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Abstract

The Law of the Excluded Middle holds that either a statement X or its op-
posite X is true, thereby excluding the state in which both are true. In Boolean
algebra form, Y = X XORX, wherein X,X, Y ∈ {0, 1}.

Riemann’s analytic continuation of ζ(s) contradicts the Law of the Excluded
Middle. The Dirichlet series ζ(s) is proven divergent ("X") in the half-plane
Re(s) ≤ 1. Riemann’s ζ(s) claims to be convergent ("X") at all s, including at
Re(s) ≤ 1 (except s = 1). Since convergence and divergence are opposites ("X"
XOR "X"), therefore the Law of the Excluded Middle, when combined with the
proven divergence of the Dirichlet series at Re(s) ≤ 1, disproves Riemann’s claim.

Further inspection of the derivation of Riemann’s analytic continuation of
ζ(s) shows that it is false. The derivation uses a corollary of the Cauchy integral
theorem to equate a function comprising a logarithm (and having its branch cut as
the domain), to the same function (but having a Hankel-type contour surrounding
the branch cut as the domain). But neither path satisfies the prerequisites of the
corollary. So the equality is false, and thus the derivation is false.

Another example of analytic continuation does not contradict the Law of the
Excluded Middle. When the "unit disc" method is applied to the Taylor series of
f(s) = 1/(1− s), it is not used to claim convergence of f(s) where f(s) is known
to be divergent (i.e. at s = 1, where divergence is easily proven due to division
by zero).
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1 Introduction

The Law of the Excluded Middle holds that either a statement X or its opposite X
is true, thereby excluding the possibility that both are true. In Boolean algebra form,
Y = X XORX, wherein X,X, Y ∈ {0, 1}.

Riemann’s analytic continuation of ζ(s) contradicts the Law of the Excluded Middle.
The Dirichlet series ζ(s) is proven divergent (statement "X") in the half-plane Re(s) ≤
1. Riemann’s ζ(s) claims to be convergent (statement "X") at all s, including at
Re(s) ≤ 1 (except s = 1). Since convergence and divergence are two mutually exclusive
states ("X" XOR "X"), thus the Law of the Excluded Middle, when combined with
the proven divergence of the Dirichlet series at Re(s) ≤ 1, disproves Riemann’s claim.

Further inspection of the derivation of Riemann’s analytic continuation of ζ(s) shows
that it is false. The derivation uses a corollary of the Cauchy integral theorem to equate
a function comprising a logarithm (and having its branch cut as the domain), to the
same function (but having a Hankel-type contour surrounding the branch cut as the
domain). But neither path satisfies the prerequisites of the corollary. So the equality
is false, and thus the derivation is false.
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Also, if Riemann’s claim were true, the result would contradict a basic law of arith-
metic: that a sum of positive real numbers is greater than each summand. If a and b
are positive real numbers, then a + b > a and a + b > b. This is because as positive
real numbers, a > 0 and b > 0. So if we add b to both sides of a > 0, we get a+ b > b.
Likewise, if we add a to both sides of b > 0, we get a + b > b. In contrast, Riemann’s
analytic continuation holds that ζ(0) = −1/2 at s = 0. (See Tao[Tao]). This result
contradicts the rule that a sum of positive real numbers is greater than each summand.

Finally, another example of analytic continuation does not contradict the Law of
the Excluded Middle. When the "unit disc" method is applied to the Taylor series of
f(s) = 1/(1− s), it is not used to claim convergence of f(s) where f(s) is known to be
divergent (i.e. at s = 1, where divergence is easily proven due to division by zero).

2 The Law of the Excluded Middle

According to the Law of the Excluded Middle, one of the two statements "X" and "not
X" ("X") is true. (See Plisko [Pli], and Stanford [Dep]). In Boolean algebra form,
Y = X XORX, wherein X,X, Y ∈ {0, 1}. This "law" of classical logic dates back to
Aristotle, and is accepted by most mathematicians.

A minority of mathematicians, who belong to the Intuitionist movement founded
by L.E.J. Brouwer, is critical of the use of the Law of the Excluded Middle. According
to Plisko [Pli], the Intuitionists accept the use of the Law of the Excluded Middle when
one of the statements "X" or "not X" has been proved. But according to Stanford
[Dep] "[I]ntuitionistic logic is logic without the law of excluded middle."

This article attempts to placate the former group of Intuitionists by first proving
that the Dirichlet series of ζ(s) is divergent in the half-plane Re(s) ≤ 1. (The latter
group will reject this paper outright regardless).

The first proofs show that the Dirichlet series is divergent along the half-line s ≤ 1,
wherein s is a real number (s ∈ R). This is then extended to the half-plane Re(s) ≤ 1

wherein s is a complex number (s ∈ C). So the Dirichlet series ζ(s) is proven divergent
(statement "X") in the half-plane Re(s) ≤ 1.

In contrast, Riemann’s analytic continuation of ζ(s) claims to be a version of ζ(s)

that is convergent (statement "X") at all s, except at s = 1. The Law of the Excluded
Middle holds that ζ(s) is either X or X at Re(s) ≤ 1, except at s = 1. Because the
Dirichlet series ζ(s) is proven divergent at Re(s) ≤ 1, Riemann’s analytic continuation
of ζ(s) is false there, except at s = 1.
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3 Divergence of the Dirichlet series Along Half-Line s

=< 1, for Real values of "s"

The following are simple well-known proofs that the Dirichlet series ζ(s) is divergent
(X) at values of s ≤ 1, wherein s ∈ R. When graphed on the complex plane, this region
corresponds to the half line (σ ≤ 1, t = 0). At s = 0, the Dirichlet series is

ζ(0) =
M∑
n=1

n−0

and thus ζ(0) = 10 +20 +30 + . . .+M0. So ζ(0) = M , and as M →∞, thus ζ(0)→∞.
Conceptually, at s = 0 the series is an infinite sum of ones. At s = −1.5, the Dirichlet
series is

ζ(−1.5) =
M∑
n=1

n1.5

and thus ζ(−1.5) = 11.5+21.5+31.5+. . .+M1.5. Because 11.5 < 21.5 < 31.5 < . . . < M1.5,
as M →∞, thus ζ(−1.5)→∞. This proof holds true for all values of s wherein s ∈ R
and s < 0. Conceptually, at s < 0 the series is an infinite sum of successively larger
terms, with each term being larger than all of its predecessors.

In regards to the Dirichlet series at values of s in the "critical strip" 0 < s ≤ 1, it is
divergent as shown by the integral test for convergence (a.k.a. the Maclaurin–Cauchy
test). For example, at s = 0.5, according to the integral test of ζ(0.5),

∞∑
n=1

1

n0.5
≥
∫ M

1

1

n0.5
=

∫ M

1

n−0.5 =
(

2 · n0.5 + C
)∣∣∣M

1
=
(

2 ·M0.5 − 2
)

and as M → ∞, thus (2 ·M0.5 − 2) → ∞. Conceptually, at 0 < s ≤ 1 the Dirichlet
series is an infinite sum of successively smaller terms, with each term being smaller than
its predecessors, but the sum continues to grow with each new term, never approaching
a limit. The examples above, in combination, prove that ζ(s) is divergent at s ≤ 1,
wherein s ∈ R.
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4 Extending the Divergence of the Dirichlet Series

from Real Values of "s" to Complex Values

The divergence of the Dirichlet series in s ≤ 1, s ∈ R, can be extended to all values in
Re(s) ≤ 1, s ∈ C. This is shown by deriving a trigonometric version of the Dirichlet
series ζ(s), by substituting Euler’s formula eiθ = cos(θ) + i sin(θ) into the formula,
using the definition s = σ + it. Since ζ(s) =

∑
n−s, therefore ζ(s) =

∑
n−σn−it, and

n−it = exp(ln(n−it)). The laws of exponents and logarithms say that x = exp(ln(x))

and that ln(xy) = y ln(x), so n−it = exp(−it · ln(n)), the result is:

n−it = e−it·ln(n) = cos
(
− t · ln(n)

)
+ i sin

(
− t · ln(n)

)
(4.1)

and then ζ(s) =
∑
n−s can be rewritten as

ζ(s) =
∞∑
n=1

[
n−σ ·

(
cos
(
t · ln(n)

)
− i sin

(
t · ln(n)

))]
(4.2)

This trigonometric version of the Dirichlet series can be separated into real and imagi-
nary components:

Re
[
ζ(s)

]
=
∞∑
n=1

[
n−σ · cos

(
t · ln(n)

)]
(4.3)

Im
[
ζ(s)

]
= −i ·

∞∑
n=1

[
n−σ · sin

(
t · ln(n)

)]
(4.4)

The real and imaginary portions of trigonometric ζ(s) are divergent if and only if
σ ≤ 1. If σ > 1, then

∑∞
n=1 n

−σ is convergent. The sine and cosine factors, with their
oscillating positive and negative half-cycles, make it converge faster. However, if σ ≤ 1,
then

∑
n−σ is divergent, and the sine and cosine functions do not result in convergence.

More specifically, in the strip 0 < σ ≤ 1, wherein t 6= 0, both Abel’s lemma and
Dirichlet’s test for convergence incorrectly determine that this trigonometric version of
the Dirichlet series is convergent. This is because

∑
n−σ has monotonically decreasing

terms there, and both sine and cosine are bounded functions. However, both Abel’s
lemma and Dirichlet’s test fail to envision a divergent series with monotonically decreas-
ing terms, multiplied by a bounded sine or cosine function having a logarithm function
nested therein. The nested logarithm function results in half-cycles with ever-increasing
half-period durations, so the end result of the product with the terms of the divergent
series

∑
n−σ is a series that oscillates between diverging to +∞ and to −∞.
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5 Riemann’s Analytic Continuation of Zeta(s) Con-

tradicts the Law of the Excluded Middle

Contradicting the Dirichlet series, Riemann’s analytic continuation of ζ(s) claims to be
convergent at all s ∈ C, except s = 1. (See Edwards, [Edw01], page 11; and Riemann
[Rie59], page 1). This claim includes all real values of s, except s = 1. (Note that
both the Dirichlet series ζ(s) and Riemann’s analytic continuation of ζ(s) agree on
divergence at s = 1, and on convergence at s > 1).

This claim contradicts the above proofs of the Dirichlet series ζ(s) at s < 1, wherein
s ∈ R, and wherein s ∈ C. So can ζ(s) be both convergent and divergent at these
values of s? Or is Dirichlet series ζ(s) true at these values of s, and Riemann’s analytic
continuation is false? Or vice versa?

According to the Law of the Excluded Middle, only one of the two statements "X"
and "not X" can be true at any value of s. In Boolean notation: Y = X XOR X,
wherein X,X, Y ∈ {0, 1}). Since convergence and divergence are opposite states, ζ(s)

cannot simultaneously be both. At each value of s, the function ζ(s) is either one or
the other. So throughout s < 1, regardless of whether s ∈ R or s ∈ C, either the proofs
of the divergence of Dirichlet series ζ(s) are true, or Riemann’s analytic continuation
is true and ζ(s) is convergent.

Since the proofs of the divergence of Dirichlet series ζ(s) are true throughout half-
plane Re(s) ≤ 1, Riemann’s analytic continuation is false and ζ(s) cannot be convergent
there.

6 The Error in the Derivation of Riemann’s Zeta Func-

tion

Riemann’s analytic continuation of the Dirichlet series ζ(s) =
∑
n−s is derived by

determining the value of the following Hankel-type contour, wherein s, z ∈ C. (See
Whittaker [WW20], page 266):

ζ(s, a) =

∫ λ

+∞

(−z)s−1 · e−az

(1− e−z)
· dz +

∫
|z|=λ

(−z)s−1 · e−az

(1− e−z)
· dz +

∫ +∞

λ

(−z)s−1 · e−az

(1− e−z)
· dz

However, the factor f1(s, z) = (−z)s−1 in each of the three integrands can be rewrit-
ten, using the laws of logarithms, as f1(s, z) = exp[(s− 1) · log(−z)]. The logarithmic
function f2(s, z) = log(−z), which is a factor of f1(s, z), is undefined on the non-
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negative real axis (the "branch cut" of log(−z)). Therefore, "strictly speaking, the
path of integration must be taken to be slightly above the real axis as it descends from
+∞ to 0 and slightly below the real axis as it goes from 0 back to +∞". (See Edwards
[Edw01], page 10). This solution to the path of integration issue is copied from Hankel’s
derivation of Γ(s). (See Whittaker [WW20], pages 244-245 and 266).

But what is the logical basis for replacing the branch cut with the Hankel-type
contour as the domain of the function? On what basis can we assume that these
two inputs result in the same output, especially given that the logarithm function is
undefined at all values of s on the branch cut?

Whittaker [WW20] (see pages 87 and 244) states that the Cauchy integral theorem’s
path equivalence corollary is the basis for equating (as domains of a logarithm function)
the Hankel-type contour to the branch cut. However, both the Hankel-type contour and
the branch cut contradict the prerequisites of the Cauchy integral theorem’s corollary.

More specifically, Cauchy’s integral theorem states that if f(z) is a function of com-
plex variable z, if f(z) is holomorphic at all points on a simple closed curve ("contour")
C, and if f(z) is holomorphic at all points inside the contour, then the contour integral
of f(z) is equal to zero: ∫

(C)

f(z) · dz = 0 (6.1)

(See Whittaker [WW20], page 85).
The path equivalence corollary of Cauchy’s integral theorem states that if there exist

two points z0 and Z in the complex domain, connected by two distinct paths z0AZ and
z0BZ, and if f(z) is a function of complex variable z that is holomorphic at all points
on these two paths, and holomorphic at all points enclosed by these two paths, then
the line integral between the two points z0 and Z in this region has the same value,
regardless of whether the path of integration is z0AZ, or z0BZ, or any path between
z0AZ and z0BZ. (See Whittaker [WW20], page 87, Corollary 1).

However, the example of the Hankel-type integral falls on the branch cut of the
function f(z) = ln(−z). Therefore f(z) is undefined at all of the non-positive values of
z on the branch cut. It is not possible to calculate a derivative at a point on a curve
where the curve is undefined, so no point on the branch cut is holomorphic. Therefore
the path equivalence corollary of Cauchy’s integral theorem cannot be applied to the
branch cut, and thus cannot be used to equate the branch cut to any other path.

Moreover, the Hankel-type contour is open (not closed), and thus inapplicable for
the Cauchy integral theorem. Even if we assume that the Hankel-type contour is indeed
closed at +∞ on the branch cut (as described in Whittaker [WW20], page 245), then it
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would enclose the entire branch cut (which consists of non-holomorphic points). There
would also be a non-holomorphic point on the Hankel-type contour, at the point where
it connects to the real axis at +∞. For this additional reason it is improper to use the
Cauchy integral theorem’s path equivalence corollary to equate the branch cut to the
Hankel-type open contour. So Riemann’s analytic continuation of the ζ(s) is not valid.

7 Analytic Continuation of Zeta(s) Contradicts Basic

Law of Arithmetic

All of the evidence indicates that Riemann’s analytic continuation is false. The di-
vergence proofs of the Dirichlet series ζ(s) at s < 1, s ∈ R are consistent with other
principles of mathematics. But Riemann’s analytic continuation is not. For exam-
ple, as discussed above, at s = 0, the Dirichlet series is ζ(0) =

∑M
n=1 n

−0, and thus
ζ(0) = 10 + 20 + 30 + . . .+M0. So ζ(0) = M , and as M →∞, thus ζ(0)→∞.

This result is consistent with the rule of arithmetic that a sum of positive real
numbers is greater than each summand. If a, b, c, ... n are positive real numbers, then
a > 0, b > 0, c > 0, ...n > 0. So if we add b to both sides of a > 0, we get a + b > b.
Likewise, if we add a to both sides of b > 0, we get a+ b > a. If we add c to both sides
of a+ b > a, we get a+ b+ c > a+ c. Also, if we add c to both sides of a > 0, we get
a+ c > c. So (a+ b+ c) > (a+ c) > c

In contrast, Riemann’s analytic continuation determines that ζ(0) = −1/2 at s = 0.
(See Tao[Tao]). This result contradicts the above-stated rule of arithmetic,1 because
the result is

−1/2 < (10) < (10 + 20) < (10 + 20 + 30) < . . . < (10 + 20 + 30 + . . .+M0)

In other words, according to Riemann’s analytic continuation, the sum is less than every
summand. So, Riemann’s analytic continuation of ζ(s) is false at s = 0.

Riemann’s analytic continuation of ζ(s) is also false at real values of s in s < 0,
where the Dirichlet series ζ(s) is a series of increasing terms. If we assume that analytic
continuation’s claim of convergence at s in s < 1 is true, then ζ(s) has a finite limit
at each s in s < 0, as a direct consequence of this convergence. However, each finite
limit in s < 0 contradicts the proofs that the Dirichlet series is divergent at all s in
s ≤ 1, and also contradicts the rule that a sum of positive real values is greater than

1Also, Occam’s razor favors the simpler proof for divergence of ζ(s) at s = 0 over the complex ar-
guments in favor of convergence, whose complexity makes them difficult to refute. (See e.g. Tao[Tao]).
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each summand. These results are inherent when a finite limit is equated to an infinite
series of increasing terms.

At real values of s in 0 < s < 1, where the Dirichlet series ζ(s) is divergent but has
decreasing terms, again Riemann’s analytic continuation of ζ(s) is false. The reasons
are the same as for s in s < 0. In regards to a finite limit in 0 < s < 1 contradicting
the rule that a sum of positive real values is greater than each summand, this is proven
by repartitioning the terms in the divergent infinite series.

8 Another Example of Analytic Continuation Does

Not Contradict the Law of the Excluded Middle

Another example of analytic continuation does not contradict the Law of the Excluded
Middle. When the "unit disc" method is applied to the Taylor series of f(s) = 1/(1−s),
it is not used to claim convergence of f(s) where f(s) is known to be divergent (i.e. at
s = 1, where divergence is easily proven due to division by zero).

9 Conclusion

Riemann’s analytic continuation of ζ(s) not valid. So ζ(s) is exclusively defined by
the Dirichlet series, which has no zeros anywhere, and is divergent in the half plane
Re(s) ≤ 1. Therefore the Riemann Hypothesis is false, because it erroneously assumes
that Riemann’s analytic continuation of ζ(s) is true. (The absence of zeros is a situation
analogous to that in Bertrand Russell’s famous example: “The present King of France
is bald.” See Stanford [Dep]).

Regarding the Birch and Swinnerton-Dyer Conjecture 2, ζ(1) is divergent (it is the
harmonic series) and so ζ(1) 6= 0. This result is consistent with the Hasse–Weil zeta
function, which when rearranged is L(E, s) = [ζ(s) · ζ(s − 1)]/ZE,Q(s). Because the
analytic continuation of ζ(s) is false, neither ζ(s) nor ζ(s − 1) can equal zero. So
L(E, s) 6= 0 at all values of s. So at s = 1, the function L(E, 1) 6= 0.

Totaro [Tota][Totb] has excellent advice as to how to proceed from here.
2According to the Clay Mathematics Institute [Ins] description of the Birch and Swinnerton-Dyer

(BSD) conjecture: "this amazing conjecture asserts that if ζ(1) is equal to 0, then there are an infinite
number of rational points (solutions), and conversely, if ζ(1) is not equal to 0, then there is only a finite
number of such points." Given that both the Dirichlet series ζ(s) and Riemann’s analytic continuation
of ζ(s) agree on divergence at s = 1, ζ(1) is divergent (and thus not equal to 0) regardless of whether
Riemann’s analytic continuation of ζ(s) is true or false.
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