hence, the total inertial torque, τ_{inr}, that acts on the rigid body due to the Euler force F_{Euler} is given by:

$$ \tau_{inr} = \sum_i \rho_i \times F_i \tag{18} $$

$$ = \sum_i \rho_i \times (m_i \alpha (-\hat{k}) \times r_i) \tag{19} $$

from figure (1) we have $r_i = r_o + \rho_i$. Hence one can write

$$ \tau_{inr} = \sum_i \rho_i \times \left(m_i \alpha (-\hat{k}) \times r_o + m_i \alpha (-\hat{k}) \times \rho_i \right) \tag{20} $$

$$ = \sum_i m_i \rho_i \times (\alpha (-\hat{k}) \times r_o) + \sum_i \rho_i \times (m_i \alpha (-\hat{k}) \times \rho_i) \tag{21} $$
from the properties of the center of mass we know that $\sum m_i \rho_i = 0$. Therefore, we obtain
\[
\tau_{inr} = \sum_i \rho_i \times (m_i \alpha(-\hat{k}) \times \rho_i) .
\] (18)

Equation (18) can be mathematically simplified by doing the cross product using the Cartesian coordinate system and converting the summation to integration over the whole body. Therefore, one will find
\[
\tau_{inr} = I_{CM} \alpha(-\hat{k}) .
\] (19)

where $\alpha(-\hat{k}) = (d\omega/dt)(-\hat{k})$ is the angular acceleration of the rigid body “A” relative to its center of mass, where it is equal in magnitude to the rigid body angular acceleration relative to the axis of rotation O. Therefore, the inertial torque τ_{inr} acts over the rigid body “A” — where $\tau_{inr} \neq 0$ — such that it causes it to rotate relative to its center of mass1 in a direction counter to the direction of rotation of its center of mass relative to the axis of rotation O.

Therefore, we retrieve the spin torque term of equation (12), that is; the term that associated with the total inertial torque τ_{inr} (equation (19)) is identical with the one that associated with the spin torque τ_s occurs as a second term in equation (12). Hence, one can rewrite equation (12), the total torque τ, and equation (7), the total angular momentum, in a more precise manner:
\[
r_o \times (m\alpha \times r_o) = I_o \alpha \hat{k} + I_{CM} \alpha(-\hat{k}) ,
\] (20)

where $I_{CM} \alpha(-\hat{k}) = \tau_s$ and
\[
L = I_o \omega \hat{k} + I_{CM} \omega(-\hat{k}) ,
\] (21)

where $I_{CM} \omega(-\hat{k}) = L_s$. Thus, the negative sign points to the direction of spinning of the rigid body.

II.3. Coupling of the spinning and rotational kinetic energy

It is known that the kinetic energy T of the rigid body “A” in its rotational motion relative to the axis of rotation O is given by6:
\[
T = \frac{1}{2} m \left(\omega \hat{k} \times r_o \right) \left(\omega \hat{k} \times r_o \right) + \frac{1}{2} I_{CM} \left(\Omega \hat{k} \times \Omega \hat{k} \right) ,
\] (22)

where $\omega \hat{k} \times r_o$ is the tangential velocity of the center of mass of the rigid body relative to the axis of rotation O and $\Omega \hat{k}$ is an arbitrary spinning velocity relative to the center of mass of the rigid body. When one uses the identity $(A \times B \circ C \times D) = (A \circ C) (B \circ D) - (A \circ D) (B \circ C)$, he will get
\[
T = \frac{1}{2} m \left[\left(\omega \hat{k} \circ \omega \hat{k} \right) \left(r_o \circ r_o \right) - \left(\omega \hat{k} \circ r_o \right) \left(r_o \circ \omega \hat{k} \right) \right] + \frac{1}{2} I_{CM} \left(\Omega \hat{k} \circ \Omega \hat{k} \right) ,
\]

1The observation of this phenomenon can be obtain easily by rotating a metallic solid disk pivoted at its center or by rotating a vessel containing ice cubes floating on water and can be exercise using one’s hands.
since \hat{k} and r_o are mutually orthogonal, so that

$$T = \frac{1}{2}m \left(\omega \hat{k} \circ \omega \hat{k} \right) (r_o \circ r_o) + \frac{1}{2} I_{CM} \left(\Omega \hat{k} \circ \Omega \hat{k} \right), \quad (23)$$

$$= \frac{1}{2}m \left(\omega \hat{k} \circ \omega \hat{k} \right) (r_i - \rho_i \circ r_i - \rho_i) + \frac{1}{2} I_{CM} \left(\Omega \hat{k} \circ \Omega \hat{k} \right),$$

$$= \frac{1}{2}m \left(\omega \hat{k} \circ \omega \hat{k} \right) [(r_i \circ r_i) - 2 (r_i \circ \rho_i) + (\rho_i \circ \rho_i)] + \frac{1}{2} I_{CM} \left(\Omega \hat{k} \circ \Omega \hat{k} \right),$$

$$= \frac{1}{2} \sum_i m_i (r_i \circ r_i) \left(\omega \hat{k} \circ \omega \hat{k} \right) - \sum_i m_i (r_i \circ \rho_i) \left(\omega \hat{k} \circ \omega \hat{k} \right)$$

$$+ \frac{1}{2} \sum_i m_i (\rho_i \circ \rho_i) \left(\omega \hat{k} \circ \omega \hat{k} \right) + \frac{1}{2} I_{CM} \left(\Omega \hat{k} \circ \Omega \hat{k} \right),$$

$$= \frac{1}{2} I_o \left(\omega \hat{k} \circ \omega \hat{k} \right) - \sum_i m_i (r_o + \rho_i \circ \rho_i) \left(\omega \hat{k} \circ \omega \hat{k} \right) + \frac{1}{2} I_{CM} \left(\omega \hat{k} \circ \omega \hat{k} \right)$$

$$+ \frac{1}{2} I_{CM} \left(\Omega \hat{k} \circ \Omega \hat{k} \right),$$

$$= \frac{1}{2} I_o \left(\omega \hat{k} \circ \omega \hat{k} \right) - \sum_i m_i (\rho_i \circ \rho_i) \left(\omega \hat{k} \circ \omega \hat{k} \right) - \sum_i m_i (r_o \circ \rho_i) \left(\omega \hat{k} \circ \omega \hat{k} \right)$$

$$+ \frac{1}{2} I_{CM} \left(\omega \hat{k} \circ \omega \hat{k} \right) + \frac{1}{2} I_{CM} \left(\Omega \hat{k} \circ \Omega \hat{k} \right),$$

$$= \frac{1}{2} I_o \left(\omega \hat{k} \circ \omega \hat{k} \right) - \frac{1}{2} I_{CM} \left(\omega \hat{k} \circ \omega \hat{k} \right) - \sum_i m_i \rho_i r_o \cos \gamma \left(\omega \hat{k} \circ \omega \hat{k} \right)$$

$$+ \frac{1}{2} I_{CM} \left(\Omega \hat{k} \circ \Omega \hat{k} \right),$$

where γ is the angle between r_o and ρ_i. Again $\sum_i m_i \rho_i = 0$. Therefore, we obtain

$$T = \frac{1}{2} I_o \left(\omega \hat{k} \circ \omega \hat{k} \right) - \frac{1}{2} I_{CM} \left(\omega \hat{k} \circ \omega \hat{k} \right) + \frac{1}{2} I_{CM} \left(\Omega \hat{k} \circ \Omega \hat{k} \right). \quad (24)$$

When subtracting equation(23) from (24), we again will obtain the parallel axis theorem and if we subtract equation(22) from (24) we obtain

$$\frac{1}{2} m (\omega \hat{k} \times r_o \circ \omega \hat{k} \times r_o) = \frac{1}{2} I_o \left(\omega \hat{k} \circ \omega \hat{k} \right) - \frac{1}{2} I_{CM} \left(\omega \hat{k} \circ \omega \hat{k} \right). \quad (25)$$

Since there is no negative kinetic energy therefore one can understand that the negative sign is assign to direction. Thus, the correct kinetic energy formula:

$$T = \frac{1}{2} I_o \left(\omega \hat{k} \circ \omega \hat{k} \right) + \frac{1}{2} I_{CM} \left(\omega(-\hat{k}) \circ \omega(-\hat{k}) \right) + \frac{1}{2} I_{CM} \left(\Omega \hat{k} \circ \Omega \hat{k} \right). \quad (26)$$

The term $\frac{1}{2} I_{CM} \left(\Omega \hat{k} \circ \Omega \hat{k} \right)$ can be consider as the initial spinning kinetic energy that the rigid body have before it start its circular motion and since $\Omega \hat{k}$ is arbitrary,
so that it can be zero and therefore have not to be a mandatory term of equation (26).
Hence we can write equation (26) as:

\[
T = \frac{1}{2} I_O \left(\omega \hat{k} \circ \omega \hat{k} \right) + \frac{1}{2} I_{CM} \left(\omega (-\hat{k}) \circ \omega (-\hat{k}) \right),
\]

\[= T_r + T_s. \] (27)

where \(T = \frac{1}{2} m \left(\omega \hat{k} \times r_o \circ \omega \hat{k} \times r_o \right)\) is the total kinetic energy, \(T_r = \frac{1}{2} I_O \left(\omega \hat{k} \circ \omega \hat{k} \right)\) is the rotational kinetic energy and \(T_s = \frac{1}{2} I_{CM} \left(\omega (-\hat{k}) \circ \omega (-\hat{k}) \right)\) is the spinning kinetic energy.

III. Conclusion

A rigid body that angularly accelerates in a circular path will spin under the influence of inertial force, specially the Euler force.

In opposite to the translational motion where inertia presents as resistance of the mass to motion, the mass when moves curvilinearly it spins under the influence of its inertia.

In the case of the angular acceleration of a rigid body in a circular path, both the active torque and the inertial (fictitious) torque that are causing the rigid body to rotate and spin —respectively— are real torques and occur due to the action of real forces and these forces are de-synthesis from one real origin, the total force which in return causes a total torque. In another words, the total torque de-synthesis to active torque (causes the rotation of the rigid body) and inertial torque (causes the spinning of the rigid body) and the three (total, active and inertial) are real torques.

The inertial force supplies an angularly accelerating rigid body with an additional kinetic energy and angular momentum and these are independent from the kinetic energy and angular momentum which are be supplied by the active force.

The parallel axis theorem coupling of the orbital motion of an angularly accelerated rigid body to its spin motion.

The orbital angular momentum of a rigid body which undergoes angular acceleration is mutually exchangeable with its spin angular momentum and that happens in order to conserve the total angular momentum of the rigid body.
Figure 1: Rotation of the rigid body “A” relative to the fixed point O.
References

