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According to Feynman, we should make na-
ture to be quantum mechanical to simulate it
better. Simulating quantum systems in a com-
puter had been remained a challenging problem
to tackle. It’s mainly in case of a large quan-
tum system. However, Feynman’s 1982 conjec-
ture [1] that ‘physics can be simulated using a
quantum computer other than using a Turing ma-
chine or a classical computer’ has been proved to
be correct [2]. It is widely known that quantum
computers have superior power as compared to
classical computers in simulating quantum sys-
tems efficiently. Here we report the experimental
realization of quantum tunneling through poten-
tial barriers by simulating it in the IBM quan-
tum computer, which here acts as a universal
quantum simulator. We take a two-qubit system
for visualizing the tunneling process, which has
a truly quantum nature. We clearly observe the
tunneling through a barrier by our experimental
results. This experiment inspires us to simulate
other quantum mechanical problems which pos-
sess such quantum nature.

Quantum simulation is one of the problems that a
quantum computer could perform more efficiently than a
classical computer as it provides significant improvement
in computational resources [2–10]. It has been applied in
a wide range of areas of physics like quantum many-body
theory [11–14], quantum entanglement [15, 16], quantum
phase transitions [17, 18] and molecular physics [19–23]
etc. Algorithms have been used in simulating many quan-
tum field theory problems where Hamiltonian of the sys-
tem [24–39] splits into kinetic and potential energy op-
erators which are then simulated using Trotter’s formula
[40, 41]. Experimental realizations of quantum simula-
tions have already been made in systems like NMR [11–
13, 16, 21, 42–44], ion-trap [45–49], atomic [17, 50] and
photonic [51, 52] quantum computers. The current status
of this field can be found out from these review papers
[53–58].

Quantum tunneling acts as one of the exciting phe-
nomena and the unique fundamental phenomena in quan-
tum mechanics. It has been observed in superconducting
Cooper pairs [59]. It has also been utilized in modern
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technologies [60, 61]. Important science puzzles like lat-
tice quantum chromodynamics can be solved using this
tunneling simulation approach. This type of simulation
has remained untested in a quantum computer due to the
requirement of large number of ancillary qubits and quan-
tum gates. Recently, an algorithm proposed by Sorn-
borger [62] illustrates the simulation by using no ancil-
lary qubits and a small number of quantum gates which
motivates the possibility of simulating in today’s quan-
tum computer consisting of few qubits. Feng et al. [63]
have demonstrated the tunneling effect using NMR. Os-
trowski [64] has also explicated this process and calcu-
lated the transmission and reflection coefficients for the
Gaussian wave packet scattered on a rectangular poten-
tial. Here, in the present work, we illustrate the simula-
tion using IBM’s 5-qubit quantum computer. Using only
two qubits and a set of Hadamard and controlled phase
gates, we were able to simulate the tunneling process in
a double well potential for a single particle.
Quantum Tunneling
The Schrödinger’s equation, for a single particle mov-

ing in a square well potential in one-dimensional space,
is expressed as

i
∂

∂t
|ψ(x, t)〉 = Ĥ |ψ(x, t)〉 (1)

Here Ĥ = K̂+ V̂ , where K̂ and V̂ are kinetic and poten-
tial energy operators respectively.
The time evolution for the wave function of the system

is given as

|ψ(x, t+∆t)〉 = e−iĤt|ψ(x, t)〉

= e−i(K̂+V̂ )t|ψ(x, t)〉 (2)

For digital quantum simulation [65], we discretize the
space on a lattice (with spacing ∆l) within the boundary
region (0 < x < L) with a periodic boundary condition
ψ(x + L, t) = ψ(x, t). The wave function can be inter-
preted in terms of n-qubit register as

|ψ(x, t)〉 →
2n−1∑

k=0

ψ(xk, t)|k〉 (3)

Here |k〉 represents the particle location corresponding to
binary number k, and xk = (k + 1

2 )∆l, ∆l =
L
2n .
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Using second-order Suzuki-Trotter’s formula [66–68],
the exponential operator can be decomposed as

e−i(K̂+V̂ )∆t = e−i V̂
2
∆te−iK̂∆te−i V̂

2
∆t +O(∆t3) (4)

After the quantum Fourier transform, the time evolu-
tion takes the following form,

e−i(K̂+V̂ )∆t = e−i V̂
2
∆tFe−iK̂∆tF †e−i V̂

2
∆t (5)

The equivalent quantum circuit for the Fourier trans-
formation operator F can be realized using a series of
Hadamard gates and controlled-phase gates [69].

The quantum circuit for one-time step evolution is
shown in Fig. 1. The decomposition of the kinetic energy
operator, K and potential energy operator, P are illus-

trated, whereK = FDF †, D = e−iK̂∆t and P = e−i V̂
2
∆t.

Here, the double well potential is implemented by oper-
ating P on the second qubit q[1].

e−iV∆t = I ⊗ e−ivσz∆t ⊗ I..., (6)

In our experiment, we take v=0 and 10 for free particle
and particle in double well potential respectively, and we
set the time interval ∆t = 0.1. Mass of the particle is
taken to be 0.5.

The diagonal operation D can be expressed as a prod-
uct of operators,

D = Φ01Z1Z0 (7)

where Z0 = e−iγc0σ
0

z
∆t, Z1 = e−iγc1σ

1

z
∆t and φ01 =

e−iγc2diag(1,1,1,−1)01∆t. The constant values in the above
expression are obtained to be γ = π2

8 , c0 = −1, c1 = −4
and c2 = 4 [62].

EXPERIMENTAL PROCEDURES AND RESULTS

We investigate two qubit quantum simulation for the
tunneling process using the IBM 5 qubit quantum pro-
cessor ibmqx4 whose layout is depicted in Fig. 2.

FIG. 2: Two coplanar waveguide (CPW) resonators provide
the connectivity between the 5 transmon qubits. For the con-
trol and readout of the qubits, a CPW is associated with each
qubit.

Qubits ωR

i /2π (GHz) ωi/2π (GHz) δi/2π (MHz) χ/2π (kHz)

q[0] 6.52396 5.2461 -330.1 410

q[1] 6.48078 5.3025 -329.7 512

q[2] 6.43875 5.3025 -329.7 408

q[3] 6.58036 5.4317 -327.9 434

q[4] 6.52698 5.1824 -332.5 458

TABLE I: The table shows some of the parameters of
the device ibmqx4.

The experimental parameters for the device is tabu-
lated in Table I, where ωR

i , ωi, δi and χ are the res-
onance frequency, qubit frequency, anharmonicity and
qubit-cavity coupling strength for the readout resonator.

The simulation of the quantum tunneling process of the
particle is performed on the ibmqx4 chip for 4 time steps,
where each step involves the circuit given in Fig. 1. The
tunneling process can be clearly observed in Figs. 3 and
4 which explicates the probability distribution of the free
particle and the particle in a double well potential in each
time step. The particle tunneling through the potential
barrier is evident in Fig. 4, where the probability of
finding the particle in the barrier is very small. Quantum
state tomography (QST) for the initial state and the final
state of the particle reveals the comparison between the
theoretical and the experimental density matrices. From
the graphs shown in Figs. 5 and 6, it is clear that the
experimental process is carried out with a high accuracy.
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FIG. 1: The two-qubit quantum circuit for one time step simulation. The quantum circuits for the kinetic
(FDF−1) and potential (P) energy operators are depicted.

FIG. 3: The figure shows the particle probability distributions
for four time steps interval of the free particle (v=0). (a)
and (b) are the theoretically calculated and experimentally
observed results respectively.

FIG. 4: The figure shows the particle probability distribu-
tions for four time steps interval of the particle in double well
potential (v = 10). (c) and (d) are the theoretically calcu-
lated and experimentally observed results respectively; The
two potential wells are at two sites, |00〉 and |10〉. After four
time steps, the tunneling is clearly shown from |10〉 to |00〉.
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FIG. 5: (a) & (b) are the theoretical real and imaginary parts
of the density matrix elements of the |10〉 state; (c) and (d)
are the experimentally reconstructed density matrix elements
for the initial |10〉 state in our two-qubit system.
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FIG. 6: (e) and (f) are theoretically predicted real and imag-
inary part of density matrix elements after four time steps of
evolution with a double-well potential; (g) and (h) are the ex-
perimentally reconstructed density matrix elements after the
four time steps in our two qubit-system.

To conclude, we have experimentally demonstrated
here the quantum tunneling phenomena of a single par-
ticle in a double well potential. We have designed the
equivalent quantum circuit for the Hamiltonian of the
given system in the real quantum processor ibmqx4. We
have shown the architecture of this processor with some
device parameters. We have illustrated the tunneling
process by running the quantum circuit for four time
steps. We have performed quantum state tomography
for checking the accuracy of our results. From the exper-
iment, it is observed that the tunneling process is carried
out with a high fidelity.
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