AUTHOR NAME Giuliano Bettini

TITLE 5 bit, 32 crystal classes

ABSTRACT

Starting from the 32 crystal classes, we find a complete classification scheme of the same with only 5 bits, and at least in part the meaning of the various bits.

There is no inverse demonstration, ie only 5 bits must generate all 32 crystalline classes in nature. However, the proposed classification seems to invoke a logical process of formation of the various classes, doing this way:

the matter first aggregates without any symmetry, then it adopts various rotation symmetries (no symmetry, binary, ternary, etc., simple or composite) and then adds to each symmetry of rotation the additional symmetries c (center), m (planes) or c + m together.

PREMESSA

Il presente lavoro nasce da alcune successive intuizioni, alcune delle quali sono illustrate in precedenti articoli, vedi per es. [1].

Ma le due principali idee che ritengo siano state decisive sono

- 1-La dimostrazione che la classe giroidale 432 non richiede fra i generatori la simmetria 3 (111), ma sono sufficienti simmetrie di rotazione A4 [2];
- 2-La intuizione che le classi cristalline possano essere descritte da gruppi di 4 classi, la prima delle quali possiede solo simmetrie di rotazione e nelle altre si aggiungono sistematicamente, in quest'ordine, le simmetrie c, m e mc.

Quest'ultima non è mai stata pubblicata, ne parlo qui ed è l'oggetto del presente lavoro Nel seguito si illustrano i dettagli.

ANALISI

Sono arrivato ad una dimostrazione del come le 32 classi cristalline possano essere classificate a 5 bit.

Specificamente qui nel seguito:

A – si mostra come nasce la classificazione a 5 bit e perché essa nasce;

B – si mostra caso per caso il significato di ciascun bit.

Possiamo comunque anticipare che:

- in ogni caso i bit 3 e2 significano la presenza di assi di simmetria di rotazione A3 e A2;
- il bit m significa sempre la presenza di un piano di riflessione;
- -il bit c è sempre legato ad una simmetria rispetto al centro ma è così fatto, che la presenza nel cristallo di un centro di inversione comporta la presenza del bit c, ma non è detto il contrario;
- il bit 4 significa la presenza della simmetria di rotazione A4 ma in alcuni casi è più problematico da definire.

Ciò detto, andiamo avanti.

Rammento da [1], [2] la classificazione delle prime 8 classi triclinic + monoclinic + orthorhombic.

Hermann	5 bit	Generators
Mauguin	symbols	
1	00000	
1_	0000с	c
m	000m0	m
2/m	000mc	m,c
2	00200	2
222	0020c	2, c
mm2	002m0	2, m
mmm	002mc	2, m, c

Fig. 1 le 8 classi triclinic + monoclinic + orthorhombic classificate a 3 bit

Si noti la sequenza di bit 00, 01, 10 e 11, qui denominati con le lettere m e c, e quindi 00, 0c, m0, mc.

Orbene in una classificazione di 32 classi con 5 bit è ovvio che sia presente una sequenza 00, 01,

10, 11. Essa corrisponde semplicemente alla presenza di una numerazione binaria.

Ma se invece si ipotizza che i bit abbiano un significato, allora questa sequenza deve corrispondere ad una successione di azioni, o di proprietà, o di qualche cosa.

In una classificazione a 5 bit delle classi cristalline qual'è il significato fisico o 'operativo' della particolare sequenza che necessariamente ne viene ossia

00 0c m0 mc?

Ossia:

c'è un senso?

Oual' è?

Si noti che la sequenza 00 0c m0 mc si ripete poi, ovviamente, con il 2

200 20c 2m0 2mc

si ripeterà con il 3, il 4 eccetera.

Che significa? Ovvero: c'è un significato?

Non c'è da pensare ad una domanda tendenziosa, in quanto la sequenza, che come ho puntualizzato, è intrinseca nella numerazione binaria, comporta di fatto che essa si ripete, e quindi necessariamente nasce la domanda.

Fortunatamente la risposta che ne viene è (o almeno sembra) ovvia:

esiste in qualche modo una serie di operazioni, o di azioni, che si ripetono. Sono le operazioni di simmetria 00, 0c, m0, mc. Con m indico la simmetria rispetto a un piano e con c la simmetria rispetto a un centro. Esse si ripetono a gruppi di quattro classi. La prima classe di ogni gruppo di quattro classi, quella dove non si introduce nessuna simmetria di tipo m o c (bit 00) è una classe che evidentemente, per conseguenza di quanto sopra, possiede soltanto simmetrie di rotazione.

Quindi lo schema che governa la classificazione a 5 bit delle 32 classi cristalline sembra essere (è) questo:

1-ci sono gruppi di quattro classi in ognuno dei quali si ripete la sequenza di operazioni di simmetria 00, 0c, m0, mc;

2-la prima classe in ogni successiva sequenza 00, 0c, m0, mc è una classe di sole simmetrie di rotazione (solo assi).

Immaginiamo per gradi un processo di "nascita" delle varie classi.

Consideriamo un impacchettamento di punti, o una composizione di oggetti o di punti, o una disposizione di oggetti nello spazio, comunque la si voglia dire.

Prendo un punto: esso è lì dove l'ho messo.

Non faccio niente.

Questa operazione corrisponda alla sequenza 00000 or 00. Nessuna simmetria di rotazione, anzi nessuna simmetria in assoluto.

Ora provo una disposizione più complicata, o più 'ricca', o più estetica, comunque la si voglia dire: a un punto ne associo un altro simmetrico (rispetto a un centro di simmetria).

Questa operazione corrisponda alla sequenza 0000c or 0c.

Adesso invece provo questa disposizione:

a un punto ne associo un altro simmetrico rispetto a un piano di simmetria.

Oppure si può dire la cosa in un modo diverso ma equivalente ossia:

creo un oggetto formato in modo da possedere la proprietà di simmetria rispetto a un piano m.

Questa operazione corrisponda alla sequenza 000m0 or m0.

Infine

creo un oggetto formato in modo da possedere sia la proprietà di simmetria rispetto a un centro c che la proprietà di simmetria rispetto a un piano m.

Ouesta operazione corrisponda alla seguenza 000mc or mc.

Quindi, nell'ordine, le operazioni sono:

00000

0000c

000m0

000mc.

In decimale, queste operazioni sono enumerate 0, 1, 2, 3.

Diciamo che io a questo punto abbia esaurito le operazioni elementari di simmetria che si possono trovare in un oggetto. Oppure: diciamo che io abbia esaurito le operazioni elementari di simmetria che si possono trovare in un oggetto escluse le rotazioni.

Posso pertanto provare disposizioni più complicate, o oggetti più complicati, che abbiano anche simmetrie di rotazione.

Provo la simmetria A2, rotazione di 180 gradi.

Creo un oggetto formato in modo da possedere la simmetria di rotazione A2, asse 2, che indico con 2.

Solamente questa simmetria.

Questa operazione corrisponda alla sequenza 00200.

Siccome però so che esistono in un oggetto altre simmetrie che sono la simmetria 'c' e la simmetria 'm', ripeto la sequenza di operazioni che già avevo usato.

Quindi nell'ordine:

creo un oggetto formato in modo da possedere sia la proprietà 2 che la proprietà di simmetria c.

Questa operazione corrisponda alla sequenza 0020c;

poi creo un oggetto formato in modo da possedere sia la proprietà 2 che la proprietà di simmetria m. Questa operazione corrisponda alla sequenza 002m0;

infine creo un oggetto formato in modo da possedere sia la proprietà 2 che entrambe le proprietà m e c.

Questa operazione corrisponda alla sequenza 002mc.

Quindi, nell'ordine, le operazioni sono:

00200

0020c

002m0

002mc.

In decimale, queste operazioni sono enumerate 4, 5, 6, 7.

Avendo esaurito tutte le possibili simmetrie possibili con la simmetria A2, passo alle stesse operazioni / composizioni con la simmetria A4.

Creo un oggetto formato in modo da possedere la simmetria A4 che indico con 4.

Solamente questa simmetria.

Questa operazione corrisponda alla sequenza 04000.

Siccome so che esistono in un oggetto altre simmetrie che sono la simmetria 'c' e la simmetria 'm', ripeto la sequenza di operazioni che già avevo usato.

Quindi, nell'ordine, le operazioni sono:

04000

0400c

040m0

040mc.

In decimale, 8, 9, 10, 11.

Prima di abbandonare la simmetria A4, posso provare ad aggiungere ad essa la simmetria A2.

Come?

Non ha senso aggiungere un asse 2 parallelo all'asse 4, perché questa simmetria già c'è. Però posso aggiungere un asse 2 ortogonale all'asse 4.

Quindi creo un oggetto formato in modo da possedere sia la proprietà 4 che la proprietà 2 perpendicolare ad essa.

Questa operazione corrisponda alla sequenza 04200.

A questo punto ripeto la sequenza di operazioni che già avevo usato.

Quindi, nell'ordine, le operazioni sono:

04200

0420c

042m0

042mc.

In decimale, 12, 13, 14, 15.

Ho così esaurito tutte le possibili operazioni con la simmetria 4.

Ora costruisco un insieme di punti con la simmetria A3.

Questa operazione corrisponda alla sequenza 30000.

Poi su di essi eseguo la serie di operazioni 00, 0c, m0, mc (16, 17, 18, 19) e che non sto a ripetere. Esaurite queste, prima di abbandonare la simmetria A3, posso provare ad aggiungere ad essa la simmetria A2.

Come?

Questa volta ha senso aggiungere un asse 2 parallelo all'asse 3. Ci si accorge che è sufficiente ripetere esattamente le operazioni di simmetria già eseguite con la simmetria A4, ripetendole con una rotazione verticale A6. Si ottengono le stesse operazioni di simmetria ma con un asse 6 al posto di un asse 4.

Quindi creo un oggetto formato in modo da possedere sia la proprietà 3 che la proprietà 2 parallela ad essa. Questa operazione corrisponda alla sequenza 30200, e poi a partire da questa aggiungo la sequenza di operazioni 00, 0c, m0, mc (in decimale 20, 21, 22, 23).

Posso poi aggiungere un asse 2 ortogonale all'asse 3.

Quindi creo un oggetto formato in modo da possedere sia la proprietà 3 che la proprietà 2 perpendicolare ad essa.

La sequenza di bit sarebbe (è, anche se la interpretazione del bit 4 non mi è chiara) 34000, e su questa ripeto la sequenza di operazioni 00, 0c, m0, mc (in decimale 24, 25, 26, 27).

Pausa.

Fino ad ora si è verificato che la prima classe in ogni successiva sequenza 00, 0c, m0, mc deve essere (è) una classe di soli assi. Sono state accomodate 28 delle 32 classi cristalline. Restano 4 classi cubiche. Rientrano anche loro in questo schema?

In effetti si, e dipende dalle peculiarità dell'asse 3.

L'asse 2 ha con l'asse 3 tre possibilità: asse 2 ortogonale a 3 , asse 2 parallelo a 3, sghembo. L'ultimo caso corrisponde al sistema cubico. Anzi il caso cubico è estremamente illuminante (vedi Appendice 1).

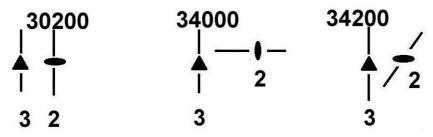


Fig. 2 le combinazioni che sono possibili fra un asse 3 e un asse 2

VERIFICHE

Rappresento in una tabella, nella prima colonna, le 32 classi ordinate a gruppi di quattro, seguendo la logica sopra descritta.

Nella seconda colonna scrivo la corrispondente sequenza di bit. Questa classificazione in bit è la migliore che mi è riuscito di trovare per riprodurre le 32 classi cristalline

Scrivo nella terza colonna per ogni classe i "generatori" (*), seguendo l'ipotesi più semplice cioè che esista un legame diretto fra i bit e i generatori. I generatori sono presi dal Bilbao Server [3].

La nomenclatura è quella del Bilbao Server, abbastanza intuitiva esempio mx significa un piano ortogonale all'asse x, 2y significa un asse 2 secondo l'asse y, m111 significa un piano ortogonale alla direzione 111 eccetera. Ho già introdotto qualche semplificazione, ad esempio 3(001) lo indico con 3z.

La tabella risultante è quella della pagina seguente.

^(*) Generators = le simmetrie minime che occorrono e bastano per generare tutte le simmetrie di quella classe (generalmente generatori e simmetrie sono espressi sotto forma di matrice, ma si può pensare di usare le notazioni dell'algebra di Clifford, o altro).

		~
Hermann	5 bit	Generators
Mauguin	symbols	
1	00000	
1_	0000с	c
m	000m0	my
2/m	000mc	2y,c
2	00200	2y
222	0020c	2z, 2y
mm2	002m0	2z, my
mmm	002mc	2z, 2y, c
		, •
4	04000	4z
4	0400c	c.4z
4_2m	040m0	2y, c.4z
4/m	040mc	4z, c
-, 211	2	-2, 0
422	04200	2y, 4z
432	0420c	3-111, 4z
4mm	042m0	4z, my
4/mmm	042mc	2y, 4z, c
7/1111111	042IIIC	2y, 42, C
3	30000	3z
3	3000c	3z, c
3m	300m0	3z, m110
3 2/m	300mc	3z, 2(1-10), c
<i>3_2/111</i>	Journe	32, 2(1-10), C
4	30200	2, 2,
6		3z, 2z
6_	3020c	mz, 3z
6_m2	302mc	3z, mz, m110
6/m	302mc	3, 2z, c
22	24000	2- 2/1 10
32	34000	3z, 2(1-10)
622	3400c	3z, 2z, 2(110)
6mm	340m0	3z, 2z, m110
6/mmm	340mc	3z, 2z, m(110),c
	2.1200	
23	34200	2y, 3-111
m3	3420c	2y, 3-111, c
4_3m	342m0	3-111, c.4z, m(1-10)
m3m	342mc	3-111, 4z, c, m(1-10)

Fig. 3 organizzazione delle 32 classi cristalline secondo una classificazione a 5 bit. Generatori dal Bilbao Server.

I generatori scritti così sono a volte difficili da interpretare.

Ad esempio m110 può essere semplicemente scritto come piano orizzontale, perpendicolare all'asse z. O ancor più genericamente può essere indicato come piano m. Questo genera una sorta di confusione per la quale a volte gruppi di generatori apparentemente diversi, in realtà sono uguali. Per di più bisogna considerare che ogni gruppo di generatori costituisce una base che può essere cambiata, per essere resa più adatta allo scopo. Ad esempio un piano + centro equivalgono ad un asse 2 ortogonale al piano per cui, per una classe dotata di centro di simmetria, è possibile adottare come generatore, al posto di un piano m, un asse 2 ad esso perpendicolare.

Dunque prima di proseguire, siccome userò i simboli 3, 4, 2, m, c, per evitare confusione è bene definire esattamente cosa si intende per 3, 4, 2, m, c.

- 3: significa sempre e comunque una simmetria di rotazione A3, ossia un asse ternario, senza che ne sia precisata la direzione;
- 2: significa sempre e comunque una simmetria di rotazione A2, senza che ne sia precisata la direzione, verticale orizzontale o obliqua;

Così pure m.

m: significa sempre e comunque 'piano di simmetria', senza che ne sia precisata la giacitura; c: significa sempre un'operazione legata ad una simmetria rispetto a un centro. In quasi tutti i casi coincide con la proprietà 'centro', ma in alcuni casi non è così. Segnatamente sono i casi degli 'assi impropri' 4_ e 6_, e le classi 222, 432 e 622;

4: il bit 4 è per me al momento il più ambiguo. Significa comunque l'intervento di una simmetria A4, vuoi perché presente fisicamente, o perché matematicamente può generare altre simmetrie come gli assi 3(111) passanti per gli spigoli di un cubo. Il suo significato nelle quattro classi 34000 e successive mi rimane ambiguo,

Fatte tutte le dovute sostituzioni, la tabella diventa quella della pagina seguente:

Hommonn	5 hi4	Operazioni 2 4 2 m. e
Hermann	5 bit	Operazioni 3,4 2,m, c
Mauguin 1	symbols	
	00000	
1_	0000c	C
m	000m0	m
2/m	000mc	m,c
	0000	
2	00200	2
222	0020c	2, c
mm2	002m0	2, m
mmm	002mc	2, m, c
4	04000	4
4_	0400c	4,c
4_2m	040m0	4,m
4/m	040mc	4,m,c
422	04200	4,2
432	0420c	4,2,c
4mm	042m0	4,2,m
4/mmm	042mc	4,2, m,c
3	30000	3
3_	3000c	3,c
3m	300m0	3,m
3_2/m	300mc	3,m,c
6	30200	3,2
6_	3020c	3,2,c
6_m2	302mc	3,2,m
6/m	302mc	3,2,m,c
32	34000	3,2
622	3400c	3,2,c
6mm	340m0	3,2,m
6/mmm	340mc	3,2,m,c
		, , ,
23	34200	3,2,2
m3	3420c	3,2,2,c
4_3m	342m0	3,2,2,m
m3m	342mc	3,2,2,m,c
		, , , ,

Fig. 4 come la precedente figura 3, ma con i generatori scritti e/o interpretati in modo diverso

La classificazione evidenzia la ripetizione del tema 00, 0c, m0, mc. Per confronto fra Fig. 3 e Fig. 4 si ricava il significato dei bit.

Le classi cristalline si trovano in letteratura raggruppate secondo Hermann Mauguin, o secondo i lavori di Hestenes, Hitzer [4], [5]. Qui la classificazione risulta così fatta: tutte le classi sono organizzate in otto gruppi, dove la prima classe del gruppo ha solo simmetrie di rotazione. Le simmetrie di rotazione che generano le classi sono riassunte in figura.

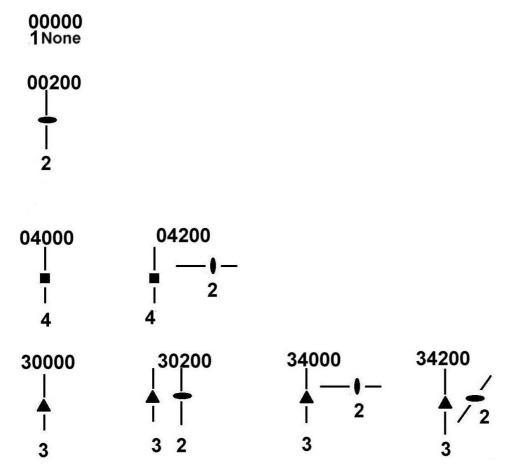


Fig. 5 otto classi di sole simmetrie di rotazione

Si constata che si parte solamente da un certo numero di simmetrie possibili, alcune semplici come esempio la 2, o combinate come ad esempio le simmetrie 4+ 2 presenti assieme. In totale sono in numero di otto e generano otto gruppi di classi, aggiungendo caso per caso le operazioni c, m, e c+m assieme.

E' interessante osservare l'andamento (Figura 6) del numero di specie contenute in ciascuna classe. Il numero di specie per ciascuna classe è ripreso da [6].

Lo rappresento su un grafico mettendolo a lato (a destra) della classificazione a 5 bit.

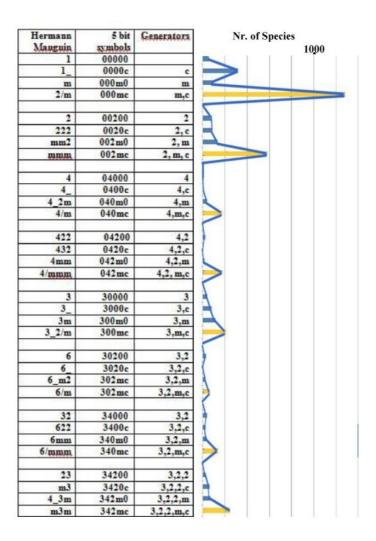


Fig. 6 numero di specie minerali per ciascuna classe

Osservando il grafico si riscontra una forte analogia con la classificazione a gruppi di 4 che non è stata né voluta, né è stata cercata appositamente.

Si nota anche che, in ogni gruppo di quattro, la classe con il più elevato numero di elementi di simmetria (*), o meglio, di bit, è anche quella che vanta il maggior numero di specie minerali.

La classificazione ottenuta manca di alcune interpretazioni che ancora non mi è riuscito di fare. Principalmente, le ripeto, sono le seguenti.

- 1 -le classi come 222 e altre in posizione analoga hanno un bit c mentre la classe manca della simmetria "centro". Si ribadisce quindi il fatto che il bit c <u>non</u> è il centro. Si potrebbe ipotizzare che queste classi abbiano 'il massimo di simmetria possibile, pur in mancanza di un centro di simmetria".
- 2 alla classe 4_ ho assegnato un bit c, mentre essa non possiede fra i generatori la simmetria c e nemmeno la simmetria 4. Questo dimostra che i bit <u>non</u> possono essere e <u>non</u> coincidono con i generatori. Analogamente la classe 6_.
- 3 le sequenze di bit hanno un significato chiaro fino a 34000. Da 34000 in poi, e in particolare per la coppia 34 e la tripletta 342, il significato non mi è chiaro, pur se intuibile.

Però vanta pochissime specie minerali.

^(*) Potremmo chiamarla la classe oloedrica del gruppo, dal greco: ὅλος = tutto, e ἔδρα = faccia. Ma non sempre è così, ad esempio, è la classe giroidale ad avere il massimo numero di simmetrie nel suo gruppo.

CONCLUSIONI

Le 32 classi cristalline esistenti sono classificabili con 5 bit che rappresentano proprietà successive di simmetria.

Le 32 classi sono organizzate in otto gruppi di quattro classi. La prima classe di ognuno egli otto gruppi ha solo simmetrie di rotazione. Le otto simmetrie di rotazione ammesse sono: una classe priva di simmetrie;

una classe dove è presente l'asse 2;

due classi dove è presente l'asse 4;

quattro classi dove è presente l'asse 3.

Per ogni classe si aggiungono poi le ulteriori simmetrie o "operazioni" c, m e c&m combinate. La operazione c ha un significato parente della inversione rispetto a un centro, nel senso che se c'è la proprietà "centro" c'è il bit c, ma l'inverso non è necessariamente vero. La operazione m ha sempre e comunque il significato di simmetria rispetto a un piano.

REFERENCES

- [1], Bettini, G, "32 Point Groups of Three Dimensional Crystal Cells Described by 5 Bits" viXra:1012.0052
- [2] Bettini, G, "A new classification proposed for Crystal Classes UPDATE#2" https://www.mindat.org/article.php/1887/A+new+classification+proposed+for+Crystal+Classes+-+UPDATE#231
- [3] Bilbao Server http://www.cryst.ehu.es/cryst/get_point_genpos.html
- [4], David Hestenesa and Jeremy Holtb, "The Crystallographic Space Groups in Geometric Algebra", http://geocalc.clas.asu.edu/pdf/CrystalGA.pdf
- [5] Eckhard Hitzer and Christian Perwass, "CRYSTAL CELLS IN GEOMETRIC ALGEBRA", Proceedings of the International Symposium on Advanced Mechanical Engineering Between University of Fukui PukyongNational University, November 27, 2004, University of Fukui, Fukui, Japan
- [6] Source: Internet, http://mygeologypage.ucdavis.edu/lambart/teaching/mineralogy-04.pdf

Il sistema cubico.

Il caso di 2 e 3 sghembi corrisponde alla classe cubica 23, che possiede appunto solamente simmetrie di rotazione che sono la 2 e la 3.

Partendo da questa classe possiamo verificare che esiste un gruppo di quattro classi cubiche secondo lo schema annunciato.

Anzi il caso cubico è estremamente illuminante, riguardo a 1-conferme e 2-complicazioni inutili. Partiamo dalle simmetrie minime che caratterizzano le classi, i "generators", ripresi dal Bilbao Server.

Sono scritti in modo complicato, e la dimostrazione non appare evidente. Sono questi:

23	34200	2y, 3-111
m3	3420c	2y, 3-111, c
4_3m	342m0	3-111, c.4z, m(1-10)
m3m	342mc	3-111, 4z, c, m(1-10)

Fig. 7 generatori di quattro classi cubiche, ripresi dal Bilbao Server.

In realtà, esaminando le simmetrie possedute da ciascuna classe, si nota che è lecito assumerli così:

23	34200	2z,2y, 3111
m3	3420c	2z,2y, 3111, c
4_3m	342m0	2z,2y, 3111, m110
m3m	342mc	2z,2y, 3111, m110,c

Fig. 8 come la precedente figura 7, ma con i generatori scritti e/o interpretati in modo diverso

Quindi esattamente esiste una classe di sole rotazioni, la classe 23, secondo assi 2 ortogonali a facce del cubo e asse 3 secondo gli spigoli. Le altre classi sono generate aggiungendo simmetrie c, m e mc.

Questo è nel contempo una conferma del fatto che le vere classi cubiche sono queste quattro, con la classe 432 spostata nel sistema tetragonale.

Invece per quanto riguarda le sequenze di bit 34200, 34200, eccetera, il significato non mi è chiaro, pur se intuibile.

Questo significa, come ho già detto, che non sono ancora riuscito a interpretare la tripletta 342. Genericamente parlando si potrebbe ritenere che queste classi abbiano, fra le simmetrie indispensabili, più di un asse 2 e la matrice 4 che con applicazioni ripetute genera un asse 3111. Tuttavia bisogna notare che per esempio la classe 23 non possiede nessuna simmetria A4 e pertanto questo mostra ancora una volta che il bit 4 <u>non</u> può essere e <u>non</u> può coincidere con un generatore.

La simmetria di rotazione 3.

Riporto quattro classi con la simmetria di rotazione 3 assieme alle quattro classi iniziali, 00, 0c, m0, mc.

I generatori sono presi dal Bilbao Server,

1	00000	
1_	0000c	c
m	000m0	my
2/m	000mc	2y,c

Fig. 9 generatori di quattro classi (triclinic&monoclinic), generatori ripresi dal Bilbao Server.

3	30000	3z
3_	3000c	3z, c
3m	300m0	3z, m110
3 2/m	300mc	3z, 2(1-10), c

Fig. 10 generatori di quattro classi con asse 3, generatori ripresi dal Bilbao Server.

Con un cambio di generatori si può riscrivere così

	00000	1
c	0000с	1_
m	000m0	m
m,c	000mc	2/m

Fig. 11 come la precedente figura 9, ma con i generatori scritti e/o interpretati in modo diverso

3	30000	3
3_	3000c	3,c
3m	300m0	3,m
3_2/m	300mc	3,m,c

Fig. 12 come la precedente figura 10, ma con i generatori scritti e/o interpretati in modo diverso

L'ultima classe 3_2/m non ha, fra le simmetrie di cui gode, la simmetria my ossia 2y ossia 2(010). Si trovano scritte (sempre dal Bilbao Server) solo 2(1-10) 2(120) e 2(210), ma evidentemente è lo stesso assumere 2y perché è una pura questione di riferimento. I cristalli non avendo letto il libro sanno solo di avere un asse binario perpendicolare all'asse 3z.

In più, ho verificato mediante un software di simulazione cristallografica che 3m e 3_2m vengono disegnate con lo stesso identico piano m (in particolare: my).

In conclusione questo gruppo di quattro classi è ok.

Confronto fra il gruppo con l'asse 4 e il gruppo con l'asse 6.

Vorrei notare che i generatori del gruppo 4, ... 4/m, ripresi dal Bilbao Server, sono scritti in modo differente da quelli delle classi 6,....6/m. Questo fatto confonde le idee

I generatori sono scritti così

4	04000	4z
4_	0400c	c.4z
4_2m	040m0	2y, c.4z
4/m	040mc	4z, c

Fig. 13 generatori di quattro classi con asse 4

3z, 2z	30200	6
mz, 3z	3020c	6_
3z, mz, m110	302mc	6_m2
3, 2z, c	302mc	6/m

Fig. 14 generatori di quattro classi con asse 6

Si scriva l'ultima colonna in modo diverso, così

4	04000	4
4_	0400c	4,c
4_2m	040m0	4,m
4/m	040mc	4,m,c

Fig. 15 come la precedente figura 13, ma con l'ultima colonna scritta e/o interpretata in modo diverso

6	30200	3,2
6_	3020c	3,2,c
6_m2	302mc	3,2,m
6/m	302mc	3,2,m,c

Fig. 16 come la precedente figura 14, ma con l'ultima colonna scritta e/o interpretata in modo diverso

In questo modo si rende ben visibile l'analogia fra i due gruppi.

Una difficoltà: la classe 6_ non ha le proprietà 6 e c prese singolarmente. Questo conferma che il bit c è parente del centro, ma non coincide con la simmetria 'centro'.

Confronto fra il gruppo con l'asse 2 e il gruppo con la rotazione 32

In questo caso l'analogia è ben visibile solo fra le ultime tre classi.

Vorrei notare che i generatori di 622, 6mm, 6/mmm, ripresi dal Bilbao Server, sono scritti in modo differente da quelli delle classi 222, mm2, mmm, ossia, non sono gli stessi con un 3z davanti. Ouesto io direi è fatto con l'unico scopo di rendere difficili le cose.

Ma si possono scrivere eguali, con uno 3z davanti. Questo si verifica guardando le simmetrie possedute. Pertanto invece che così

2	00200	2y
222	0020c	2z, 2y
mm2	002m0	2z, my
mmm	002mc	2z, 2y, c

Fig. 13 generatori di quattro classi (monoclinic&orthorhombic) con asse 2

32	34000	3z, 2(1-10
622	3400c	3z, 2z, 2(110)
6mm	340m0	3z, 2z, m110
6/mmm	340mc	3z, 2z, m(110),c

Fig. 14 generatori di quattro classi con simmetria di rotazione 32

si possono scegliere i generatori in modo diverso e si può scrivere esattamente così

2	00200	2
222	0020c	2, c
mm2	002m0	2, m
mmm	002mc	2, m, c

Fig. 15 come la precedente figura 13, ma con l'ultima colonna scritta e/o interpretata in modo diverso

32	34000	3,2
622	3400c	3,2,c
6mm	340m0	3,2,m
6/mmm	340mc	3,2,m,c

Fig. 16 come la precedente figura 14, ma con l'ultima colonna scritta e/o interpretata in modo diverso

Una difficoltà:

le classi 222 e 622 hanno il bit c mentre non possiedono la simmetria rispetto al centro.

Si ribadisce quindi il fatto che il bit c <u>non</u> è il centro. Questo significa, come ho già detto, che non sono ancora riuscito a interpretare il bit c.

Genericamente parlando si potrebbe ritenere che queste classi abbiano per così dire

"il massimo di simmetria possibile rispetto ad un centro di simmetria" Per esempio:

-3 assi 2 ortogonali;

oppure

-niente simmetria rispetto al centro ma su ogni piano x=0, y=0 e z=0 c'è simmetria rispetto al centro.