
P ≠ NP using the power key, a proof by logical contradiction

Author

Robert DiGregorio

774-417-7589

0x51B4908DdCD986A41e2f8522BB5B68E563A358De

Abstract

Using a new technique called the power key, it’s possible to imply P ≠ NP using a proof by
logical contradiction.

Part 1

• Let PS(x) be the list of all sublists of natural list x, with each sublist folded over the sum
operation, such that, given some natural n, PS(x)[n] is the nth element of PS(x), well ordered
as if the nth element of x was the nth power of 2 before each sublist was folded over the sum
operation

• NOTE: To clarify what "folded over the sum operation" means, here is the list [1, 2, 3]
folded over the sum operation in pseudocode: "[1, 2, 3].fold(sum) = 1 + 2 + 3 = 6"

• NOTE: To clarify, PS(x) is the list of all sublist sums of x, well ordered as if each
element of x was a unique power of 2

• NOTE: To clarify, "well ordered" means smaller naturals are always before larger
naturals. This does not well order PS(x), unless each element of x was well ordered
and much larger than the previous element. However, in this proof, x is always
unordered, therefore PS(x) is always unordered

• Let a "valid power key" be a natural such that, for some list x, for all natural n, PS(x)[n (the ⊕
valid power key of PS(x))] is the nth largest element of PS(x)

• NOTE: is the Boolean exclusive or operation. If you apply against some natural x ⊕ ⊕
to every natural from 0 (inclusive) to 2^(n) (exclusive), those naturals are reordered
such that every unique x gives a unique order

• NOTE: Deciding the valid power key that works for all elements of PS(x) is the same
as well ordering PS(x). This is because PS(x)[n] is the nth element of PS(x), unordered,
and PS(x)[n (the valid power key of PS(x))] is the nth element of PS(x), well ordered, ⊕

so having the valid power key that works for all elements of PS(x) means you
effectively have a well ordered PS(x)

• NOTE: If all elements of PS(x) are unique, there is only 1 valid power key for PS(x).
Again, 1 valid power key works for all elements of PS(x)

• Let A be an unordered natural list, given as input

• Let KEY be a natural, given as input

• Let the decision problem be "Given unordered list A as input and natural KEY as input, is
KEY not the valid power key of PS(A)?"

• A deterministic polynomial time verifier can verify a YES solution to the decision problem if
list A, natural KEY, natural x, and natural y are given, such that (x < y) ≠ (PS(A)[x KEY] < ⊕
PS(A)[y KEY])⊕

• If a deterministic polynomial time verifier exists for a YES solution to a decision problem
such that all deterministic Turing machines deciding it must run in superpolynomial time, P ≠
NP

• If the decision problem can't be solved in polynomial time, P ≠ NP

• If the decision problem can be solved in polynomial time, see part 2

Part 2

• It's implied that algorithm ALGORITHM exists such that ALGORITHM can determine if a
power key is invalid or not in polynomial time

• NOTE: If ALGORITHM is polynomial time for a YES solution to a decision problem,
ALGORITHM polynomial time for a NO solution to a decision problem, and vice versa

• If ALGORITHM exists, deterministic polynomial time verifier V exists such that V can verify if
a power key is valid for any set of subsets and also determine if that power key is even (YES)
or odd (NO)

• Let M be some deterministic time Turing machine such that M, given only A, decides the
power key of A, then determines if it's even (YES) or odd (NO)

• Any such deterministic Turing machine runs in superpolynomial time. Otherwise, it
could sort a set of subsets without looking at every subset, which is a logical contradiction

• It is implied that V can verify M's superpolynomial decision problem in polynomial time, given
A and the power key of A, using ALGORITHM, therefore, P ≠ NP

	Author
	Abstract
	Part 1
	Part 2

